HOMEWORK 6 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.
(1) The dictionary consists of

$$
\begin{array}{rll}
\vec{x}_{B} & =A_{B}^{-1} \vec{b} & -A_{B}^{-1} A_{N} \vec{x}_{N} \\
z & =\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} \vec{b} & +\left(\vec{c}_{N}^{\mathrm{T}}-\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} A_{N}\right) \vec{x}_{N}
\end{array}
$$

Since there are always m basic variables, and A_{B} is $m \times m$, naively inverting A_{B} will take order m^{3} FLOPs. Multiplying $\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1}$ will take order m^{2} FLOPs. Also the cost of computing $A_{B}^{-1} A_{N} \vec{x}$ is mostly not needed: we only compute A_{B}^{-1} times the A_{N} row corresponding to the entering variable, which again costs order m^{2} FLOPs. The only operation that can be expensive is multiplying $\vec{c}_{B}^{T} A_{B}^{-1}$ by A_{N} to compute the z row.

If A_{N} is sparse, then although $\vec{c}_{B}^{\top} A_{B}^{-1}$ is m dimensional and A_{N} is $m \times n$, the fact that A_{N} is mostly zeros means that will only need a number of multiplications and additions each equal to the number of nonzero entries of A_{N}. Hence this step will require $m n$ times 5%; an ordinary pivot (at least when the dictionary is dense) requires $m n$ additions and $m n$ multiplications. Hence the revised simplex method requires order m^{3} plus $2 m n / 20$ FLOPs (one addition and one multiplication for each of $m n$ times 5% entries of A_{N}), as opposed to $2 m n$ for a standard simplex method pivot. So you save roughly a factor of 20 for each pivot (neglecting the order m^{3} terms, since $m n=m^{5}$ is much larger).
(2) One again, the standard simplex method requires roughly $2 m n$ operations to update each dictionary. And once again, the revised simplex method takes order m^{3} operations plus the cost of taking the product of $\vec{c}_{B}^{\top} A_{B}^{-1}$ with A_{N}. However, rather than multiply all of A_{N} you only have to do the columns of A_{N} corresponding to the non-basic variables that might enter. So if you can identify $n / 10$ variables from which to choose, you only need to compute $\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1}$ times $n / 3$ of the n columns of A_{N}. Hence you save a factor of 3 for each pivot where this is possible. In general, if $n / 3$ is replaced with n^{\prime}, then you save a factor of n / n^{\prime}; so for $n^{\prime}=n / 30$ you save a factor of 30 , and for $n^{\prime}=\sqrt{n}$ you save a factor of \sqrt{n}.

[^0]Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

