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(1)

x3 = 1 −x1 −x2

x4 = −1 −2x1 +x2

x5 = −4 +3x1 +2x2

z = 3x1 +x2

This is not feasible; we use the two-phase method. Introduce x0 and max-
imize w = −x0:

x3 = 1 −x1 −x2 +x0

x4 = −1 −2x1 +x2 +x0

x5 = −4 +3x1 +2x2 +x0

w = −x0

The most negative variable is x5, so x0 enters and x5 leaves.

x0 = 4 −3x1 −2x2 +x5

x3 = 5 −4x1 −3x2 +x5

x4 = 3 −5x1 −x2 +x5

w = −4 +3x1 +2x2 −x5

x1 enters and x4 leaves:

x0 = 11/5 −(7/5)x2 +(3/5)x4 +(2/5)x5

x1 = 3/5 −(1/5)x2 −(1/5)x4 +(1/5)x5

x3 = 13/5 −(11/5)x2 +(4/5)x4 +(1/5)x5

w = −11/5 +(7/5)x2 −(3/5)x4 −(2/5)x5

x2 enters and x3 leaves

x0 = 6/11 +(7/11)x3 +(1/11)x4 +(3/11)x5

x1 = 4/11 +(1/11)x3 −(3/11)x4 +(2/11)x5

x2 = 13/11 −(5/11)x3 +(4/11)x4 +(1/11)x5

w = −6/11 −(7/11)x3 −(1/11)x4 −(3/11)x5

The maximum value of w = −6/11. Hence the minimum value of x0 = 6/11.
Since this is non-zero, we conclude that the original LP problem is not
feasible.
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(2) Again, we introduce slacks and then x0 to the right-hand-sides.

x2 = 7 −x1 +x0

x3 = −1 +x1 +x0

x4 = −4 +x1 +x0

w = −x0

(You could omit the x0 from the x2 line; the dictionaries would be slightly
different.) We pivot x0 in and x4, which has the most negative constant,
leaves.

x2 = 11 −2x1 +x4

x3 = 3 +x4

x0 = 4 −x1 +x4

w = −4 +x1 −x4

So x1 enters and x0 leaves.

x2 = 3 +2x0 −x4

x3 = 3 +x4

x1 = 4 −x0 +x4

w = −x0

So x0 is eliminated and we bring in the old objective:

x2 = 3 −x4

x3 = 3 +x4

x1 = 4 +x4

z = 12 +3x4

So x4 enters and x2 leaves and we get:

x4 = 3 −x2

x3 = 6 −x2

x1 = 7 −x2

z = 21 −3x2

This is a final dictionary, so we are done.
Had we pivoted x3 instead of x0 into the first dictionary, we would have

obtained
x2 = 8 −2x1 +x3

x0 = 1 −x1 +x3

x4 = −3 +x3

z = −1 +x1 −x3

In this case we get a negative constant in the x4 row.
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