Marks

[8] 1. Consider the problem: maximize x_1 subject to $x_1 \ge 6$, $x_1 \le 10$, $x_1 \ge 7$, $x_1 \ge 0$. Write this as a linear program in standard form. Use the two-phase method, adding an auxilliary variable x_0 to EVERY slack variable equation in the dictionary, to solve this LP. Use the smallest subscript rule to break any ties for entering or leaving variables.

Answer: In standard form this is

```
\max x_1, \quad \text{subject to} \\ -x_1 \le -6 \\ x_1 \le 10 \\ -x_1 \le -7 \\ x_1 \ge 0
```

This gives rise to an initial dictionary:

$$z = x_1$$

$$x_2 = -6 + x_1$$

$$x_3 = 10 - x_1$$

$$x_4 = -7 + x_1$$

Due to the negative constants in the constraints, we use the two phase method, beginning by adding x_0 as non-basic and modifying the objective:

$$w = -x_0$$

$$x_2 = -6 + x_1 + x_0$$

$$x_3 = 10 - x_1 + x_0$$

$$x_4 = -7 + x_1 + x_0$$

We have x_0 enter and choose the leaving variable so that the dictionary becomes feasible, namely x_4 leaves:

$$x_0 = 7 - x_1 + x_4$$

$$x_2 = 1 + x_4$$

$$x_3 = 17 - 2x_1 + x_4$$

$$w = -7 + x_1 - x_4$$

So x_1 enters and x_0 leaves (and so we omit w):

$$x_1 = 7 - x_0 + x_4$$

$$x_2 = 1 + x_4$$

$$x_3 = 3 + 2x_0 - x_4$$

Continued on page 3

This gives us a feasible dictionary with x_0 non-basic. So we eliminate the x_0 to get the feasible dictionary (and use our original objective $z = x_1$), to start the second phase:

$$x_{1} = 7 + x_{4}$$
$$x_{2} = 1 + x_{4}$$
$$x_{3} = 3 - x_{4}$$
$$z = x_{1} = 7 + x_{4}$$

So x_4 enters and x_3 leaves:

$$x_4 = 3 - x_3$$

$$x_1 = 10 - x_3$$

$$x_2 = 4 - x_3$$

$$z = 10 - x_3$$

Since all the coefficients of the z row are zero or negative, we are done and the optimal solution is $x_1 = 10$ with z = 10.

[12] **2.** (4 points for each part) Let

$$A_1 = \begin{bmatrix} 1 & 2\\ 4 & 3 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -1 & 2\\ 4 & -3 \end{bmatrix}$$

(a) Find the value of "Alice announces a pure strategy," "Betty announces a pure strategy," and the value of the mixed strategy games for the matrix game A_1 ; show your work and justify your conclusions.

Answer: If Alice announces row 1, Betty chooses the minimum of 1 and 2, namely 2; if Alice announces row 2, Betty chooses 3; so the value of "Alice announces a pure strategy" is 3 (and Alice announces row 2). If Betty announces column 1, Alice chooses 4, and if Betty announces column 2, Alice chooses 3; so the value of "Betty announces a pure strategy" is 3 (and Betty announces column 2). Since these two values are both 3, the mixed strategy games have the value 3.

(b) Same question as (a) for A_2 .

Answer: By similar reasoning, the value of "Alice announces a pure strategy" is -1 (and Alice announces row 1), and the value of "Betty announces a pure strategy" is 2 (and Betty announces column 2). Since these values are different, the optimal mixed strategy for Alice is balanced, and the value, v, is given by solving

$$[x_1 \ 1 - x_1] \begin{bmatrix} -1 & 2\\ 4 & -3 \end{bmatrix} = [v \ v],$$

which gives

$$(-1)x_1 + 4(1 - x_1) = v = 2x_1 + (-3)(1 - x_1)$$

so $x_1 = 7/10$ and v = 1/2.

(c) Let A be a 100×2 matrix game. Argue that Alice has an optimal mixed strategy where she plays at most two rows.

Answer: By adding a matrix of constant entries to A we may assume that all of A's entries are non-negative, and so the value of the mixed strategy games, v, is non-negative. The linear program for Alice's mixed strategy is to maximize v subject to

$$1 - x_1 - \dots - x_{99} \ge 0,$$

[x_1 x_2 \dots x_{99} 1 - x_1 - \dots - x_{99}]A \ge [v v]

and $x_1, \ldots, x_{99}, v \ge 0$. We know this is a feasible linear program with v bounded by the largest entry of A. So when we run the simplex method we will have a final dictionary with 3 basic variables, one of which must be v since we know v > 0; this leaves two other basic variables, so at most two of x_1, \ldots, x_{100} can be nonzero in the optimal solution, with $x_{100} = 1 - x_1 - \cdots - x_{99}$ corresponding to how Alice plays the last row. Hence at least 98 rows (i.e., strategies) of Alice's optimal mixed strategy are not played in this optimal solution. [8] **3.** What is the value of the mixed strategy games for the matrix:

$$A = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 8 & 7 & 6 & 5 \\ 9 & 10 & 11 & 12 \\ 10 & 9 & 12 & 11 \end{bmatrix} ?$$

Justify your reasoning and any calculations you perform.

Answer: All values in the first two rows are smaller than those in the last two rows, so the last two rows dominate the first two; i.e., Alice can discard rows 1 and 2. This leaves the matrix game:

$$A = \begin{bmatrix} 9 & 10 & 11 & 12\\ 10 & 9 & 12 & 11 \end{bmatrix},$$

whereupon columns 1 and 2 dominate columns 3 and 4 (i.e., Betty will never play columns 3 or 4). This leaves the matrix game

$$A = \begin{bmatrix} 9 & 10\\ 10 & 9 \end{bmatrix},$$

where the values of "announcing a pure strategy" are 9 and 10, and hence the value of the mixed strategy games are given by

$$\begin{bmatrix} x_1 & 1-x_1 \end{bmatrix} \begin{bmatrix} 9 & 10\\ 10 & 9 \end{bmatrix} = \begin{bmatrix} v & v \end{bmatrix},$$

which yields $x_1 = 1/2$ and v = 19/2.

October 2015 MATH 340 Name

[8] **4.** Consider the matrix game:

$$A = \begin{bmatrix} 5 & 4 & 3 \\ 6 & 1 & 4 \\ 2 & 5 & 5 \end{bmatrix}$$

Carol sets up the linear program: maximize v subject to $1 - x_1 - x_2 \ge 0$ and

$$\begin{bmatrix} x_1 & x_2 & 1 - x_1 - x_2 \end{bmatrix} \begin{bmatrix} 5 & 4 & 3 \\ 6 & 1 & 4 \\ 2 & 5 & 5 \end{bmatrix} \ge \begin{bmatrix} v & v & v \end{bmatrix}$$

and $x_1, x_2, x_3, v \ge 0$. Carol tells you that she arrived at the dictionary

$$z = (79/20) - (7/20)x_4 - (1/4)x_5 - (2/5)x_6$$

$$v = (79/20) - (7/20)x_4 - (1/4)x_5 - (2/5)x_6$$

$$x_1 = (9/20) + (3/20)x_4 + (1/4)x_5 - (2/5)x_6$$

$$x_2 = (3/20) + (1/20)x_4 - (1/4)x_5 + (1/5)x_6$$

$$x_3 = (2/5) - (1/5)x_4 - (0)x_5 + (1/5)x_6$$

(a) What is the value of the game "Alice announces a mixed strategy" based on this final dictionary? What is Alice's optimum mixed strategy, based on this final dictionary?

Answer: From the v, x_1, x_2, x_3 values in the final dictionary, the value is 79/20 and Alice plays rows 1,2,3 the respective fractions 9/20, 3/20, and 2/5.

(b) Dina does not believe that the above final dictionary is correct. Show that your answers in (a) are correct with an argument that doesn't rely on the final dictionary. [You may use the information in the dictionary, but your argument cannot rely on this dictionary being 100% correct.]

Answer: There are a number of different methods; we shall present a few. All the methods here make use of the fact that From the strategy of Alice, we compute

 $\begin{bmatrix} 9/20 \ 3/20 \ 8/20 \end{bmatrix} \begin{bmatrix} 5 & 4 & 3 \\ 6 & 1 & 4 \\ 2 & 5 & 5 \end{bmatrix} = \begin{bmatrix} 79/20 \ 79/20 \ 79/20 \end{bmatrix}$

and it follows that the value of the mixed stategry games is at least 79/20.

[A number of people claimed that the above was enough to prove that the value of the mixed strategy games was equal to 79/20. Even for 2×2 games you need more information; and for 3×3 games or larger these matters are much more subtle.]

Method 1: From the homework, we know that (if the dictionary is correct) Betty's strategy should be the coefficients of the z row, namely 7/20, 1/4, 2/5. Regardless of whether or not the dictionary is correct, we can see what happens when Betty plays this strategy: so we calculate

$$\begin{bmatrix} 5 & 4 & 3 \\ 6 & 1 & 4 \\ 2 & 5 & 5 \end{bmatrix} \begin{bmatrix} 7/20 \\ 1/4 \\ 2/5 \end{bmatrix} = \begin{bmatrix} 79/20 \\ 79/20 \\ 79/20 \end{bmatrix}.$$

It follows that the mixed value is no more than 79/20. Hence it equals 79/20.

Method 2: The z row of the final dictionary always provides a proof that the objective is optimal. Specifically we should take the inequality corresponding to x_4 , multiply by 7/20, do similarly with x_5 and x_6 , and add: so we take

$$(5x_1 + 6x_2 + (1 - x_1 - x_2)2 \ge v)$$
 both sides times 7/20
 $(4x_1 + 1x_2 + (1 - x_1 - x_2)5 \ge v)$ both sides times 1/4
 $(3x_1 + 4x_2 + (1 - x_1 - x_2)5 \ge v)$ both sides times 2/5

and add them, which gives

$$79/20 + 0x_1 + 0x_2 \ge v,$$

and hence v cannot be greater than 79/20.

Method 3: We can verify that the final row

$$z = (79/20) - (7/20)x_4 - (1/4)x_5 - (2/5)x_6$$

is correct by substituting in the expressions for the slack variables x_4, x_5, x_6 given by the linear program (i.e., $x_4 = 5x_1 + 6x_2 + (1 - x_1 - x_2)2 - v$, etc.). Once we have verified this line, we know that z cannot be larger than 79/20.

[Methods 2 and 3 are very similar in spirit.]

October 2015	MATH 340	Name
--------------	----------	------

Be sure that this examination has 6 pages including this cover

The University of British Columbia

Midterm Examinations - October 2015

Mathematics 340

Closed book examination

Time: 45 minutes

Name	Signature
Student Number	Instructor's Name
	Section Number

Special Instructions:

Calculators, notes, or other aids may not be used. Answer questions on the exam. This exam is two-sided!

Rules governing examinations

1. Each candidate should be prepared to produce his library/AMS		
card upon request.		
2. Read and observe the following rules:		
No candidate shall be permitted to enter the examination room after the expi-		
ration of one half hour, or to leave during the first half hour of the examination.		
Candidates are not permitted to ask questions of the invigilators, except in		
cases of supposed errors or ambiguities in examination questions.		
CAUTION - Candidates guilty of any of the following or similar practices		
shall be immediately dismissed from the examination and shall be liable to		
disciplinary action.		
(a) Making use of any books, papers or memoranda, other than those au-		
thorized by the examiners.		
(b) Speaking or communicating with other candidates.		
(c) Purposely exposing written papers to the view of other candidates. The		
plea of accident or forgetfulness shall not be received.		
3. Smoking is not permitted during examinations.		

1	8
2	12
3	8
4	8
Total	36