Math 340-101

Fall 2015

Homework #3

1. Use the two-phase method to find the solution of the following LP problem:

Add x_0 to every element of the basis when performing the first phase of the two-phase method. Choose entering and leaving variables by taking the variable with the smallest subscript amoung all viable candidates; this is often called the "smallest subscript rule" or "Bland's rule." Hint: you should find that the LP is infeasible after roughly three pivots.

2. Same problem as problem (1) for the LP:

maximize
$$z = 3x_1$$
,
 $x_1 \leq 7$
subject to $x_1 \geq 1$
 $x_1 \geq 4$
and $x_1 \geq 0$.

(Same stipulations about adding x_0 and about the pivoting rule.) After you have solved this correctly ($x_1 = 7, z = 21$), go back to the first pivot of the first phase, where x_0 enters the basis, and make an incorrect choice of leaving variable; what is wrong with the resulting dictionary?