HOMEWORK 2 SOLUTIONS, MATH 340, FALL 2015

JOEL FRIEDMAN

Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.

Problem 1(a)

We have the initial dictionary:

$$
\begin{array}{lllll}
z & = & & 6 x_{1} & +7 x_{2} \\
\hline x_{3} & = & 5 & -x_{1} & \\
x_{4} & = & 8 & & -x_{2} \\
x_{5} & = & 10 & -x_{1} & -x_{2}
\end{array}
$$

If x_{2} enters, then the most restrictive inequality is $x_{4} \geq 0$ (since this imposes $x_{2} \leq 8$, as opposed to $x_{3} \geq 0$ which imposes no condition on x_{2}, and $x_{5} \geq 0$ which imposes $\left.x_{2} \leq 10\right)$. Hence x_{2} enters and x_{4} leaves the basis, so we pivot on

$$
x_{4}=8-x_{2} \quad \text { which becomes } \quad x_{2}=8-x_{4}
$$

giving us the second dictionary

$$
\begin{array}{llrrl}
z & = & 56 & +6 x_{1} & -7 x_{4} \\
\hline x_{3} & = & 5 & -x_{1} & \\
x_{2} & = & 8 & & -x_{4} \\
x_{5} & = & 2 & -x_{1} & +x_{4}
\end{array}
$$

Now x_{1} must enter, and x_{5} reaches zero first (at $x_{1}=2$) and leaves the basis, so we pivot on

$$
x_{5}=2-x_{1}+x_{4} \quad \text { which becomes } \quad x_{1}=2-x_{5}+x_{4}
$$

giving us the third dictionary

$$
\begin{array}{llrrl}
z & = & 68 & -6 x_{5} & -x_{4} \\
\hline x_{3} & = & 3 & +x_{5} & -x_{4} \\
x_{2} & = & 8 & & -x_{4} \\
x_{1} & = & 2 & -x_{5} & +x_{4}
\end{array}
$$

Since all the z row coefficients are negative, this gives us the optimal value $z=68$ for $x_{1}=2$ and $x_{2}=8$ (in terms of the decision or original variables).

Problem 1(b)

Research supported in part by an NSERC grant.

We have the same initial dictionary:

$$
\begin{array}{lllll}
z & = & & 6 x_{1} & +7 x_{2} \\
\hline x_{3} & = & 5 & -x_{1} & \\
x_{4} & = & 8 & & -x_{2} \\
x_{5} & = & 10 & -x_{1} & -x_{2}
\end{array}
$$

If x_{1} enters, then x_{3} leaves the basis, so we pivot on

$$
x_{3}=5-x_{1} \quad \text { which becomes } \quad x_{1}=5-x_{3}
$$

giving us the second dictionary

$$
\begin{array}{llrrl}
z & = & 30 & -6 x_{3} & +7 x_{2} \\
\hline x_{1} & = & 5 & -x_{3} & \\
x_{4} & = & 8 & & -x_{2} \\
x_{5} & = & 5 & +x_{3} & -x_{2}
\end{array}
$$

Now x_{2} must enter the basis (since only x_{2} has a positive coefficient in the z row), so x_{5} leaves the basis, so we pivot on

$$
x_{5}=5+x_{3}-x_{2} \quad \text { which becomes } \quad x_{2}=5+x_{3}-x_{5}
$$

giving us the third dictionary

$$
\begin{array}{llrll}
z & = & 65 & +x_{3} & -7 x_{2} \\
\hline x_{1} & = & 5 & -x_{3} & \\
x_{4}= & 3 & -x_{3} & +x_{5} \\
x_{2} & = & 5 & +x_{3} & -x_{5}
\end{array}
$$

Now x_{3} must enter, and x_{4} leaves the basis, so we pivot on

$$
x_{4}=3-x_{3}+x_{5} \quad \text { which becomes } \quad x_{3}=3-x_{4}+x_{5}
$$

giving us the fourth dictionary

$$
\begin{array}{lrrrr}
z & = & 68 & -x_{4} & -6 x_{5} \\
\hline x_{1} & = & 2 & +x_{4} & -x_{5} \\
x_{3} & = & 3 & -x_{4} & +x_{5} \\
x_{2} & = & 8 & -x_{4} &
\end{array}
$$

Since all the z row coefficients are negative, this gives us the optimal value $z=68$ for $x_{1}=2$ and $x_{2}=8$ (in terms of the decision or original variables); in fact, this final dictionary is the same as the previous final dictionary.

Problem 2

(a) (There are a few ways of doing this): Since Alice takes the stochastic \mathbf{x} such that $\mathbf{x}^{\mathrm{T}} \mathbf{A}$ has the possible largest minimum component over all possible stochastic \mathbf{x}, this minimum component is at least as big as that of any particular \mathbf{x}. Said otherwise: the value of "Alice announces a mixed strategy is

$$
\operatorname{AliceAnnouncesMixed}(A)=\max _{\mathbf{x} \text { stoch }} \operatorname{MinEntry}\left(\mathbf{x}^{\mathrm{T}} A\right)
$$

hence this is at least as large as any particular value of

$$
\operatorname{MinEntry}\left(\mathbf{x}^{\mathrm{T}} A\right),
$$

for any particular stochastic vector, \mathbf{x}; so if

$$
\mathbf{x}^{\mathrm{T}} A \geq\left[\begin{array}{llll}
v & v & \ldots & v
\end{array}\right]
$$

then

$$
\operatorname{MinEntry}\left(\mathbf{x}^{\mathrm{T}} A\right) \geq v
$$

(b) We have

$$
\left(\mathbf{x}^{\mathrm{T}} A\right) \mathbf{y} \geq\left[\begin{array}{llll}
v & v & \ldots & v
\end{array}\right] \mathbf{y}=v y_{1}+v y_{2}+\cdots+v y_{n}=v
$$

since \mathbf{y} is stochastic.
(c) Similarly any particular choice of stochastic \mathbf{y} gives a $\operatorname{MaxEntry}(A \mathbf{y}) \leq w$ larger than

$$
\operatorname{BettyAnnouncesMixed}(A)=\min _{\mathbf{y} \text { stoch }} \operatorname{MaxEntry}(A \mathbf{y})
$$

(d) (There are a few ways of doing this.) Similar to part (b) we have

$$
\left(\mathbf{x}^{\mathrm{T}} A\right) \mathbf{y}=\mathbf{x}^{\mathrm{T}}(A \mathbf{y}) \leq \mathbf{x}^{\mathrm{T}}\left[\begin{array}{c}
w \\
\vdots \\
w
\end{array}\right]=w
$$

Since \mathbf{x} is stochastic. Combining this with part (b) we have

$$
v \leq \mathbf{x}^{\mathrm{T}} A \mathbf{y} \leq w
$$

(e) The value of the mixed strategy games is at least 1.1 (since this is the minimum of $1.2,1.4$, and 1.1) and at most 1.3 (the maximum of 1.1 and 1.3).
(f) This is not possible, for in this case the value of the game would be at least 1.1 but at most 0.9 which is impossible.

Problem 3

As discussed before, the value of the mixed strategy game is positive, so we can write this value as the maximum of v (with decision variables v and x_{1}) subject to $x_{1} \leq 1$ and

$$
\left[\begin{array}{ll}
x_{1} & 1-x_{1}
\end{array}\right]\left[\begin{array}{ll}
1 & 3 \\
8 & 1
\end{array}\right] \geq\left[\begin{array}{ll}
v & v
\end{array}\right]
$$

and $x_{1}, v \geq 0$. This gives us an initial dictionary:

$$
\begin{array}{lllll}
z & = & & v \\
\hline x_{2} & = & 1 & -x_{1} & \\
x_{3} & = & 8 & -7 x_{1} & -v \\
x_{4} & = & 1 & +2 x_{1} & -v
\end{array}
$$

So v enters the basis and x_{5} leaves, so we pivot on

$$
x_{4}=1+2 x_{1}-v \quad \text { which becomes } \quad v=1+2 x_{1}-x_{4}
$$

giving the second dictionary

$$
\begin{array}{lllll}
z & = & 1 & +2 x_{1} & -x_{5} \\
\hline x_{2} & = & 1 & -x_{1} & \\
x_{3} & = & 7 & -9 x_{1} & +x_{4} \\
v & = & 1 & +2 x_{1} & -x_{4}
\end{array}
$$

So x_{1} enters and x_{3} leaves, so we pivot on

$$
x_{3}=7-9 x_{1}+x_{4} \quad \text { which becomes } \quad x_{1}=(7 / 9)-(1 / 9) x_{3}+(1 / 9) x_{4}
$$

giving the third dictionary

$$
\begin{array}{llrll}
z & = & 11 / 9 & -(2 / 9) x_{3} & -(7 / 9) x_{4} \\
\hline x_{2} & = & 2 / 9 & +(1 / 9) x_{3} & -(1 / 9) x_{4} \\
x_{1} & = & 7 / 9 & -(1 / 9) x_{3} & +(1 / 9) x_{4} \\
v & = & 23 / 9 & -(2 / 9) x_{3} & -(7 / 9) x_{4}
\end{array}
$$

Hence $v=23 / 9$ and Alice's optimal mixed strategy is $x_{1}=7 / 9, x_{2}=2 / 9$. It is interesting to note that Betty's optimal mixed strategy is $2 / 9$ and $7 / 9$, which are the z (or v) row coefficients in this final dictionary

Department of Computer Science, University of British Columbia, Vancouver, BC V6T 1Z4, CANADA, and Department of Mathematics, University of British Columbia, Vancouver, BC V6T 1Z2, CANADA.

E-mail address: jf@cs.ubc.ca or jf@math.ubc.ca
URL: http://www.math.ubc.ca/~jf

