Industrial Strength Refinement Checking

Jesse Binghatn John Ericksohy Gaurav Singh and Flemming Andersén
Intel Corporation,
*Email: jesse.d.bingham@intel.coﬁEmaiI: john.erickson@intel.com,
tEmail: gaurav.2.singh@intel.coEmail: flemming.l.andersen@intel.com.

Abstract—This paper discusses a methodology used on anthat is constrained by strict schedules. However, we believ
industrial hardware development project to validate various that if you can’t check it, you surely can't verify.iBy
cache-coherence protocol components. The idea is t0 Use gpack we mean to watch for refinement violations during
high level model (HLM) written in Murphi for model checking dvnamic simulation. a techniaue we cedfinement checkin
purposes, and then to use the HLM as a checker during dynamic y o '] q)) ! g
(i.e. simulation based-) validation of the RTL. Such a cheatr In this light, we pursued refinement checking with the digtin
requires a formal notion of what it means for the RTL to goals of 1) evaluating the level of difficulty in writing the
implement the HLM. Due to RTL pipelining, concurrency, and requisite refinement mapping, and 2) catching bugs during
different RTL/HLM semantics, an appropriate notion is non- - pr| gevelopment. We concluded that (1) is nontrivial, but

obvious. We employ a notion we calbehavioral refinementand . o o
describe a methodology for creatingrefinement checkersA novel certainly not prohibitively difficult. We were also succiss

aspect of our methodology is that all “ingredients” are speified at (2) during the few short months between bringing one of our
using System Verilog (SV): even the Murphi model itself is refinement checkers online and writing this paper. We believ
compiled into SV. Thus any off-the-shelf SV simulation engie this is the first detailed report of using refinement checking
can be used. We report the success_ful use of our refl_nementa industrial hardware design projetiring developmeht
checkers to catch bugs in a real project at Intel and give an
example illustrating our methodology. _One mteres_tlng aspeot of our methodology is that all ingre-
dients are ultimately written in System Verilog (SV). Hence
any off-the-shelf SV simulator can be employed; there is
. INTRODUCTION no need to link the simulator with a model checker as was
A commonly used approach in verifying and validatinglone in previous work [15]. To facilitate this, we developed
complex hardware components involves constructingigh a translator from Murphi code to SV calledu2sv Mu2sv
level model(HLM) of the component (e.g. [4], [8], [3], does a straightforward translation that maps each Murphi
[13]). The HLM is a simplified version of the component thatule R to an SV functionR_sv that take a record of type
still models key functionality. For complex protocols suah MURPHI _STATE as well as parameters for the rulesets.
cache coherency, the HLM is often written in a nondetermi®?_sv returns anotheMJRPHI _ STATE that corresponds to
istic guarded-command language, such as Murphi [8]. Mod#le result of firing the rule.
checking small configurations of the HLM is then used to
establish correctness of the protocol. Unfortunately,Hihé/
is too high-level to be synthesized into a high performance
pipelined circuit, so a manually-writteregister transfer level ~ Our goal is to monitor the RTL during simulation and flag
(RTL) description is still the primary Way of Specifying thean error if the behavior is not allowed by the Murphl HLM.
real hardware. This leaves open the question of whether!Brorder to do so, we first must define what this means.
not the RTL is consistent with the HLM that was verified. Following that we present our methodology, and then coreclud
In this paper, we present a definition of whatplements this section with a detailed example.
means in our context, which is based on the notion of In Fig. 2 we pictorially define behavioral refinement, a
refinement[2]. Our notion is tailored to the particular stylenotion that is relative to a giverefinement magRM). A RM
of HLM (nondeterministic guarded commands) and impldS simply a many-to-one function that takes an RTL state and
mentation (clocked RTL), and is interesting in that it alfowreturns an HLM state. Given such a map, the RTL behaviorally
the HLM to take any finite number of steps per RTL clockfefines the HLM if for any RTL behavior (shown across the
this was necessary both for the toy example given in thottom of the Fig. 2), there exists an HLM behavior that
paper and the real industrial design we worked on. Madfjcludes all RTL states mapped through the RM as shown. The
previous papers that allow for this are about super-scafture shows that behavioral refinement allows each RTL clock
microprocessor verification, wherein the HLM must execut@ correspond to 0, 1, or more Murphi rules firing. Implicit in
(up to) the instruction fetch width of the implementation. ATig. 2 is the fact that the first RTL state (the first state after
few previous works involving HLMs that are similar to ourd€set in practice) must map to amtial MURPHI _STATE.
have identified a need for this allowance [7], [15].

We leave formal verification of this refinement relation agesg‘r?m‘;‘;osrkdg;eTaaﬂgagi der:,taéaiiﬁ]ég;ogggscompe”'”g’ was dofterathe

future V\(Ol’k,_ since th? techniques are not mature_enough 1@The MUPRHI _STATE SV type declaration is automatically generated by
be applied in a predictable way to a real industrial projeetu2sv and has a field for each variable in the Murphi model

Il. REFINEMENT CHECKING

type -------- Type Declarations --------------
Cachel ndex : 0..1023;

CacheEntry : record
State : enum{lnvalid, Dirty, Cean}; e O
Addr : ADDR; 00
Data : DATA end; 3
var ---- State Variable Declarations ---------

CacheArray : array [Cachel ndex] of CacheEntry;
Cpu2Cache: Cpu2Cache_t;
Cache2Mem Cache2Mem t;

—————— Rul es (a.k.a Guarded Comrands) -------- one RTL clock cyle
Rul eset i : Cachelndex "RecvStore"
(ggﬁg‘;rc?zy?ip]c?dsfat:esf ?anal id & Fig. 3. Commutative diagram showing how our refinement cbeckvork.
CacheArray[i].Addr = Cpu2Cache. Addr) |
((forall j : Cachelndex :
CacheArray[j].Addr != Cpu2Cache. Addr |
CacheArray[j].State = Invalid) & signals internally via absolute signal names. Rule salpcti
CacheArray[i].State = Invalid) ==> i H ; H
Cachearray[i] Data : o GpuzCache. Dat a, determines which sequence of rules to f|_re corresponding
CacheArray[i].State := Dirty; to each RTL clock cycle. When the Murphi rules are rule-
oy E0r P(CpuzCache) sets, rule selection must also determine the actual pasamet
values to use. In SV, rule selection is done by a function
Ruleset i : Cachelndex "Bvict® Next (MURPHI _STATE ns) that contains sequential code
CacheArray[i].State != Invalid ==> . — . L. .
if (CacheArray[i].State == Dirty) begin subjected to the restrictions that 1) all return statemémts
Cache2Mem opcode : = WiteBack; i H
CachozNem AT o Cacherray[i]. Addr: Next () returnms, and 2) all assignments Mext () having
Cache2Mem Data = CacheArray[i]. Data; ns on the LHS have RHS of the forf_sv(ms,...) (where
end; .
CacheArray[i]. State : = Invalid: ... are the ruleset actgal p’arameter_s). Siftev errors c_)ut
end if invoked onms for which R’s guard is false, our restrictions
imply that Next (ms) returns aMJURPHI _ STATE formed by
Fig. 1. Murphi Code for Toy Cache Controller Example firing somerule sequence frons.

Fig. 3 shows how the checker operates using a commutative
diagram. The current augmented RTL statés first mapped
through RM and then through the rule selection function

a guarded . :
initial state command fires Next . Then an error is raised if either during computation

\ / of Next (RMr)), someR_sv function is invoked when the

HLM Behavior (O >Q OO 50> -+ OsOing guard is false, or if+(Next(RM(r)) == RM(¢'))), wherer’ is
the augmented RTL state in the next clock. A simply inductive
; : " i Reﬁgg;e“tf argument shows that if the checker never throws an error,
] then there exists a Murphi behavior that the RTL simulation

behaviorally refines.
RTL Behavior (OO —*O1>C e OO Example: Toy Cache Controller. We now demonstrate
these ideas through a toy example cache controller (CC).
Murphi code for CC (abridged somewhat) is in Fig. 1. The
state variables aré:

o CacheArray is an array ofCacheEnt ry, which has
fields State which can blenval i d, Cl ean,orDirty,
and a field each for the address and data.

e Cpu2Cache is a message being sent from the CPU to
the Cache. To save space we omit the typedef.

o Cache2Memis a message being sent from the Cache to
main memory. To save space we omit the typedef.

reset state one RTL clock cyle

Fig. 2. Behavioral Refinement

We generalize this notion modestly by allowing the refine-
ment function to depend on so-callédstory variables[2].
History variables are auxiliary variables added to the Rt t
have no affect on RTL behavior, but rather record infornmatio
about the past. In practice, history variables are extrgmel L .
useful for writing a RM for pipelined RTL. We call an RTL Two rulesets are shown in Fig. 1. Both are parameterized

state with history variables simply augmented RTL state 2Y | - Which is an index intoCacheArray. RecvStore
. . i fires when a store command from the CPU is processed. The
Refinement Checking MethodologyA refinement checker Evi . S
. . S i ct ruleset is very non-deterministic in the sense that any
observes an RTL behavior (driven by some test stimuli), an(¥. Lo . : e .
:) .2 ~valid line i can be evicted at any time. This is typical of
attempts to construct a corresponding Murphi behaviorithat L i . . .
behaviorally refines. If it is ever unable to do so, an error Inson-determ|n|st|c HLMs; any RTL implementation will use
flagged. This requires two distinct “ingredients” to be weri some possibly complex eviction policy, but this complexity

) . is abstracted away with non-determinism in the HLM. An
by the human: the R.M arl_uhle selection|n our meth_odology, RTL implementation is shown schematically in Fig. 4(a).sThi
both of these are written in SV. Though mathematicaiW)

is a Tun(?tion that takes the current RTL stateas an SV) SWe note that a real design would have messages going fromattre do
function it takes no parameters, but rather looks at RTLgtesiCPU and from memory to the cache.

. function MURPH _STATE Refinenent _Map();
implementation adds several details: deterministic &wict mRPH _STATE ns;

i i ini i for (int i = 0; i < CACHE_LINES; i++) begin
logic, two stages of pipelining, physmelly _separate datd a M. CacheArray[i]. State = RTL. AddrArray[i]. State@:;
state/address arrays that get updated in different cycles. ms. CacheArray[i].Addr = RTL. AddrArray[i]. Addr @;

Fig. 4(b) takes us through five consecutive RTL states M CacheArray[i].Data = RIL.DataArray[i]@1; end;

. L. ms. Cpu2Cache = RTL. Cpu2Cache@ 1;
with back-to-back store requests arriving on @mu2Cache ms. Cache2Cpu = RTL. Cache2Cpu@1;

interface, the first one requiring an eviction. Symbdisand ~ return(m); end;
D; are used to denote addresses and data values, respectivalyti on MURPH _STATE Next (MURPH _STATE ns);
H H if (RTL. 2Cache. Val id@2) begin
In eycle 1lthe first store request (stlorl_ng daiato addressig) : |(- gg’ft ar get _cac'he_i nzjex(?';
arrives. Fig. 4(b) also shows the initial contents of theheac if (eviction_needed()) ms = Evict_sv(ms,i);
which hasA; dirty with dataD;, and A, clean with dataD-. it (RTL. Cpu2Cache. Cpcode@2 = STCRE)

. . . R . ms = RecvStore_sv(ns,i); end;
In cycle 2 the first store is staged in the first pipestage, Bad t return(ns): end:;

second store with addresls and dataD), arrives. Cycle 3 has
the first store causing the eviction df; from the cache, and Fig. 5. Cache Controller Refinement Map and Next functiote(aelection)
the writeback is staged in pipestage 2. Aldg andDi rty
are written into the evicted line. The corresponding d&ta .)))
is written into the data array in cycle 4 anth is made dirty. Model checker which checks if they are a valid HLM transi-
Finally in cycle 5 the new datd®), is written into the cache tion. Though not explicitly discussed in the paper, Tasiean
for A,. Clearly three rules have fired in this example flow, i.e8l- also allow multiple HLM steps per RTL clock; we feel that
two instances oRecv St or es and one ofvi ct . However, this is an important feature that deserves highlightingc8i
unlike the HLM, they arenon-atomic(take multiple clocks their RM was expressed using 8K lines of C++ code, it is
to complete), and exhibitue concurrency(several rules can unlikely that one could use formal tools to reason about it,
execute at the same time). @.e. to prove that refinement holds. Contrarily, since our RM
Because different data structures are updated at differéhfxPressed as synthesizable SV code, our approach is much
cycles (i.e. non-atomicity), RMs must generally sample RTINOre amenable to formal reasoning using standard tools_.
signals at different temporal offsets from the current eycl Chen etal. use a form of Murphi calledardware Murphi
Ultimately this is done using history variables only. For,cci0 Vverify hardware protocols [6]. It involves combining a

the RM must account for the fact that a store, which happeﬁgditional I\/!ur.phi Imodel with another model that specifies
atomically in Murphi, takes three cycles in the RTL. Hencé!gnal and timing info that can be used to generate VHDL.

the map samples the incomin@u2Cache message, the Other work includes compiling LTL or other formal assergon
state/address array, and the data array in consecutivie clfi0 dynamic checkers (e.g. [14]). These assertions imvolv
cycles. Similarly the outgoin@ache2Cpu message is sam- RTL signals so no RM is necessary. _

pled in the same cycle that the data array is. The resulting RMTNere have been a plethora of definitions for what it means
is shown in Fig. 5, in whichsignal@k is the value ofsignal, 0 @ lower-level systems; to implement a higher level

temporally offset byk cycles. In practice, we shift the RM soSYStém.S2. The importance of allowingS; to stutter was
that all offsets are non-positive and thus implementablia wifi'St Promoted by Lamport [10]. Later Lamport and Abadi [2]
history variables. showed that under certain assumptions, RMs can be shown to

Rule selection deals with resolving true concurrency in tfdWays exist, however their formalism does not allow the HLM
RTL. As discussed above, rule selection is encapsulated!fht@ke multiple steps for each implementation step. To our
a user-written SV functiomMext . which takes the current Knowledge, there are only a few definitions that allow fosthi
Murphi model staters, and applies some sequence of rules f@nd many are in the context of superscalar microprocessor ve

ms. This function for CC is shown in Fig. 5. Here we see that fication. These typically verify the existence o€ {0, ..., k}
there was a valid messageycles earlier on th€pu2Cache such thatt HLM steps matches an implementation step. The
interface, then we calculate the target cache entryf an boundk is the instruction fetch width of the implementation.

eviction is needed then we apply the approprité ct rule? For more on refinement for microprocessor verification see

5
Finally we doRecv St or e. In a realistic example there would®-9- [1], [12]; -

be additional cases, e.g. for LOAD commands. Note that Fig. 5Finally, our work advocates manually writing a RM, rather
results in either 0, 1, or 2 rules being fired per RTL clocNan using more automated techniques such as flushing [3].
Fig. 4(c) shows the Murphi behavior corresponding to the RT+K€ other work on RMs for real industrial RTL designs [9],
behavior of Fig. 4(b) and how they are connected by the RN4S], We have found manually-written maps more appropriate

IV. CASE STUDY

Our case study was a hierarchical cache protocol; the gffchi
The most Closely related work is that of Tasiran et al. [15br0toco| was Intel's QPI [11], while on-chip coherence is
Here the HLM was written in TLA+ and during SimU|ati0nmanaged bya proprietary protoco| that we'll S|mp|y dadlvel-
pairs of consecutive HLM states are passed off to the TLCprotocol (L1P) Our work was divided into two main parts:

IIl. RELATED WORK

4The functions get _target _cache_i ndex() and 5We note, however, that verification of protocol implemeiotag and that of
evi ction_needed(), not shown, are user-written based on knowledgenicroprocessor implementations are different beastedine former operate
of RTL details. in very restricted environments and have much more conccyre

cycle 1 2 3 4 5
Cpu2Cache || Store(Ao, Do) | Store(Az, D))
Pipestagel Store(Ao, Do) | Store(As, D3)
Pipestage2 Store(Ao, Do) | Store(Az, D3)
WB(Ay1, D)
State/Addr Dirty, Ay Dirty, Ay Dirty, Ao Dirty, Ao Dirty, Ao
GpuzCache:| Store(A0,DO Array Clean, Az Clean, Az Dirty, Aa Dirty, Az Dirty, As
m Data D1 D1 D4 Dg D1
Array Do Do Do Do Dé
. Cache State Cache Data Cache2Mem WB(Al 2 Dl)
Fe sage | & Addr Array Aray (b) Five consecutive RTL states
Dirty,A1 D1
Clean,A2 D2
‘—' Evict(0) RecvStore(0) RecvStore(1)
‘Pwpe stage 2 HLM
(a) RTL RTL
cycle 1 2 3 4 5

(c) Behavioral Refinement for be-

Fig. 4. Cache Controller Example havior of Fig. 4(b)

first, building the QPI/L1P Murphi model and model checkingapricious activity, we advocatstarting with checking and

it, then building refinement checkers for two key protocgdushing towards formal proof only once the checker is in
components and using them during dynamic RTL simulatioplace.

These two checkers are now discussed

L1PM Refinement Checker. The central hub of L1P that REFERENCES
handles. processor core memory requests and also mterfa?ﬁsM D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A frameifor
to QPI is a component called tHelP master(L1PM). We superscalar microprocessor correctness statemeuftware Tools for

used our Murphi HLM and the methodology of this paper to Technology Transfer(3):298-312, 2003.

. ;] M. Abadi and L. Lamport. On the existence of refinement piags.
create a refinement checker for LIPM. Developing the L1PN? Theoretical Computer Science2:253-284. 1991.

refinement checker took about 3 months of person efforty aftgs] M. Azimi, C.-T. Chou, A. Kumar, V. W. Lee, P. K. Mannava, &6. Park.
the HLM andmu2svhad already been developed. The manual Experience with applying formal methods to protocol speatffon and

: : ; : system architecturel. Formal Methods in System Desjg22(2), 2003.
effort involved is developlng and debqumg the RM and rul(?4] R. Beers. Pre-RTL formal verification: an intel expegen In DAC

selection. It was integrated into the validation test emwinent '08: Proceedings of the 45th annual conference on Desigoraation
and run alongside the standard checkers and assertions for pages 806-811, 2008.

: : : [5] J. R. Burch and D. L. Dill. Automatic verification of pipeed mi-
dynamlc validation. After Only one month, 8 RTL buQS had croprocessor control. 16th Intl. Conf. on Computer-Aided Verification

been found using the L1PM refinement checker. (CAV), pages 68-80, 1994.
QPI Home Agent Refinement Checker.The QPI Home [6] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.Ghou.

: : Hierarchical cache coherence protocol verification onellet a time
Agent (HA) is the part of the memory controller that receives through assume guarantee. Htigh Level Design Validation and Test

requests, sends snoops, and generally manages coher&hcy [1 workshop (HLDVT,)2007.
Though at the time of writing this paper the QPI HA refine-[7] N. Dave, M. C. Ng, and Arvind. ~Automatic Synthesis of Cach

: : Coherence Protocol Processors Using Bluespeoceedings of Formal
ment checker was not yet deployed to the validation team, Methods and Models for Codesign (MEMOGODE 0Billy 2005.

it is worth mentioning since it is considerably more complexsg) b. L. pill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocuérification
than the L1PM checker. The checker involves seven different as a hardware design aid. IBEE Intl. Conf. on Computer Design: VLS|

: : : : in Computers and Processorsages 522-525, 1992.
Murphirulesets . Rule selection can yield utaule instances] R Kaivola. Formal verification of pentiung® 4 components with

firing per clock cycle. The RM involves signals from five symbolic simulation and inductive invariants. Ilmtl. Conf. on Computer
different pipestages and uses a window three clocks wide for Aided Verification (CAV)pages 170-184, 2005.

: ! : 0] L. Lamport. What good is temporal logicInformation Processing
temporal offset sampling. The HA refinement checker is stift pages 657-668, 1983,

under development, but it passes a test suite of around 200 R. A. Maddox, G. Singh, and R. J. Safranek. The intel kpith

tests designed to exercise basic functionality_ interconnect architectureDr. Dobb’s Journa)] May 19 2009.
[12] P. Manolios and S. K. Srinivasan. Automatic verificatiof safety and
liveness for pipelined machines using WEB refinemé&@M Trans. on
V. CONCLUSIONS ANDFUTURE WORK Design Automation of Electronic Systems

. [13] K. L. McMillan. A methodology for hardware verificatiousing
ThOUQh we be“e_ve r?fm?ment .checklng IS an e?(cmn compositional model checking.Science of Computer Programming
approach to dynamic validation, ultimately we would like to 37(1-3):279-309, 2000.
formally provethat the refinement holds. Clearly, formal prooft4] K.Ng, A.J. Hu, and J. Yang. Generating monitor circd@ssimulation-

f behavioral refinement can be achieved b roving that the friendly gste assertion graphs. 16CD '04: Proceedings of the IEEE
Y ; Vi . y p g9 International Conference on Computer Desigrages 409-416, 2004.
refinement checker never raises an error. However, we n@g S. Tasiran, Y. Yu, and B. Batson. Linking simulation hiformal
that since all “ingredients” needed for refinement Checking verification at a higher level.Design and Test of Computers, IEEE

. . . 21(6):472-482, 2004.
are required also for formal proof (except the test stimuli) ©)

and furthermore refinement checker development is a far less

