HOMEWORK 5 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.
(1) Consider the constraint $x_{1}+x_{2} \leq 1$: for any feasible \vec{x} such that $x_{1}+x_{2}<1$, it is always possible to increase x_{1} (or x_{2}) a bit and preserve the inequality $x_{1}+x_{2} \leq 1$. However, since the entries of A are all positive, any increase in x_{1} will strictly increase v. Hence \vec{x} cannot be an optimal solution for the objective $z=v$ unless $x_{1}+x_{2}=1$.
(2) The dual LP is

minimize	w,	subject to	
	$11 y_{1}$	$+9 y_{2}$	\leq
	$8 y_{1}$	$+12 y_{2}$	$\leq w$
	y_{1}	$+y_{2}$	≥ 1

(We have chosen to call the third dual variable w instead of y_{3} because the minimum value of w will be the value that will give an upper bound on the objective, z.) Let y_{3}, y_{4}, y_{5} be the slack variables for the first three inequalities,
$y_{3}=w-11 y_{1}-9 y_{2}, \quad y_{4}=w-8 y_{1}-12 y_{2}, \quad y_{5}=-1+y_{1}+y_{2}$,
and let x_{3}, x_{4}, x_{5} be the slack variables for the primal (as given by the solutions to Homework 3):
$x_{3}=-v+11 x_{1}+8 x_{2}, \quad x_{4}=-v+9 x_{1}+12 x_{1}, \quad x_{5}=1-x_{1}-x_{2}$.
We have the correspondence:

$$
x_{1} \leftrightarrow y_{3}, \quad x_{2} \leftrightarrow y_{4}, \quad v \leftrightarrow y_{5}, \quad x_{3} \leftrightarrow y_{1}, \quad x_{4} \leftrightarrow y_{2}, \quad x_{5} \leftrightarrow w
$$

(a) $x_{1}=x_{2}=1 / 2, v=19 / 2$. From the solutions to Homework 3 we compute $x_{3}=0, x_{4}=1, x_{5}=0$. So x_{1}, x_{2}, x_{4} are positive, which forces $y_{3}=y_{4}=y_{5}=y_{2}=0 . \quad y_{3}=y_{4}=y_{5}=0$ give the three equations:

$$
11 y_{1}=w, \quad 8 y_{1}=w, \quad y_{1}=1
$$

(since $y_{2}=0$). This system is inconsistent, since $y_{1}=1$ forces both $w=11$ and $w=8$. Hence the proposed solution is not optimal.

[^0](b) $x_{1}=1 / 3, x_{2}=2 / 3, v=9$; we have $x_{3}=0, x_{4}=2, x_{5}=0$. This forces $y_{3}=y_{4}=y_{5}=y_{2}=0$, which we have seen in part (a) leads to an inconsistent system. Hence the proposed solution is not optimal.
(c) $x_{1}=2 / 3, x_{2}=1 / 3, v=10$; we have $x_{3}=0, x_{4}=0, x_{5}=0$, which forces $y_{3}=y_{4}=y_{5}=0$. This gives the equations
$$
0=w-11 y_{1}-9 y_{2}=w-8 y_{1}-12 y_{2}=-1+y_{1}+y_{2}
$$
which we solve to find $y_{1}=y_{2}=1 / 2, w=10$, which is therefore an optimal solution (all the x 's and y 's are non-negative and satisfy complementary slackness).
(d) $x_{1}=1, x_{2}=0, v=9$; we have $x_{3}=2, x_{4}=0, x_{5}=0$. This forces $y_{3}=y_{5}=y_{1}=0 . y_{3}=y_{5}=0$ gives the two equations
$$
9 y_{2}=w, \quad y_{2}=1
$$
(since $y_{1}=0$). This implies $y_{2}=1, w=9$; the last variable to check is y_{4}, but
$$
y_{4}=w-8 y_{1}-12 y_{2}-v=9+0-12=-3
$$
which is negative. Hence the proposed solution is not optimal.
(e) $x_{1}=0, x_{2}=0, v=0$; we have $x_{3}=0, x_{4}=0, x_{5}=1$. This forces $w=0$. This leaves us with
$$
y_{3}=-11 y_{1}-9 y_{2}, \quad y_{4}=-8 y_{1}-12 y_{2}, \quad y_{5}=-1+y_{1}+y_{2} .
$$

This set of three equations in five unknowns has many solutions, but it is not hard to see that none of these solutions can have $\mathrm{i} y_{1}, \ldots, y_{5}$ all non-negative. Indeed, the equation $y_{3}=-11 y_{1}-9 y_{2}$ cannot have either y_{1} or y_{2} positive, or else y_{3} would be negative; so $y_{1}=y_{2}=$ $y_{3}=0$. The equation $y_{5}=-1+y_{1}+y_{2}$ then forces $y_{5}=-1$, which is negative. Hence the proposed solution is not optimal.
(3) The dual LP is already written above. If Betty plays columns 1 and 2 with frequencies y_{1} and y_{2}, then Alice chooses

$$
\max \left(11 y_{1}+9 y_{2}, 8 y_{1}+12 y_{2}\right)
$$

which is the same thing as the smallest v such that

$$
11 y_{1}+9 y_{2} \leq v \quad \text { and } \quad 8 y_{1}+12 y_{2} \leq v
$$

Hence Betty will choose the non-negative y_{1}, y_{2} subject to $y_{1}+y_{2}=1$ such that v is minimized. There is no harm in replacing $y_{1}+y_{2}=1$ with $y_{1}+y_{2} \geq 1$ here, since if $y_{1}+y_{2}>1$, then one cannot be at optimality since Betty can choose a slightly smaller y_{1} (or y_{2}) and get a smaller w value. Hence the dual LP above is precisely the LP that describes Betty's best mixed strategy, with w being the value of this game.

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

