The Spotlight Problem is Fixed-Parameter Tractable

Jesse Bingham and Stephane Durocher

November 23, 2004

Given a fixed angle α, let α-SpotLight be the decision problem that asks, given an interval of the x-axis and a set of points (all above the x-axis), if spotlights that diverge at angle α can be oriented at each point such that the interval is entirely illuminated. Let

$$
k(\alpha)= \begin{cases}\lceil\cot (\alpha / 2)\rceil+2\lceil\pi /(4 \alpha)\rceil & \text { if } \alpha<\pi / 2 \\ 2 & \text { if } \alpha \geq \pi / 2\end{cases}
$$

Theorem 1 For any α, α-Spotlight can be decided in constant time.
Proof: Given the input set of n points and the finite interval I, a constant time algorithm works as follows. If $n \geq k(\alpha)$, return TRUE. Otherwise, try each of the n ! orderings of the points to illuminate I. Since $n!\leq k(\alpha)$! and $k(\alpha)$! is constant, this takes constant time. Correctness follows from Lemma 1 below.

Lemma 1 Any set of $k(\alpha)$ points can illuminate the entire x-axis.
Proof: Let S be a set of $k(\alpha)$ points. If $\alpha \geq \pi / 2$ then $k(\alpha)=2$ and the proof is easy. Otherwise, select (x_{0}, y_{0}) (not necessarily a point in S) such that S can be partitioned into the three sets H, L, and R as depicted in Fig. 1. In particular we require that

- $|H|=\lceil\cot (\alpha / 2)\rceil$
- $|L|=|R|=\lceil\pi /(4 \alpha)\rceil$
- for all $(x, y) \in H, y \geq y_{0}$
- for all $(x, y) \in L, x \leq x_{0}$ and $y \leq y_{0}$
- for all $(x, y) \in R, x \geq x_{0}$ and $y \leq y_{0}$

Such a partitioning can always be done. We will show that the points of R, H, and L can respectively illuminate the intervals $\left(-\infty, x_{0}-y_{0}\right],\left[x_{0}-y_{0}, x_{0}+y_{0}\right]$, and $\left[x_{0}+y_{0}, \infty\right)$.

We first prove the statement about H. Note that the interval $\left[x_{0}-y_{0}, x_{0}+y_{0}\right]$ has width $2 y_{0}$. Consider any point (x, y) in H. No matter what direction the spotlight at (x, y) is oriented, it always illuminates an interval that is at least $2 y \tan (\alpha / 2)$ wide. Since $y \geq y_{0}$, we have $2 y \tan (\alpha / 2) \geq 2 y_{0} \tan (\alpha / 2)$. It follows that any $\left\lceil 2 y_{0} /\left(2 y_{0} \tan (\alpha / 2)\right)\right\rceil=$ $\lceil\cot (\alpha / 2)\rceil$ such points can illuminate the entire interval $\left[x_{0}-y_{0}, x_{0}+y_{0}\right]$ (in fact any ordering of the spotlights in H across this interval is sufficient).

We now argue that the points of L can illuminate the infinite interval $\left[x_{0}+y_{0}, \infty\right)$; the analogous statement about R follows by an analogous argument. Conceptually, we translate all spotlights of L to be collocated at $\left(x_{0}, y_{0}\right)$. Then clearly the spotlights need only illuminate an angle of $\pi / 4$ from $\left(x_{0}, y_{0}\right)$ in order to illuminate all of $\left[x_{0}+y_{0}, \infty\right)$. Since $|L|=\lceil\pi /(4 \alpha)\rceil$, there are sufficiently many spotlights to accomplish this. Note that any ordering will do; we fix an arbitrary ordering, hence making each spotlight "responsible" for illuminating some interval (one of which will be an infinite interval).

Now consider translating a spotlight away from $\left(x_{0}, y_{0}\right)$ to its "rightful" position (x, y). Since $y \leq y_{0}$ and $x \leq x_{0}$, this can be accomplished by first translating the spotlight downwards to the point $\left(x_{0}, y\right)$ and then leftwards to (x, y). Let I be the interval the spotlight is responsible for illuminating. By Lemma 2, I can be illuminated from $\left(x_{0}, y\right)$. Clearly, this implies that I can also be illuminated from (x, y).

Lemma 2 Let l_{1} be an α-spotlight $(0<\alpha<\pi / 2)$ that initially lies a distance y_{1} above the x-axis. Let o denote the point on the x-axis directly below l_{1} and let a denote the near end of region illuminated by l_{1}. Let $\theta_{1}=\angle o l_{1} a$. If $\theta_{1} \geq \pi / 4$ and l_{1} moves toward o while a remains fixed, then the length of the region illuminated by l_{1} does not decrease.

Proof: Let b_{1} denote the far end of the region illuminated by l_{1}. Let $x_{1}=\left\|b_{1}-o\right\|$. Let l_{2} denote the new position of the spotlight between l_{1} and o. Let y_{2}, θ_{2}, b_{2}, and x_{2} denote the analogous points and lengths for l_{2}. Let $w=\|a-o\|$. See Fig. 2.

The lemma is easy if l_{1} illuminates an infinite region (i.e., $b_{1}=\infty$) since then $\theta_{1}+\alpha \geq \pi / 2$, implying that $\theta_{2}+\alpha \geq$ $\pi / 2$, since $\theta_{2} \geq \theta_{1}$. Also, the lemma clearly holds if b_{1} is finite but $b_{2}=\infty$. Thus we focus our attention on the case of b_{1} and b_{2} both being finite, which implies both $\theta_{1}+\alpha<\pi / 2$ and $\theta_{2}+\alpha<\pi / 2$.

The length y_{1} can be expressed in terms of w and θ_{1}.

$$
\begin{equation*}
y_{1}=w \sin \frac{\pi}{2}\left(\cot \theta_{1}+\cot \frac{\pi}{2}\right)=w \cot \theta_{1} \quad(\mathrm{AAS} \text { theorem }) . \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
y_{2}=w \cot \theta_{2} \tag{2}
\end{equation*}
$$

We now express x_{1} in terms of w, θ_{1}, and α.

$$
\begin{align*}
x_{1} & =y_{1} \tan \left(\theta_{1}+\alpha\right) \\
& =\frac{w \tan \left(\theta_{1}+\alpha\right)}{\tan \theta_{1}} \\
& =\frac{w\left(\tan \theta_{1}+\tan \alpha\right)}{\tan \theta_{1}\left(1-\tan \alpha \tan \theta_{1}\right)} . \tag{3}
\end{align*} \quad\left(\text { since } y_{1}=w \cot \theta_{1}\right)
$$

Similarly,

$$
\begin{equation*}
x_{2}=\frac{w\left(\tan \theta_{2}+\tan \alpha\right)}{\tan \theta_{2}\left(1-\tan \alpha \tan \theta_{2}\right)} . \tag{4}
\end{equation*}
$$

We now show $x_{2} \geq x_{1}$. Let $f(\alpha)=x_{2}-x_{1}$. Specifically,

$$
\begin{equation*}
f(\alpha)=\frac{w\left(\tan \theta_{2}+\tan \alpha\right)}{\tan \theta_{2}\left(1-\tan \alpha \tan \theta_{2}\right)}-\frac{w\left(\tan \theta_{1}+\tan \alpha\right)}{\tan \theta_{1}\left(1-\tan \alpha \tan \theta_{1}\right)} \tag{5}
\end{equation*}
$$

We need to show $f(\alpha) \geq 0$ for $\alpha \in(0, \pi / 2)$. Observe that $f(0)=0$. We examine the derivative of f with respect to α :

$$
\begin{equation*}
f^{\prime}(\alpha)=\overbrace{w}^{t_{1}} \frac{\overbrace{\cos \alpha}^{t_{2}} \overbrace{\left[\cos \theta_{1} \sin \theta_{1}-\cos \theta_{2} \sin \theta_{2}\right]}^{t_{3}}+\overbrace{2 \sin \alpha}^{t_{4}} \overbrace{\left[\cos ^{2} \theta_{1}-\cos ^{2} \theta_{2}\right]}^{\cos ^{3} \alpha \cos ^{2} \theta_{1} \cos ^{2} \theta_{2}}}{t_{6}} \tag{6}
\end{equation*}
$$

Since $\alpha, \theta_{1}, \theta_{2} \in[0, \pi / 2]$, observe that terms t_{2}, t_{4}, and t_{6} are non-negative. Term $t_{1}=w=\|a-o\|>0$. Term $t_{5}=\cos ^{2} \theta_{1}-\cos ^{2} \theta_{2}>0$ since $\pi / 4<\theta_{1}<\theta_{2}<\pi / 2$ implies $\cos \theta_{1}>\cos \theta_{2}>0$. As for term t_{3},

$$
\begin{equation*}
t_{3}=\cos \theta_{1} \sin \theta_{1}-\cos \theta_{2} \sin \theta_{2} \geq 0, \text { for all } \pi / 4 \leq \theta_{1}<\theta_{2}<\pi / 2 \tag{7}
\end{equation*}
$$

This follows from the fact that

$$
\begin{equation*}
\frac{\partial}{\partial x} \cos x \sin x=2 \cos ^{2} x-1 \leq 0, \text { for all } \pi / 4 \leq \theta_{1}<\theta_{2}<\pi / 2 \tag{8}
\end{equation*}
$$

Therefore, $f^{\prime}(\alpha) \geq 0$ for all $\alpha \in[0, \pi / 2]$ and all $\theta_{1}, \theta_{2} \in[\pi / 4, \pi / 2]$. Since $f(0) \geq 0$, therefore $f(\alpha) \geq 0$ for all $\alpha \in[0, \pi / 2]$ and all $\theta_{1}, \theta_{2} \in[\pi / 4, \pi / 2]$.

Figure 1: Partitioning of the spotlights used in the proof of Lemma 1

Figure 2: The various lengths, points, and angles discussed in the proof of Lemma 2

