
HOMEWORK 5 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised
without explicit written permission from the copyright owner.

(1) Consider the constraint x1+x2 ≤ 1: for any feasible ~x such that x1+x2 < 1,
it is always possible to increase x1 (or x2) a bit and preserve the inequality
x1 + x2 ≤ 1. However, since the entries of A are all positive, any increase
in x1 will strictly increase v. Hence ~x cannot be an optimal solution for the
objective z = v unless x1 + x2 = 1.

(2) The dual LP is

minimize w, subject to

11y1 +9y2 ≤ w
8y1 +12y2 ≤ w
y1 +y2 ≥ 1

and y1, y2, w ≥ 0.

(We have chosen to call the third dual variable w instead of y3 because
the minimum value of w will be the value that will give an upper bound
on the objective, z.) Let y3, y4, y5 be the slack variables for the first three
inequalities,

y3 = w − 11y1 − 9y2, y4 = w − 8y1 − 12y2, y5 = −1 + y1 + y2,

and let x3, x4, x5 be the slack variables for the primal (as given by the
solutions to Homework 3):

x3 = −v + 11x1 + 8x2, x4 = −v + 9x1 + 12x1, x5 = 1− x1 − x2.

We have the correspondence:

x1 ↔ y3, x2 ↔ y4, v ↔ y5, x3 ↔ y1, x4 ↔ y2, x5 ↔ w.

(a) x1 = x2 = 1/2, v = 19/2. From the solutions to Homework 3 we
compute x3 = 0, x4 = 1, x5 = 0. So x1, x2, x4 are positive, which
forces y3 = y4 = y5 = y2 = 0. y3 = y4 = y5 = 0 give the three
equations:

11y1 = w, 8y1 = w, y1 = 1

(since y2 = 0). This system is inconsistent, since y1 = 1 forces both
w = 11 and w = 8. Hence the proposed solution is not optimal.
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(b) x1 = 1/3, x2 = 2/3, v = 9; we have x3 = 0, x4 = 2, x5 = 0. This
forces y3 = y4 = y5 = y2 = 0, which we have seen in part (a) leads to
an inconsistent system. Hence the proposed solution is not optimal.

(c) x1 = 2/3, x2 = 1/3, v = 10; we have x3 = 0, x4 = 0, x5 = 0, which
forces y3 = y4 = y5 = 0. This gives the equations

0 = w − 11y1 − 9y2 = w − 8y1 − 12y2 = −1 + y1 + y2,

which we solve to find y1 = y2 = 1/2, w = 10, which is therefore
an optimal solution (all the x’s and y’s are non-negative and satisfy
complementary slackness).

(d) x1 = 1, x2 = 0, v = 9; we have x3 = 2, x4 = 0, x5 = 0. This forces
y3 = y5 = y1 = 0. y3 = y5 = 0 gives the two equations

9y2 = w, y2 = 1

(since y1 = 0). This implies y2 = 1, w = 9; the last variable to check
is y4, but

y4 = w − 8y1 − 12y2 − v = 9 + 0− 12 = −3,

which is negative. Hence the proposed solution is not optimal.
(e) x1 = 0, x2 = 0, v = 0; we have x3 = 0, x4 = 0, x5 = 1. This forces

w = 0. This leaves us with

y3 = −11y1 − 9y2, y4 = −8y1 − 12y2, y5 = −1 + y1 + y2.

This set of three equations in five unknowns has many solutions, but
it is not hard to see that none of these solutions can have iy1, . . . , y5
all non-negative. Indeed, the equation y3 = −11y1 − 9y2 cannot have
either y1 or y2 positive, or else y3 would be negative; so y1 = y2 =
y3 = 0. The equation y5 = −1 + y1 + y2 then forces y5 = −1, which is
negative. Hence the proposed solution is not optimal.

(3) The dual LP is already written above. If Betty plays columns 1 and 2 with
frequencies y1 and y2, then Alice chooses

max(11y1 + 9y2, 8y1 + 12y2),

which is the same thing as the smallest v such that

11y1 + 9y2 ≤ v and 8y1 + 12y2 ≤ v.

Hence Betty will choose the non-negative y1, y2 subject to y1 + y2 = 1
such that v is minimized. There is no harm in replacing y1 + y2 = 1 with
y1 + y2 ≥ 1 here, since if y1 + y2 > 1, then one cannot be at optimality
since Betty can choose a slightly smaller y1 (or y2) and get a smaller w
value. Hence the dual LP above is precisely the LP that describes Betty’s
best mixed strategy, with w being the value of this game.
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