HOMEWORK 3 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.

(1)

This is not feasible; we use the two-phase method. Introduce x_0 and maximize $w = -x_0$:

x_3	=	1	$-x_1$	$-x_2$	$+x_0$
x_4	=	-1	$-2x_{1}$	$+x_{2}$	$+x_{0}$
x_5	=	-4	$+3x_{1}$	$+2x_{2}$	$+x_{0}$
w	=				$-x_0$

The most negative variable is x_5 , so x_0 enters and x_5 leaves.

x_0	=	4	$-3x_{1}$	$-2x_{2}$	$+x_{5}$
x_3	=	5	$-4x_1$	$-3x_{2}$	$+x_{5}$
x_4	=	3	$-5x_{1}$	$-x_{2}$	$+x_{5}$
w	=	-4	$+3x_{1}$	$+2x_{2}$	$-x_{5}$

 x_1 enters and x_4 leaves:

x_0	=	11/5	$-(7/5)x_2$	$+(3/5)x_4$	$+(2/5)x_5$
x_1	=	3/5	$-(1/5)x_2$	$-(1/5)x_4$	$+(1/5)x_5$
x_3	=	13/5	$-(11/5)x_2$	$+(4/5)x_4$	$+(1/5)x_5$
w	=	-11/5	$+(7/5)x_2$	$-(3/5)x_4$	$-(2/5)x_5$

 x_2 enters and x_3 leaves

x_0	=	6/11	$+(7/11)x_3$	$+(1/11)x_4$	$+(3/11)x_5$
x_1	=	4/11	$+(1/11)x_3$	$-(3/11)x_4$	$+(2/11)x_5$
x_2	=	13/11	$-(5/11)x_3$	$+(4/11)x_4$	$+(1/11)x_5$
w	=	-6/11	$-(7/11)x_3$	$-(1/11)x_4$	$-(3/11)x_5$

The maximum value of w = -6/11. Hence the minimum value of $x_0 = 6/11$. Since this is non-zero, we conclude that the original LP problem is not feasible.

Research supported in part by an NSERC grant.

(2) Again, we introduce slacks and then x_0 to the right-hand-sides.

x_2	=	7	$-x_1$	$+x_0$
x_3	=	-1	$+x_1$	$+x_0$
x_4	=	-4	$+x_1$	$+x_{0}$
w	=			$-x_0$

(You could omit the x_0 from the x_2 line; the dictionaries would be slightly different.) We pivot x_0 in and x_4 , which has the most negative constant, leaves.

x_2	=	11	$-2x_1$	$+x_4$
x_3	=	3		$+x_{4}$
x_0	=	4	$-x_1$	$+x_{4}$
w	=	-4	$+x_1$	$-x_4$

So x_1 enters and x_0 leaves.

So x_0 is eliminated and we bring in the old objective:

z	=	12	$+3x_{4}$
x_1	=	4	$+x_{4}$
x_3	=	3	$+x_4$
x_2	=	3	$-x_4$

So x_4 enters and x_2 leaves and we get:

This is a final dictionary, so we are done.

Had we pivoted x_3 instead of x_0 into the first dictionary, we would have obtained

x_2	=	8	$-2x_1$	$+x_3$
x_0	=	1	$-x_1$	$+x_{3}$
x_4	=	-3		$+x_3$
z	=	-1	$+x_1$	$-x_3$

In this case we get a negative constant in the x_4 row.

DEPARTMENT OF COMPUTER SCIENCE, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z4, CANADA, AND DEPARTMENT OF MATHEMATICS, UNIVERSITY OF BRITISH COLUMBIA, VANCOUVER, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca *URL*: http://www.math.ubc.ca/~jf

 $\mathbf{2}$