Math 340-101

Fall 2015

Homework #5

Consider the matrix game

$$\left[\begin{array}{rrr}11 & 9\\8 & 12\end{array}\right]$$

and the resulting linear program for Alice's maximal strategy: maximize v subject to $v, x_1, x_2 \ge 0$ and

$$v \leq 11x_1 + 8x_2, \quad v \leq 9x_1 + 12x_2, \quad x_1 + x_2 \leq 1$$

(here, for reasons of symmetry, we will leave x_2 as a decision variable—instead of writing it as $1 - x_1$ —and write $x_1 + x_2 \leq 1$ as a constraint).

- 1. In this linear program we wrote $x_1 + x_2 \leq 1$, when the true constraint is $x_1 + x_2 = 1$; is enough just to write $x_1 + x_2 \leq 1$ in view of the above matrix? Explain.
- 2. Use complementary slackness to evaluate:
 - (a) $x_1 = 1/2, x_2 = 1/2, v = 19/2;$
 - (b) $x_1 = 1/3, x_2 = 2/3, v = 9;$
 - (c) $x_1 = 2/3, x_2 = 1/3, v = 10;$
 - (d) $x_1 = 1, x_2 = 0, v = 9;$
 - (e) $x_1 = x_2 = v = 0.$
- 3. Write down the dual of this LP. Can you interpret this dual in terms of an LP for Betty's optimal mixed strategy?