Homework \#2

1. Consider the LP:

$$
\begin{gathered}
\max 6 x_{1}+7 x_{2}, \quad \text { s.t. } x_{1} \leq 5, \quad x_{2} \leq 8, \\
x_{1}+x_{2} \leq 10, \quad x_{1}, x_{2} \geq 0
\end{gathered}
$$

(a) Solve this using the simplex method, starting with x_{2} entering the basis after the first dictionary (i.e., x_{1}, x_{2} will be non-basic in the first dictionary, and you should hold x_{1} fixed at 0 and increase x_{2}).
(b) Solve this using the simplex method, starting with x_{1} entering the basis after the first dictionary.
2. Consider a matrix game, A. Let \mathbf{x} be a stochastic vector-a vector of non-negative components whose sum is 1 -such that

$$
\mathbf{x}^{\mathrm{T}} A \geq\left[\begin{array}{llll}
v & v & \ldots & v \tag{1}
\end{array}\right],
$$

for some number v i.e., each entry of $\mathbf{x}^{\mathrm{T}} A$ is at least v. [For example, if

$$
A=\left[\begin{array}{cc}
0 & 1 \\
1 / 2 & 0
\end{array}\right]
$$

we know that the value of "Alice announces a mixed strategy" equals $1 / 3$; by choosing $\mathbf{x}^{\mathrm{T}}=[1 / 21 / 2]$ (for no particular reason) we have

$$
\mathbf{x}^{\mathrm{T}} A=[1 / 41 / 2] \geq\left[\begin{array}{ll}
v & v
\end{array}\right]
$$

where $v=0.1$ (or $v=0.2$ or v can be anything $\leq 1 / 4$.] Explain why:
(a) the value of "Alice announces a mixed strategy" is at least v;
(b) if \mathbf{y} is another stochastic vector, then explain why

$$
\mathbf{x}^{\mathrm{T}} A \mathbf{y} \geq v
$$

(c) similarly, if \mathbf{y} is a stochastic vector such that

$$
A \mathbf{y} \leq\left[\begin{array}{c}
w \tag{2}\\
\vdots \\
w
\end{array}\right]
$$

explain why the value of "Betty announces a mixed strategy" is at most w, and why for any stochastic \mathbf{x} we have

$$
\mathbf{x}^{\mathrm{T}} A \mathbf{y} \leq w
$$

(d) Show that if \mathbf{x} and \mathbf{y} are stochastic vectors such that Equations 1 and 2 hold, then $v \leq w$.
(e) If it turns out that for a matrix A we have

$$
\left[\begin{array}{ll}
0.5 & 0.5
\end{array}\right] A=\left[\begin{array}{lll}
1.2 & 1.4 & 1.1
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
0.1 \\
0.3 \\
0.6
\end{array}\right]=\left[\begin{array}{l}
1.1 \\
1.3
\end{array}\right]
$$

what can you say about the value of the mixed strategy games for A?
(f) Is it possible that for some matrix A we have

$$
\left[\begin{array}{ll}
0.6 & 0.4
\end{array}\right] A=\left[\begin{array}{lll}
1.2 & 1.4 & 1.1
\end{array}\right] \quad \text { and } \quad A\left[\begin{array}{l}
0.1 \\
0.3 \\
0.6
\end{array}\right]=\left[\begin{array}{c}
0.9 \\
0.8
\end{array}\right] ?
$$

3. Use the simplex method to find the value of "Alice announces a mixed strategy" and Alice's optimal mixed strategy for the matrix game

$$
A=\left[\begin{array}{ll}
1 & 3 \\
8 & 1
\end{array}\right]
$$

as discussed in class, i.e., maximizing v subject to $\left[x_{1} 1-x_{1}\right] A \geq[v v]$, $1-x_{1} \geq 0$ and $x_{1}, v \geq 0$.
Find the value of "Betty announces a mixed strategy" and Betty's optimal mixed strategy for the above matrix game by the methods used in Homework \#1. Do you see Betty's optimal strategy somewhere in the final dictionary of the simplex method above?

