
Industrial Strength Refinement Checking
Jesse Bingham∗, John Erickson†, Gaurav Singh‡, and Flemming Andersen§

Intel Corporation,
∗Email: jesse.d.bingham@intel.com,†Email: john.erickson@intel.com,

‡Email: gaurav.2.singh@intel.com,§Email: flemming.l.andersen@intel.com.

Abstract—This paper discusses a methodology used on an
industrial hardware development project to validate various
cache-coherence protocol components. The idea is to use a
high level model (HLM) written in Murphi for model checking
purposes, and then to use the HLM as a checker during dynamic
(i.e. simulation based-) validation of the RTL. Such a checker
requires a formal notion of what it means for the RTL to
implement the HLM. Due to RTL pipelining, concurrency, and
different RTL/HLM semantics, an appropriate notion is non-
obvious. We employ a notion we callbehavioral refinement, and
describe a methodology for creatingrefinement checkers. A novel
aspect of our methodology is that all “ingredients” are specified
using System Verilog (SV): even the Murphi model itself is
compiled into SV. Thus any off-the-shelf SV simulation engine
can be used. We report the successful use of our refinement
checkers to catch bugs in a real project at Intel and give an
example illustrating our methodology.

I. I NTRODUCTION

A commonly used approach in verifying and validating
complex hardware components involves constructing ahigh
level model(HLM) of the component (e.g. [4], [8], [3],
[13]). The HLM is a simplified version of the component that
still models key functionality. For complex protocols suchas
cache coherency, the HLM is often written in a nondetermin-
istic guarded-command language, such as Murphi [8]. Model
checking small configurations of the HLM is then used to
establish correctness of the protocol. Unfortunately, theHLM
is too high-level to be synthesized into a high performance
pipelined circuit, so a manually-writtenregister transfer level
(RTL) description is still the primary way of specifying the
real hardware. This leaves open the question of whether or
not the RTL is consistent with the HLM that was verified.

In this paper, we present a definition of whatimplements
means in our context, which is based on the notion of
refinement[2]. Our notion is tailored to the particular style
of HLM (nondeterministic guarded commands) and imple-
mentation (clocked RTL), and is interesting in that it allows
the HLM to take any finite number of steps per RTL clock;
this was necessary both for the toy example given in this
paper and the real industrial design we worked on. Many
previous papers that allow for this are about super-scalar
microprocessor verification, wherein the HLM must execute
(up to) the instruction fetch width of the implementation. A
few previous works involving HLMs that are similar to ours
have identified a need for this allowance [7], [15].

We leave formal verification of this refinement relation as
future work, since the techniques are not mature enough to
be applied in a predictable way to a real industrial project

that is constrained by strict schedules. However, we believe
that if you can’t check it, you surely can’t verify it. By
check we mean to watch for refinement violations during
dynamic simulation, a technique we callrefinement checking.
In this light, we pursued refinement checking with the distinct
goals of 1) evaluating the level of difficulty in writing the
requisite refinement mapping, and 2) catching bugs during
RTL development. We concluded that (1) is nontrivial, but
certainly not prohibitively difficult. We were also successful
at (2) during the few short months between bringing one of our
refinement checkers online and writing this paper. We believe
this is the first detailed report of using refinement checkingon
a industrial hardware design projectduring development1.

One interesting aspect of our methodology is that all ingre-
dients are ultimately written in System Verilog (SV). Hence
any off-the-shelf SV simulator can be employed; there is
no need to link the simulator with a model checker as was
done in previous work [15]. To facilitate this, we developed
a translator from Murphi code to SV calledmu2sv. Mu2sv
does a straightforward translation that maps each Murphi
rule R to an SV functionR sv that take a record of type
MURPHI_STATE as well as parameters for the rulesets.2

R sv returns anotherMURPHI_STATE that corresponds to
the result of firing the rule.

II. REFINEMENT CHECKING

Our goal is to monitor the RTL during simulation and flag
an error if the behavior is not allowed by the Murphi HLM.
In order to do so, we first must define what this means.
Following that we present our methodology, and then conclude
this section with a detailed example.

In Fig. 2 we pictorially define behavioral refinement, a
notion that is relative to a givenrefinement map(RM). A RM
is simply a many-to-one function that takes an RTL state and
returns an HLM state. Given such a map, the RTL behaviorally
refines the HLM if for any RTL behavior (shown across the
bottom of the Fig. 2), there exists an HLM behavior that
includes all RTL states mapped through the RM as shown. The
figure shows that behavioral refinement allows each RTL clock
to correspond to 0, 1, or more Murphi rules firing. Implicit in
Fig. 2 is the fact that the first RTL state (the first state after
reset in practice) must map to aninitial MURPHI_STATE.

1The work of Tasiran et al. [15], though compelling, was done after the
design was done and didn’t catch any bugs.

2The MUPRHI_STATE SV type declaration is automatically generated by
mu2sv and has a field for each variable in the Murphi model

type -------- Type Declarations --------------
CacheIndex : 0..1023;
CacheEntry : record

State : enum {Invalid, Dirty, Clean};
Addr : ADDR;
Data : DATA; end;

var ---- State Variable Declarations ---------
CacheArray : array [CacheIndex] of CacheEntry;
Cpu2Cache: Cpu2Cache_t;
Cache2Mem: Cache2Mem_t;

------ Rules (a.k.a Guarded Commands) --------
Ruleset i : CacheIndex "RecvStore"

(Cpu2Cache.opcode = Store &
CacheArray[i].State != Invalid &
CacheArray[i].Addr = Cpu2Cache.Addr) |

((forall j : CacheIndex :
CacheArray[j].Addr != Cpu2Cache.Addr |
CacheArray[j].State = Invalid) &
CacheArray[i].State = Invalid) ==>

CacheArray[i].Data := Cpu2Cache.Data;
CacheArray[i].State := Dirty;
Absorb(Cpu2Cache);

end

Ruleset i : CacheIndex "Evict"
CacheArray[i].State != Invalid ==>
if (CacheArray[i].State == Dirty) begin
Cache2Mem.opcode := WriteBack;
Cache2Mem.Addr = CacheArray[i].Addr;
Cache2Mem.Data = CacheArray[i].Data;

end;
CacheArray[i].State := Invalid;

end

Fig. 1. Murphi Code for Toy Cache Controller Example

Fig. 2. Behavioral Refinement

We generalize this notion modestly by allowing the refine-
ment function to depend on so-calledhistory variables[2].
History variables are auxiliary variables added to the RTL that
have no affect on RTL behavior, but rather record information
about the past. In practice, history variables are extremely
useful for writing a RM for pipelined RTL. We call an RTL
state with history variables simply anaugmented RTL state.

Refinement Checking Methodology. A refinement checker
observes an RTL behavior (driven by some test stimuli), and
attempts to construct a corresponding Murphi behavior thatit
behaviorally refines. If it is ever unable to do so, an error is
flagged. This requires two distinct “ingredients” to be written
by the human: the RM andrule selection. In our methodology,
both of these are written in SV. Though mathematicallyRM()
is a function that takes the current RTL stater, as an SV
function it takes no parameters, but rather looks at RTL design

Fig. 3. Commutative diagram showing how our refinement checkers work.

signals internally via absolute signal names. Rule selection
determines which sequence of rules to fire corresponding
to each RTL clock cycle. When the Murphi rules are rule-
sets, rule selection must also determine the actual parameter
values to use. In SV, rule selection is done by a function
Next(MURPHI_STATE ms) that contains sequential code
subjected to the restrictions that 1) all return statementsin
Next() returnms, and 2) all assignments inNext() having
ms on the LHS have RHS of the formR sv(ms, . . .) (where
. . . are the ruleset actual parameters). SinceR sv errors out
if invoked onms for which R’s guard is false, our restrictions
imply thatNext(ms) returns aMURPHI_STATE formed by
firing somerule sequence fromms.

Fig. 3 shows how the checker operates using a commutative
diagram. The current augmented RTL stater is first mapped
through RM and then through the rule selection function
Next. Then an error is raised if either during computation
of Next(RM(r)), someR sv function is invoked when the
guard is false, or if¬(Next(RM(r)) == RM(r′))), wherer′ is
the augmented RTL state in the next clock. A simply inductive
argument shows that if the checker never throws an error,
then there exists a Murphi behavior that the RTL simulation
behaviorally refines.

Example: Toy Cache Controller. We now demonstrate
these ideas through a toy example cache controller (CC).
Murphi code for CC (abridged somewhat) is in Fig. 1. The
state variables are:3

• CacheArray is an array ofCacheEntry, which has
fields State which can beInvalid, Clean, or Dirty,
and a field each for the address and data.

• Cpu2Cache is a message being sent from the CPU to
the Cache. To save space we omit the typedef.

• Cache2Mem is a message being sent from the Cache to
main memory. To save space we omit the typedef.

Two rulesets are shown in Fig. 1. Both are parameterized
by i, which is an index intoCacheArray. RecvStore
fires when a store command from the CPU is processed. The
Evict ruleset is very non-deterministic in the sense that any
valid line i can be evicted at any time. This is typical of
non-deterministic HLMs; any RTL implementation will use
some possibly complex eviction policy, but this complexity
is abstracted away with non-determinism in the HLM. An
RTL implementation is shown schematically in Fig. 4(a). This

3We note that a real design would have messages going from the cache to
CPU and from memory to the cache.

implementation adds several details: deterministic eviction
logic, two stages of pipelining, physically separate data and
state/address arrays that get updated in different cycles.

Fig. 4(b) takes us through five consecutive RTL states
with back-to-back store requests arriving on theCpu2Cache
interface, the first one requiring an eviction. SymbolsAi and
Di are used to denote addresses and data values, respectively.
In cycle 1 the first store request (storing dataD0 to addressA0)
arrives. Fig. 4(b) also shows the initial contents of the cache,
which hasA1 dirty with dataD1, andA2 clean with dataD2.
In cycle 2 the first store is staged in the first pipestage, and the
second store with addressA2 and dataD′

2 arrives. Cycle 3 has
the first store causing the eviction ofA1 from the cache, and
the writeback is staged in pipestage 2. AlsoA0 andDirty
are written into the evicted line. The corresponding dataD0

is written into the data array in cycle 4 andA2 is made dirty.
Finally in cycle 5 the new dataD′

2 is written into the cache
for A2. Clearly three rules have fired in this example flow, i.e.
two instances ofRecvStores and one ofEvict. However,
unlike the HLM, they arenon-atomic(take multiple clocks
to complete), and exhibittrue concurrency(several rules can
execute at the same time).

Because different data structures are updated at different
cycles (i.e. non-atomicity), RMs must generally sample RTL
signals at different temporal offsets from the current cycle.
Ultimately this is done using history variables only. For CC,
the RM must account for the fact that a store, which happens
atomically in Murphi, takes three cycles in the RTL. Hence
the map samples the incomingCpu2Cache message, the
state/address array, and the data array in consecutive clock
cycles. Similarly the outgoingCache2Cpu message is sam-
pled in the same cycle that the data array is. The resulting RM
is shown in Fig. 5, in whichsignal@k is the value ofsignal ,
temporally offset byk cycles. In practice, we shift the RM so
that all offsets are non-positive and thus implementable with
history variables.

Rule selection deals with resolving true concurrency in the
RTL. As discussed above, rule selection is encapsulated in
a user-written SV functionNext , which takes the current
Murphi model statems, and applies some sequence of rules to
ms. This function for CC is shown in Fig. 5. Here we see that if
there was a valid message2 cycles earlier on theCpu2Cache
interface, then we calculate the target cache entryi. If an
eviction is needed then we apply the appropriateEvict rule.4

Finally we doRecvStore. In a realistic example there would
be additional cases, e.g. for LOAD commands. Note that Fig. 5
results in either 0, 1, or 2 rules being fired per RTL clock.
Fig. 4(c) shows the Murphi behavior corresponding to the RTL
behavior of Fig. 4(b) and how they are connected by the RM.

III. R ELATED WORK

The most closely related work is that of Tasiran et al. [15].
Here the HLM was written in TLA+ and during simulation
pairs of consecutive HLM states are passed off to the TLC

4The functions get_target_cache_index() and
eviction_needed(), not shown, are user-written based on knowledge
of RTL details.

function MURPHI_STATE Refinement_Map();
MURPHI_STATE ms;
for (int i = 0; i < CACHE_LINES; i++) begin

ms.CacheArray[i].State = RTL.AddrArray[i].State@0;
ms.CacheArray[i].Addr = RTL.AddrArray[i].Addr@0;
ms.CacheArray[i].Data = RTL.DataArray[i]@+1; end;

ms.Cpu2Cache = RTL.Cpu2Cache@-1;
ms.Cache2Cpu = RTL.Cache2Cpu@+1;
return(ms); end;

function MURPHI_STATE Next(MURPHI_STATE ms);
if (RTL.Cpu2Cache.Valid@-2) begin

i = get_target_cache_index();
if (eviction_needed()) ms = Evict_sv(ms,i);
if (RTL.Cpu2Cache.Opcode@-2 = STORE)

ms = RecvStore_sv(ms,i); end;
return(ms); end;

Fig. 5. Cache Controller Refinement Map and Next function (rule selection)

model checker which checks if they are a valid HLM transi-
tion. Though not explicitly discussed in the paper, Tasiranet
al. also allow multiple HLM steps per RTL clock; we feel that
this is an important feature that deserves highlighting. Since
their RM was expressed using 8K lines of C++ code, it is
unlikely that one could use formal tools to reason about it,
i.e. to prove that refinement holds. Contrarily, since our RM
is expressed as synthesizable SV code, our approach is much
more amenable to formal reasoning using standard tools.

Chen et al. use a form of Murphi calledHardware Murphi
to verify hardware protocols [6]. It involves combining a
traditional Murphi model with another model that specifies
signal and timing info that can be used to generate VHDL.
Other work includes compiling LTL or other formal assertions
into dynamic checkers (e.g. [14]). These assertions involve
RTL signals so no RM is necessary.

There have been a plethora of definitions for what it means
for a lower-level systemS1 to implement a higher level
systemS2. The importance of allowingS2 to stutter was
first promoted by Lamport [10]. Later Lamport and Abadi [2]
showed that under certain assumptions, RMs can be shown to
always exist, however their formalism does not allow the HLM
to take multiple steps for each implementation step. To our
knowledge, there are only a few definitions that allow for this,
and many are in the context of superscalar microprocessor ver-
ification. These typically verify the existence oft ∈ {0, . . . , k}
such thatt HLM steps matches an implementation step. The
boundk is the instruction fetch width of the implementation.
For more on refinement for microprocessor verification see
e.g. [1], [12].5

Finally, our work advocates manually writing a RM, rather
than using more automated techniques such as flushing [5].
Like other work on RMs for real industrial RTL designs [9],
[15], we have found manually-written maps more appropriate.

IV. CASE STUDY

Our case study was a hierarchical cache protocol; the offchip
protocol was Intel’s QPI [11], while on-chip coherence is
managed by a proprietary protocol that we’ll simply callLevel-
1 protocol (L1P). Our work was divided into two main parts:

5We note, however, that verification of protocol implementations and that of
microprocessor implementations are different beasts since the former operate
in very restricted environments and have much more concurrency .

(a) RTL

cycle 1 2 3 4 5
Cpu2Cache Store(A0, D0) Store(A2, D′

2
)

Pipestage1 Store(A0, D0) Store(A2, D′

2
)

Pipestage2 Store(A0, D0) Store(A2, D′

2
)

WB(A1, D1)
State/Addr Dirty, A1 Dirty, A1 Dirty, A0 Dirty, A0 Dirty, A0

Array Clean, A2 Clean, A2 Dirty, A2 Dirty, A2 Dirty, A2

Data D1 D1 D1 D0 D1

Array D2 D2 D2 D2 D′

2

Cache2Mem WB(A1, D1)
(b) Five consecutive RTL states

(c) Behavioral Refinement for be-
havior of Fig. 4(b).Fig. 4. Cache Controller Example

first, building the QPI/L1P Murphi model and model checking
it, then building refinement checkers for two key protocol
components and using them during dynamic RTL simulation.
These two checkers are now discussed

L1PM Refinement Checker.The central hub of L1P that
handles processor core memory requests and also interfaces
to QPI is a component called theL1P master(L1PM). We
used our Murphi HLM and the methodology of this paper to
create a refinement checker for L1PM. Developing the L1PM
refinement checker took about 3 months of person effort, after
the HLM andmu2svhad already been developed. The manual
effort involved is developing and debugging the RM and rule
selection. It was integrated into the validation test environment
and run alongside the standard checkers and assertions for
dynamic validation. After only one month, 8 RTL bugs had
been found using the L1PM refinement checker.

QPI Home Agent Refinement Checker.The QPI Home
Agent (HA) is the part of the memory controller that receives
requests, sends snoops, and generally manages coherency [11].
Though at the time of writing this paper the QPI HA refine-
ment checker was not yet deployed to the validation team,
it is worth mentioning since it is considerably more complex
than the L1PM checker. The checker involves seven different
Murphi rulesets . Rule selection can yield up to8 rule instances
firing per clock cycle. The RM involves signals from five
different pipestages and uses a window three clocks wide for
temporal offset sampling. The HA refinement checker is still
under development, but it passes a test suite of around 200
tests designed to exercise basic functionality.

V. CONCLUSIONS ANDFUTURE WORK

Though we believe refinement checking is an exciting
approach to dynamic validation, ultimately we would like to
formally provethat the refinement holds. Clearly, formal proof
of behavioral refinement can be achieved by proving that the
refinement checker never raises an error. However, we note
that since all “ingredients” needed for refinement checking
are required also for formal proof (except the test stimuli),
and furthermore refinement checker development is a far less

capricious activity, we advocatestarting with checking and
pushing towards formal proof only once the checker is in
place.

REFERENCES

[1] M. D. Aagaard, B. Cook, N. A. Day, and R. B. Jones. A framework for
superscalar microprocessor correctness statements.Software Tools for
Technology Transfer, 4(3):298–312, 2003.

[2] M. Abadi and L. Lamport. On the existence of refinement mappings.
Theoretical Computer Science, 82:253–284, 1991.

[3] M. Azimi, C.-T. Chou, A. Kumar, V. W. Lee, P. K. Mannava, and S. Park.
Experience with applying formal methods to protocol specification and
system architecture.J. Formal Methods in System Design, 22(2), 2003.

[4] R. Beers. Pre-RTL formal verification: an intel experience. In DAC
’08: Proceedings of the 45th annual conference on Design automation,
pages 806–811, 2008.

[5] J. R. Burch and D. L. Dill. Automatic verification of pipelined mi-
croprocessor control. In6th Intl. Conf. on Computer-Aided Verification
(CAV), pages 68–80, 1994.

[6] X. Chen, Y. Yang, M. Delisi, G. Gopalakrishnan, and C.-T.Chou.
Hierarchical cache coherence protocol verification one level at a time
through assume guarantee. InHigh Level Design Validation and Test
Workshop (HLDVT), 2007.

[7] N. Dave, M. C. Ng, and Arvind. Automatic Synthesis of Cache-
Coherence Protocol Processors Using Bluespec.Proceedings of Formal
Methods and Models for Codesign (MEMOCODE’05), July 2005.

[8] D. L. Dill, A. J. Drexler, A. J. Hu, and C. H. Yang. Protocolverification
as a hardware design aid. InIEEE Intl. Conf. on Computer Design: VLSI
in Computers and Processors, pages 522–525, 1992.

[9] R. Kaivola. Formal verification of pentiumR© 4 components with
symbolic simulation and inductive invariants. InIntl. Conf. on Computer
Aided Verification (CAV), pages 170–184, 2005.

[10] L. Lamport. What good is temporal logic?Information Processing,
pages 657–668, 1983.

[11] R. A. Maddox, G. Singh, and R. J. Safranek. The intel quickpath
interconnect architecture.Dr. Dobb’s Journal, May 19 2009.

[12] P. Manolios and S. K. Srinivasan. Automatic verification of safety and
liveness for pipelined machines using WEB refinement.ACM Trans. on
Design Automation of Electronic Systems.

[13] K. L. McMillan. A methodology for hardware verificationusing
compositional model checking.Science of Computer Programming,
37(1–3):279–309, 2000.

[14] K. Ng, A. J. Hu, and J. Yang. Generating monitor circuitsfor simulation-
friendly gste assertion graphs. InICCD ’04: Proceedings of the IEEE
International Conference on Computer Design, pages 409–416, 2004.

[15] S. Tasiran, Y. Yu, and B. Batson. Linking simulation with formal
verification at a higher level.Design and Test of Computers, IEEE,
21(6):472–482, 2004.

