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Given a fixed angle o, let &-SPOTLIGHT be the decision problem that asks, given an interval of the x-axis and a set
of points (all above the x-axis), if spotlights that diverge at angle o can be oriented at each point such that the interval
is entirely illuminated. Let

ko) = [cot(a/2)] +2[n/(4a)] if o< T/2
2 ifo>m/2

Theorem 1 For any o, -SPOTLIGHT can be decided in constant time.

Proof: Given the input set of n points and the finite interval /, a constant time algorithm works as follows. If n > k(ct),
return TRUE. Otherwise, try each of the n! orderings of the points to illuminate /. Since n! < k(a)! and k(a)! is
constant, this takes constant time. Correctness follows from Lemma 1 below. 0

Lemma 1 Any set of k(o) points can illuminate the entire x-axis.

Proof: Let S be a set of k(o) points. If o > 1/2 then k(o) = 2 and the proof is easy. Otherwise, select (x¢,y0) (not
necessarily a point in ) such that S can be partitioned into the three sets H, L, and R as depicted in Fig. 1. In particular
we require that

o |H| = [cot(0,/2)]

* [L|=|R| = [n/(40)]

e forall (x,y) € H,y >y

e forall (x,y) € L, x <xpandy <y
e forall (x,y) €R, x> xpandy <y

Such a partitioning can always be done. We will show that the points of R, H, and L can respectively illuminate the
intervals (—oo,x0 — yo|, [x0 — Y0, %0 + yo], and [xo + yo,0).

We first prove the statement about H. Note that the interval [xo — yo,Xo + yo] has width 2yy. Consider any point
(x,y) in H. No matter what direction the spotlight at (x,y) is oriented, it always illuminates an interval that is at least
2ytan(a/2) wide. Since y > yo, we have 2ytan(o/2) > 2yptan(o/2). It follows that any [2y¢/(2yotan(c/2))] =
[cot(a/2)] such points can illuminate the entire interval [xo — Yo, X0 -+ yo] (in fact any ordering of the spotlights in H
across this interval is sufficient).

We now argue that the points of L can illuminate the infinite interval [x( + yo,o0); the analogous statement about
R follows by an analogous argument. Conceptually, we translate all spotlights of L to be collocated at (x¢,yo). Then
clearly the spotlights need only illuminate an angle of 7t/4 from (x¢,yo) in order to illuminate all of [xp + yg,o0). Since
|L| = [/ (40)], there are sufficiently many spotlights to accomplish this. Note that any ordering will do; we fix an
arbitrary ordering, hence making each spotlight “responsible” for illuminating some interval (one of which will be an
infinite interval).

Now consider translating a spotlight away from (xg,yo) to its “rightful” position (x,y). Since y < yp and x < xo,
this can be accomplished by first translating the spotlight downwards to the point (xo,y) and then leftwards to (x,y).
Let I be the interval the spotlight is responsible for illuminating. By Lemma 2, I can be illuminated from (xo,y).
Clearly, this implies that / can also be illuminated from (x,y).
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Lemma 2 Let [} be an o-spotlight (0 < o. < /2) that initially lies a distance y| above the x-axis. Let o denote
the point on the x-axis directly below 1| and let a denote the near end of region illuminated by 1. Let 81 = Zola.
If 81 > /4 and I} moves toward o while a remains fixed, then the length of the region illuminated by 1y does not
decrease.

Proof: Let by denote the far end of the region illuminated by ;. Let x; = ||b; — ol|. Let / denote the new position of
the spotlight between /1 and o. Let yy, 02, by, and x, denote the analogous points and lengths for I;. Let w = ||a — o||.
See Fig. 2.

The lemma is easy if /; illuminates an infinite region (i.e., by = o) since then 0; +a > 1/2, implying that 6, + o >
/2, since 0 > 0. Also, the lemma clearly holds if b; is finite but b = . Thus we focus our attention on the case
of by and b, both being finite, which implies both 6; + ot < /2 and 0, + o < /2.

The length y; can be expressed in terms of w and 0.

y1 = wsing (cotel —i—cotg) =wcotf; (AAS theorem). )

Similarly,
y2 = wcot 0. )

We now express x; in terms of w, 81, and o.

x1=  ytan(6; + o)
— % (since y; = wcot6)
_ %_ 3)
Similarly,
2= tanv;it(a Ffzt;lz?:l)ﬂz) ' @
We now show x; > xj. Let f(a) = xp — xj. Specifically,
Flo) = w(tan©, + tana.) w(tan© + tan o) (5)

" tan6,(1 —tanottan®,)  tanB; (1 —tanoitan;)’
We need to show f(a) > 0 for o € (0,7/2). Observe that f(0) = 0. We examine the derivative of f with respect to o

th 13 14 Is

A~ N —_—
(o) = /\;} Cos0l[cos0; sinB; — cosB; sinB;] +2sinat[cos® B; — cos” 6] ©

cos> aLcos? 0, cos? 0,

I3

Since @, 01,6, € [0,7/2], observe that terms #,, 4, and 76 are non-negative. Term #; = w = |la —o|| > 0. Term
t5 = cos20; —cos?0, > 0 since /4 <0 < 0y <7/2implies cosO; > cosO > 0. As for term 13,

3 = cos0; sinB; —cosOysinO > 0, forall /4 < 6; <0, < /2. 7

This follows from the fact that

d
p cosxsinx = 2cos’x — 1 <0, for all n/4<0; <0, <m/2. ®)
X
Therefore, /() > 0 for all o € [0,7/2] and all 6,,6, € [r/4,7/2]. Since f(0) > 0, therefore f(a) > 0 for all
o€ [0,7/2] and all 0,6, € [n/4,7/2]. .
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Figure 1: Partitioning of the spotlights used in the proof of Lemma 1
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Figure 2: The various lengths, points, and angles discussed in the proof of Lemma 2



