HOMEWORK 6 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.

(1) The dictionary consists of

$$\vec{x}_B = A_B^{-1} \vec{b} - A_B^{-1} A_N \vec{x}_N z = \vec{c}_B^{\mathrm{T}} A_B^{-1} \vec{b} + (\vec{c}_N^{\mathrm{T}} - \vec{c}_B^{\mathrm{T}} A_B^{-1} A_N) \vec{x}_N$$

Since there are always m basic variables, and A_B is $m \times m$, naively inverting A_B will take order m^3 FLOPs. Multiplying $\vec{c}_B^T A_B^{-1}$ will take order m^2 FLOPs. Also the cost of computing $A_B^{-1} A_N \vec{x}$ is mostly not needed: we only compute A_B^{-1} times the A_N row corresponding to the entering variable, which again costs order m^2 FLOPs. The only operation that can be expensive is multiplying $\vec{c}_B^T A_B^{-1}$ by A_N to compute the z row.

If A_N is sparse, then although $\vec{c}_B^T A_B^{-1}$ is m dimensional and A_N is $m \times n$, the fact that A_N is mostly zeros means that will only need a number of multiplications and additions each equal to the number of nonzero entries of A_N . Hence this step will require mn times 5%; an ordinary pivot (at least when the dictionary is dense) requires mn additions and mn multiplications. Hence the revised simplex method requires order m^3 plus 2mn/20 FLOPs (one addition and one multiplication for each of mn times 5% entries of A_N), as opposed to 2mn for a standard simplex method pivot. So you save roughly a factor of 20 for each pivot (neglecting the order m^3 terms, since $mn = m^5$ is much larger).

(2) One again, the standard simplex method requires roughly 2mn operations to update each dictionary. And once again, the revised simplex method takes order m^3 operations plus the cost of taking the product of $\vec{c}_B^T A_B^{-1}$ with A_N . However, rather than multiply all of A_N you only have to do the columns of A_N corresponding to the non-basic variables that might enter. So if you can identify n/10 variables from which to choose, you only need to compute $\vec{c}_B^T A_B^{-1}$ times n/3 of the *n* columns of A_N . Hence you save a factor of 3 for each pivot where this is possible. In general, if n/3 is replaced with n', then you save a factor of n/n'; so for n' = n/30 you save a factor of 30, and for $n' = \sqrt{n}$ you save a factor of \sqrt{n} .

Research supported in part by an NSERC grant.

JOEL FRIEDMAN

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf

 $\mathbf{2}$