HOMEWORK 3 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.
(1)

$$
\begin{array}{rlrrr}
x_{3} & = & 1 & -x_{1} & -x_{2} \\
x_{4} & = & -1 & -2 x_{1} & +x_{2} \\
x_{5} & = & -4 & +3 x_{1} & +2 x_{2} \\
\hline z & = & & 3 x_{1} & +x_{2}
\end{array}
$$

This is not feasible; we use the two-phase method. Introduce x_{0} and maximize $w=-x_{0}$:

$$
\begin{array}{rrrrrr}
x_{3} & = & 1 & -x_{1} & -x_{2} & +x_{0} \\
x_{4} & = & -1 & -2 x_{1} & +x_{2} & +x_{0} \\
x_{5} & = & -4 & +3 x_{1} & +2 x_{2} & +x_{0} \\
\hline w & = & & & & -x_{0}
\end{array}
$$

The most negative variable is x_{5}, so x_{0} enters and x_{5} leaves.

$$
\begin{array}{rlrrrr}
x_{0} & = & 4 & -3 x_{1} & -2 x_{2} & +x_{5} \\
x_{3} & = & 5 & -4 x_{1} & -3 x_{2} & +x_{5} \\
x_{4} & = & 3 & -5 x_{1} & -x_{2} & +x_{5} \\
\hline w & = & -4 & +3 x_{1} & +2 x_{2} & -x_{5}
\end{array}
$$

x_{1} enters and x_{4} leaves:

$$
\begin{array}{rrrrrl}
x_{0} & = & 11 / 5 & -(7 / 5) x_{2} & +(3 / 5) x_{4} & +(2 / 5) x_{5} \\
x_{1} & = & 3 / 5 & -(1 / 5) x_{2} & -(1 / 5) x_{4} & +(1 / 5) x_{5} \\
x_{3} & = & 13 / 5 & -(11 / 5) x_{2} & +(4 / 5) x_{4} & +(1 / 5) x_{5} \\
\hline w & = & -11 / 5 & +(7 / 5) x_{2} & -(3 / 5) x_{4} & -(2 / 5) x_{5}
\end{array}
$$

x_{2} enters and x_{3} leaves

$$
\begin{array}{rlrlll}
x_{0} & = & 6 / 11 & +(7 / 11) x_{3} & +(1 / 11) x_{4} & +(3 / 11) x_{5} \\
x_{1} & = & 4 / 11 & +(1 / 11) x_{3} & -(3 / 11) x_{4} & +(2 / 11) x_{5} \\
x_{2} & = & 13 / 11 & -(5 / 11) x_{3} & +(4 / 11) x_{4} & +(1 / 11) x_{5} \\
\hline w & = & -6 / 11 & -(7 / 11) x_{3} & -(1 / 11) x_{4} & -(3 / 11) x_{5}
\end{array}
$$

The maximum value of $w=-6 / 11$. Hence the minimum value of $x_{0}=6 / 11$. Since this is non-zero, we conclude that the original LP problem is not feasible.

[^0](2) Again, we introduce slacks and then x_{0} to the right-hand-sides.
\[

$$
\begin{array}{lllll}
x_{2} & = & 7 & -x_{1} & +x_{0} \\
x_{3} & = & -1 & +x_{1} & +x_{0} \\
x_{4} & = & -4 & +x_{1} & +x_{0} \\
\hline w & = & & & -x_{0}
\end{array}
$$
\]

(You could omit the x_{0} from the x_{2} line; the dictionaries would be slightly different.) We pivot x_{0} in and x_{4}, which has the most negative constant, leaves.

$$
\begin{array}{rlrll}
x_{2} & = & 11 & -2 x_{1} & +x_{4} \\
x_{3} & = & 3 & & +x_{4} \\
x_{0} & = & 4 & -x_{1} & +x_{4} \\
\hline w & = & -4 & +x_{1} & -x_{4}
\end{array}
$$

So x_{1} enters and x_{0} leaves.

\[

\]

So x_{0} is eliminated and we bring in the old objective:

$$
\begin{array}{llll}
x_{2} & = & 3 & -x_{4} \\
x_{3} & = & 3 & +x_{4} \\
x_{1} & = & 4 & +x_{4} \\
\hline z & = & 12 & +3 x_{4}
\end{array}
$$

So x_{4} enters and x_{2} leaves and we get:

$$
\begin{array}{rlrr}
x_{4} & = & 3 & -x_{2} \\
x_{3} & =6 & -x_{2} \\
x_{1} & =7 & -x_{2} \\
\hline z & =21 & -3 x_{2}
\end{array}
$$

This is a final dictionary, so we are done.
Had we pivoted x_{3} instead of x_{0} into the first dictionary, we would have obtained

$$
\begin{array}{llrrl}
x_{2} & = & 8 & -2 x_{1} & +x_{3} \\
x_{0} & = & 1 & -x_{1} & +x_{3} \\
x_{4} & = & -3 & & +x_{3} \\
\hline z & = & -1 & +x_{1} & -x_{3}
\end{array}
$$

In this case we get a negative constant in the x_{4} row.
Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: $\mathrm{jf@cs.ubc.ca} \mathrm{or} \mathrm{jf@math} . \mathrm{ubc} . \mathrm{ca}$
URL: http://www.math.ubc.ca/~jf

[^0]: Research supported in part by an NSERC grant.

