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Given a fixed angle α, let α-SPOTLIGHT be the decision problem that asks, given an interval of the x-axis and a set
of points (all above the x-axis), if spotlights that diverge at angle α can be oriented at each point such that the interval
is entirely illuminated. Let

k(α) =

{
dcot(α/2)e+2dπ/(4α)e if α < π/2
2 if α ≥ π/2

Theorem 1 For any α, α-SPOTLIGHT can be decided in constant time.

Proof: Given the input set of n points and the finite interval I, a constant time algorithm works as follows. If n ≥ k(α),
return TRUE. Otherwise, try each of the n! orderings of the points to illuminate I. Since n! ≤ k(α)! and k(α)! is
constant, this takes constant time. Correctness follows from Lemma 1 below. �

Lemma 1 Any set of k(α) points can illuminate the entire x-axis.

Proof: Let S be a set of k(α) points. If α ≥ π/2 then k(α) = 2 and the proof is easy. Otherwise, select (x0,y0) (not
necessarily a point in S) such that S can be partitioned into the three sets H, L, and R as depicted in Fig. 1. In particular
we require that

• |H| = dcot(α/2)e

• |L| = |R| = dπ/(4α)e

• for all (x,y) ∈ H, y ≥ y0

• for all (x,y) ∈ L, x ≤ x0 and y ≤ y0

• for all (x,y) ∈ R, x ≥ x0 and y ≤ y0

Such a partitioning can always be done. We will show that the points of R, H, and L can respectively illuminate the
intervals (−∞,x0 − y0], [x0 − y0,x0 + y0], and [x0 + y0,∞).

We first prove the statement about H. Note that the interval [x0 − y0,x0 + y0] has width 2y0. Consider any point
(x,y) in H. No matter what direction the spotlight at (x,y) is oriented, it always illuminates an interval that is at least
2y tan(α/2) wide. Since y ≥ y0, we have 2y tan(α/2) ≥ 2y0 tan(α/2). It follows that any d2y0/(2y0 tan(α/2))e =
dcot(α/2)e such points can illuminate the entire interval [x0 − y0,x0 + y0] (in fact any ordering of the spotlights in H
across this interval is sufficient).

We now argue that the points of L can illuminate the infinite interval [x0 + y0,∞); the analogous statement about
R follows by an analogous argument. Conceptually, we translate all spotlights of L to be collocated at (x0,y0). Then
clearly the spotlights need only illuminate an angle of π/4 from (x0,y0) in order to illuminate all of [x0 +y0,∞). Since
|L| = dπ/(4α)e, there are sufficiently many spotlights to accomplish this. Note that any ordering will do; we fix an
arbitrary ordering, hence making each spotlight “responsible” for illuminating some interval (one of which will be an
infinite interval).

Now consider translating a spotlight away from (x0,y0) to its “rightful” position (x,y). Since y ≤ y0 and x ≤ x0,
this can be accomplished by first translating the spotlight downwards to the point (x0,y) and then leftwards to (x,y).
Let I be the interval the spotlight is responsible for illuminating. By Lemma 2, I can be illuminated from (x0,y).
Clearly, this implies that I can also be illuminated from (x,y).
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Lemma 2 Let l1 be an α-spotlight (0 < α < π/2) that initially lies a distance y1 above the x-axis. Let o denote
the point on the x-axis directly below l1 and let a denote the near end of region illuminated by l1. Let θ1 = ∠ol1a.
If θ1 ≥ π/4 and l1 moves toward o while a remains fixed, then the length of the region illuminated by l1 does not
decrease.

Proof: Let b1 denote the far end of the region illuminated by l1. Let x1 = ||b1 −o||. Let l2 denote the new position of
the spotlight between l1 and o. Let y2, θ2, b2, and x2 denote the analogous points and lengths for l2. Let w = ||a−o||.
See Fig. 2.

The lemma is easy if l1 illuminates an infinite region (i.e., b1 = ∞) since then θ1 +α ≥ π/2, implying that θ2 +α ≥
π/2, since θ2 ≥ θ1. Also, the lemma clearly holds if b1 is finite but b2 = ∞. Thus we focus our attention on the case
of b1 and b2 both being finite, which implies both θ1 +α < π/2 and θ2 +α < π/2.

The length y1 can be expressed in terms of w and θ1.

y1 = wsin
π
2

(

cotθ1 + cot
π
2

)

= wcotθ1 (AAS theorem). (1)

Similarly,
y2 = wcotθ2. (2)

We now express x1 in terms of w, θ1, and α.

x1 = y1 tan(θ1 +α)

= w tan(θ1+α)
tanθ1

(since y1 = wcotθ1)

=
w(tanθ1+tanα)

tanθ1(1−tanα tanθ1) . (3)

Similarly,

x2 =
w(tanθ2 + tanα)

tanθ2(1− tanα tanθ2)
. (4)

We now show x2 ≥ x1. Let f (α) = x2 − x1. Specifically,

f (α) =
w(tanθ2 + tanα)

tanθ2(1− tanα tanθ2)
−

w(tanθ1 + tanα)

tanθ1(1− tanα tanθ1)
. (5)

We need to show f (α) ≥ 0 for α ∈ (0,π/2). Observe that f (0) = 0. We examine the derivative of f with respect to α:

f ′(α) =

t1
︷︸︸︷

w

t2
︷ ︸︸ ︷
cosα

t3
︷ ︸︸ ︷

[cosθ1 sinθ1 − cosθ2 sinθ2]+

t4
︷ ︸︸ ︷

2sinα

t5
︷ ︸︸ ︷

[cos2 θ1 − cos2 θ2]

cos3 αcos2 θ1 cos2 θ2
︸ ︷︷ ︸

t6

(6)

Since α,θ1,θ2 ∈ [0,π/2], observe that terms t2, t4, and t6 are non-negative. Term t1 = w = ||a − o|| > 0. Term
t5 = cos2 θ1 − cos2 θ2 > 0 since π/4 < θ1 < θ2 < π/2 implies cosθ1 > cosθ2 > 0. As for term t3,

t3 = cosθ1 sinθ1 − cosθ2 sinθ2 ≥ 0, for all π/4 ≤ θ1 < θ2 < π/2. (7)

This follows from the fact that

∂
∂x

cosxsinx = 2cos2 x−1 ≤ 0, for all π/4 ≤ θ1 < θ2 < π/2. (8)

Therefore, f ′(α) ≥ 0 for all α ∈ [0,π/2] and all θ1,θ2 ∈ [π/4,π/2]. Since f (0) ≥ 0, therefore f (α) ≥ 0 for all
α ∈ [0,π/2] and all θ1,θ2 ∈ [π/4,π/2]. �
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Figure 1: Partitioning of the spotlights used in the proof of Lemma 1
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Figure 2: The various lengths, points, and angles discussed in the proof of Lemma 2
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