The Spotlight Problem is Fixed-Parameter Tractable

Jesse Bingham and Stephane Durocher

November 23, 2004

Given a fixed angle α , let α -SPOTLIGHT be the decision problem that asks, given an interval of the x-axis and a set of points (all above the x-axis), if spotlights that diverge at angle α can be oriented at each point such that the interval is entirely illuminated. Let

$$k(\alpha) = \begin{cases} \lceil \cot(\alpha/2) \rceil + 2 \lceil \pi/(4\alpha) \rceil & \text{if } \alpha < \pi/2 \\ 2 & \text{if } \alpha \ge \pi/2 \end{cases}$$

Theorem 1 For any α , α -SPOTLIGHT can be decided in constant time.

Proof: Given the input set of *n* points and the finite interval *I*, a constant time algorithm works as follows. If $n \ge k(\alpha)$, return TRUE. Otherwise, try each of the *n*! orderings of the points to illuminate *I*. Since $n! \le k(\alpha)!$ and $k(\alpha)!$ is constant, this takes constant time. Correctness follows from Lemma 1 below.

Lemma 1 Any set of $k(\alpha)$ points can illuminate the entire x-axis.

Proof: Let *S* be a set of $k(\alpha)$ points. If $\alpha \ge \pi/2$ then $k(\alpha) = 2$ and the proof is easy. Otherwise, select (x_0, y_0) (not necessarily a point in *S*) such that *S* can be partitioned into the three sets *H*, *L*, and *R* as depicted in Fig. 1. In particular we require that

- $|H| = \lfloor \cot(\alpha/2) \rfloor$
- $|L| = |R| = \lceil \pi/(4\alpha) \rceil$
- for all $(x, y) \in H$, $y \ge y_0$
- for all $(x, y) \in L$, $x \le x_0$ and $y \le y_0$
- for all $(x, y) \in R$, $x \ge x_0$ and $y \le y_0$

Such a partitioning can always be done. We will show that the points of *R*, *H*, and *L* can respectively illuminate the intervals $(-\infty, x_0 - y_0]$, $[x_0 - y_0, x_0 + y_0]$, and $[x_0 + y_0, \infty)$.

We first prove the statement about *H*. Note that the interval $[x_0 - y_0, x_0 + y_0]$ has width $2y_0$. Consider any point (x, y) in *H*. No matter what direction the spotlight at (x, y) is oriented, it always illuminates an interval that is at least $2y\tan(\alpha/2)$ wide. Since $y \ge y_0$, we have $2y\tan(\alpha/2) \ge 2y_0\tan(\alpha/2)$. It follows that any $\lceil 2y_0/(2y_0\tan(\alpha/2)) \rceil = \lceil \cot(\alpha/2) \rceil$ such points can illuminate the entire interval $[x_0 - y_0, x_0 + y_0]$ (in fact *any* ordering of the spotlights in *H* across this interval is sufficient).

We now argue that the points of *L* can illuminate the infinite interval $[x_0 + y_0, \infty)$; the analogous statement about *R* follows by an analogous argument. Conceptually, we translate all spotlights of *L* to be collocated at (x_0, y_0) . Then clearly the spotlights need only illuminate an angle of $\pi/4$ from (x_0, y_0) in order to illuminate all of $[x_0 + y_0, \infty)$. Since $|L| = \lceil \pi/(4\alpha) \rceil$, there are sufficiently many spotlights to accomplish this. Note that any ordering will do; we fix an arbitrary ordering, hence making each spotlight "responsible" for illuminating some interval (one of which will be an infinite interval).

Now consider translating a spotlight away from (x_0, y_0) to its "rightful" position (x, y). Since $y \le y_0$ and $x \le x_0$, this can be accomplished by first translating the spotlight downwards to the point (x_0, y) and then leftwards to (x, y). Let *I* be the interval the spotlight is responsible for illuminating. By Lemma 2, *I* can be illuminated from (x_0, y) . Clearly, this implies that *I* can also be illuminated from (x, y).

Lemma 2 Let l_1 be an α -spotlight ($0 < \alpha < \pi/2$) that initially lies a distance y_1 above the x-axis. Let o denote the point on the x-axis directly below l_1 and let a denote the near end of region illuminated by l_1 . Let $\theta_1 = \angle ol_1 a$. If $\theta_1 \ge \pi/4$ and l_1 moves toward o while a remains fixed, then the length of the region illuminated by l_1 does not decrease.

Proof: Let b_1 denote the far end of the region illuminated by l_1 . Let $x_1 = ||b_1 - o||$. Let l_2 denote the new position of the spotlight between l_1 and o. Let y_2 , θ_2 , b_2 , and x_2 denote the analogous points and lengths for l_2 . Let w = ||a - o||. See Fig. 2.

The lemma is easy if l_1 illuminates an infinite region (i.e., $b_1 = \infty$) since then $\theta_1 + \alpha \ge \pi/2$, implying that $\theta_2 + \alpha \ge \pi/2$, since $\theta_2 \ge \theta_1$. Also, the lemma clearly holds if b_1 is finite but $b_2 = \infty$. Thus we focus our attention on the case of b_1 and b_2 both being finite, which implies both $\theta_1 + \alpha < \pi/2$ and $\theta_2 + \alpha < \pi/2$.

The length y_1 can be expressed in terms of w and θ_1 .

$$y_1 = w \sin \frac{\pi}{2} \left(\cot \theta_1 + \cot \frac{\pi}{2} \right) = w \cot \theta_1 \text{ (AAS theorem)}.$$
 (1)

Similarly,

$$y_2 = w \cot \theta_2. \tag{2}$$

We now express x_1 in terms of w, θ_1 , and α .

$$x_{1} = y_{1} \tan(\theta_{1} + \alpha)$$

$$= \frac{w \tan(\theta_{1} + \alpha)}{\tan \theta_{1}} \quad (\text{since } y_{1} = w \cot \theta_{1})$$

$$= \frac{w (\tan \theta_{1} + \tan \alpha)}{\tan \theta_{1} (1 - \tan \alpha \tan \theta_{1})}.$$
(3)

Similarly,

$$x_2 = \frac{w(\tan\theta_2 + \tan\alpha)}{\tan\theta_2(1 - \tan\alpha\tan\theta_2)}.$$
(4)

We now show $x_2 \ge x_1$. Let $f(\alpha) = x_2 - x_1$. Specifically,

$$f(\alpha) = \frac{w(\tan\theta_2 + \tan\alpha)}{\tan\theta_2(1 - \tan\alpha\tan\theta_2)} - \frac{w(\tan\theta_1 + \tan\alpha)}{\tan\theta_1(1 - \tan\alpha\tan\theta_1)}.$$
(5)

We need to show $f(\alpha) \ge 0$ for $\alpha \in (0, \pi/2)$. Observe that f(0) = 0. We examine the derivative of f with respect to α :

$$f'(\alpha) = \underbrace{w}^{t_1} \underbrace{\cos\alpha [\cos\theta_1 \sin\theta_1 - \cos\theta_2 \sin\theta_2] + 2\sin\alpha [\cos^2\theta_1 - \cos^2\theta_2]}_{\cos^3\alpha \cos^2\theta_1 \cos^2\theta_2}$$
(6)

Since $\alpha, \theta_1, \theta_2 \in [0, \pi/2]$, observe that terms t_2, t_4 , and t_6 are non-negative. Term $t_1 = w = ||a - o|| > 0$. Term $t_5 = \cos^2 \theta_1 - \cos^2 \theta_2 > 0$ since $\pi/4 < \theta_1 < \theta_2 < \pi/2$ implies $\cos \theta_1 > \cos \theta_2 > 0$. As for term t_3 ,

$$t_3 = \cos\theta_1 \sin\theta_1 - \cos\theta_2 \sin\theta_2 \ge 0, \text{ for all } \pi/4 \le \theta_1 < \theta_2 < \pi/2.$$
(7)

This follows from the fact that

$$\frac{\partial}{\partial x}\cos x\sin x = 2\cos^2 x - 1 \le 0, \text{ for all } \pi/4 \le \theta_1 < \theta_2 < \pi/2.$$
(8)

Therefore, $f'(\alpha) \ge 0$ for all $\alpha \in [0, \pi/2]$ and all $\theta_1, \theta_2 \in [\pi/4, \pi/2]$. Since $f(0) \ge 0$, therefore $f(\alpha) \ge 0$ for all $\alpha \in [0, \pi/2]$ and all $\theta_1, \theta_2 \in [\pi/4, \pi/2]$.

Figure 1: Partitioning of the spotlights used in the proof of Lemma 1

Figure 2: The various lengths, points, and angles discussed in the proof of Lemma 2