Homework \#5

Consider the matrix game

$$
\left[\begin{array}{cc}
11 & 9 \\
8 & 12
\end{array}\right]
$$

and the resulting linear program for Alice's maximal strategy: maximize v subject to $v, x_{1}, x_{2} \geq 0$ and

$$
v \leq 11 x_{1}+8 x_{2}, \quad v \leq 9 x_{1}+12 x_{2}, \quad x_{1}+x_{2} \leq 1
$$

(here, for reasons of symmetry, we will leave x_{2} as a decision variable - instead of writing it as $1-x_{1}$-and write $x_{1}+x_{2} \leq 1$ as a constraint).

1. In this linear program we wrote $x_{1}+x_{2} \leq 1$, when the true constraint is $x_{1}+x_{2}=1$; is enough just to write $x_{1}+x_{2} \leq 1$ in view of the above matrix? Explain.
2. Use complementary slackness to evaluate:
(a) $x_{1}=1 / 2, x_{2}=1 / 2, v=19 / 2$;
(b) $x_{1}=1 / 3, x_{2}=2 / 3, v=9$;
(c) $x_{1}=2 / 3, x_{2}=1 / 3, v=10$;
(d) $x_{1}=1, x_{2}=0, v=9$;
(e) $x_{1}=x_{2}=v=0$.
3. Write down the dual of this LP. Can you interpret this dual in terms of an LP for Betty's optimal mixed strategy?
