Formula Sheet for Math 340, Section 101, Fall 2015

December 2015
Joel Friedman, UBC
Copyright: Copyright Joel Friedman 2015. Not to be copied, used, or revised without explicit written permission from the copyright owner.

This is a list of formulas that you will be given with your final exam. You are responsible to know what these formulas mean.

DualityGap $=($ ValueBettyAnnouncesPure $)-($ ValueAliceAnnouncesPure $)$
If A is a 2×2 matrix, then either (1) the duality gap is zero, or (2) Alice and Betty have mixed strategies where the values are balanced, e.g.,

$$
\left[\begin{array}{ll}
x_{1} & 1-x_{1}
\end{array}\right] A=\left[\begin{array}{ll}
v & v]
\end{array}\right.
$$

for Alice.
LP standard form: maximize $\vec{c} \cdot \vec{x}$, subject to $A \vec{x} \leq \vec{b}, \vec{x} \geq \overrightarrow{0}$.
Unbounded LP: A variable enters, but nothing leaves.
2-phase method: (1) introduce x_{0} on right, (2) pivot x_{0} into the basis for a feasible dictionary, and try to maximize $w=-x_{0}$, (3) if w reaches 0 , pivot x_{0} out of dictionary and eliminate all x_{0}; e.g.,

$$
\begin{aligned}
& x_{4}=-7+\cdots+x_{0} \quad x_{0} \text { enters, } x_{9} \text { leaves } \\
& x_{9}=-8+\cdots+x_{0}
\end{aligned}
$$

The formulas for simplex method dictionaries (in standard form) is

$$
\begin{aligned}
\vec{x}_{B} & =A_{B}^{-1} \vec{b}-A_{B}^{-1} A_{N} \vec{x}_{N} \\
z & =\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} \vec{b}+\left(\vec{c}_{N}^{\mathrm{T}}-\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} A_{N}\right) \vec{x}_{N}
\end{aligned}
$$

In the computation above, we compute $\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1} A_{N}$ by first computing $\vec{c}_{B}^{\mathrm{T}} A_{B}^{-1}$, and then multiplying the result (a row vector) times A_{N}; it would be more expensive to first compute $A_{B}^{-1} A_{N}$.

For the A_{B}^{-1} of the $i-1$-th and i-th dictionaries we have

$$
A_{B_{i}}^{-1}=E_{i}^{-1} A_{B_{i-1}}^{-1}
$$

where E_{i} is an eta matrix, equal to the identity except in one column. This formula can be applied recursively to get

$$
A_{B_{i+k}}^{-1}=E_{i+k}^{-1} E_{i+k-1}^{-1} \cdots E_{i}^{-1} A_{B_{i-1}}^{-1} .
$$

Let the b-th row in a matrix game be $\vec{f}(b)$. If \vec{f} is a convex function (i.e., concave up), then Alice has an optimal strategy that is some combination of the smallest and largest values of b (i.e., the top and bottom rows). If \vec{f} is concave down, then Alice has an optimal strategy this is some combination of two adjacent rows. (These combinations can be 100% of one row in certain cases.)

