Homework \#3

1. Use the two-phase method to find the solution of the following LP problem:

$$
\begin{aligned}
\operatorname{maximize} z= & 3 x_{1}+x_{2}, \\
& x_{1}+x_{2} \leq 1 \\
\text { subject to } & -2 x_{1}+x_{2} \geq 1 \\
& 3 x_{1}+2 x_{2} \geq 4 \\
\text { and } & x_{1}, x_{2} \geq 0 .
\end{aligned}
$$

Add x_{0} to every element of the basis when performing the first phase of the two-phase method. Choose entering and leaving variables by taking the variable with the smallest subscript amoung all viable candidates; this is often called the "smallest subscript rule" or "Bland's rule." Hint: you should find that the LP is infeasible after roughly three pivots.
2. Same problem as problem (1) for the LP:

$$
\begin{aligned}
& \operatorname{maximize} z=3 x_{1} \\
& \\
& \text { subject to } x_{1} \leq 7 \\
& x_{1} \geq 1 \\
& x_{1} \geq 4 \\
& \text { and } x_{1} \geq 0 .
\end{aligned}
$$

(Same stipulations about adding x_{0} and about the pivoting rule.) After you have solved this correctly $\left(x_{1}=7, z=21\right)$, go back to the first pivot of the first phase, where x_{0} enters the basis, and make an incorrect choice of leaving variable; what is wrong with the resulting dictionary?

