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Abstract

It is shown that the set of hybrid one-dimensional reversible cellular automata (CA) with the periodic boundary condition is a
regular set. This has several important consequences. For example, it allows checking whether a given CA is reversible and the
random generation of a reversible CA from the uniform distribution, both using time polynomial in the size of the CA. Unfortunately,
the constant term in the resulting random generation algorithm is much too large to be of practical use. We show that for the less
general case of null boundary (NB) CA, this constant can be reduced drastically, hence facilitating a practical algorithm for uniform
random generation. Our techniques are further applied asymptotically to count the number of reversible NBCA.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Cellular automata (CA) are a class of discrete dynamical systems that have been applied to model a wide range of
scientific phenomena, generate random data, perform computation, and many other applications [12,18,5,17]. A CA
can be described as a set of cells embedded on a lattice, each of which can exist in a finite set of states. The system
evolves by all cells updating their state according to some function of the states of the cells in a local neighborhood;
this function is called the cell’s rule. In this manner, a global configuration (i.e. mapping of cells to states) is taken to
a successor configuration by the simultaneous update of all cells. This paper is concerned with reversible CA, which
are CA having invertible global successor functions.

The class of CA we consider are called hybrid, meaning that each cell may employ a different rule for determining
its next state. This contrasts with the uniform CA popularized by, e.g., Conway [4] and Wolfram [18], in which all
cells use the same rule. Our CA are also characterized as one-dimensional (meaning the cells are embedded on a
one-dimensional lattice), finite (referring to the number of cells), and nearest neighbor (meaning that each cell interacts
with only its left and right neighbors). As our CA are finite and one-dimensional, they are naturally expressed as a finite
string of rules.

In this paper, we show that the reversible CA form a regular set of strings. This result generalizes a previous result
of Sarkar and Barua [15], which showed that hybrid CA involving only the two linear rules 90 and 150 are regular. We
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show that allowing any of the 256 possible nearest neighbor rules still preserves regularity. As in Sarkar and Barua’s
paper, we also show regularity holds regardless of which CA boundary condition is used.

Two important consequences of our regularity result are that there exists a linear time reversibility test algorithm,
and that there exists a polynomial time algorithm that generates a random reversible CA from the uniform distribution.
Unfortunately, only the former algorithm can be implemented in practice. This is because our regularity result is
obtained by defining a nondeterministic automaton for the complement of the reversible CA, i.e. the language of
irreversible CA. To obtain an automaton that accepts the reversible CA, we must determinize and complement, which
causes an exponential blow up. The resulting automaton has 2(29) states. This is not a show-stopper for the reversibility
test algorithm, since it does not explicitly construct the entire automaton. On the other hand, the random generation
algorithm must visit all 2(29) states. In summary, the implied random generation algorithm may theoretically use
polynomial time, but the hidden constant is astronomical.

To solve this problem, and hence produce a practical algorithm for uniform random generation, we focus on the
null boundary (NB) condition. For this case, we show how the vast nondeterministic automaton for the more general
periodic boundary (PB) condition can be reduced to a deterministic automaton having a mere nine states. This allows us
to construct a practical algorithm that generates a random reversible CA from the uniform distribution. We have in fact
implemented this algorithm; it generates a reversible CA with 200 cells in 90 sec on a contemporary laptop computer.
The succinctness and determinism of the reduced automaton also allows us to count the number of NB reversible CA.
We show that the number of such CA with n cells is �(�n), where � ≈ 17.98 (whereas there are 256n possible CA
with n cells).

The paper is organized as follows. In Section 2 we further touch on related work. Section 3 lays out the definitions
and terminology used throughout the paper. Section 4 shows our main result on the regularity of PB reversible CA.
Section 5 develops a greatly reduced automaton for NB reversible CA, which allows for a practical random generation
algorithm in Section 6 and also for counting these CA in Section 7. The paper is concluded in Section 8.

2. Related work

A special class of CA involving only linear rules lend themselves to algebraic analysis. Linear rules are those that
can be expressed as a modulo-2 sum (i.e. XOR logic). The global transition function of linear CA can be expressed
as a matrix over the Galois field of two elements and is invertible if and only if this matrix is non-singular. Additive
rules generalize linear rules somewhat in that they allow negation; these are explored thoroughly in the book of Pal
Chaudhuri et al. [12].

Our results generalize previous results of Sarkar and Barua [15], who show that the set of reversible CA over the two
linear rules 90 and 150 is regular, for both NB and PB conditions. Sarkar and Barua observe that the determinant of
the transition matrix can be expressed by a multi-variate polynomial known as a continuant, which admits a recursive
definition. Using this recursive definition, they obtain an inductive definition of all (90, 150) CA that yield a non-zero
determinant, and hence are reversible. We note that this approach depends on the linearity of the rules 90 and 150; since
we allow for nonlinear rules, we require a different technique. Sarkar and Barua also show that roughly 2/3 (resp. 1/3)
of all null (resp. periodic) boundary CA with these two rules are reversible. Interestingly, it follows from our result of
Section 7 that the ratio of reversible CA with any of the 256 nearest neighbor rules vanishes as n increases.

Our CA can be thought of as imposing the restriction on general n-bit finite state machines that the next state of
each bit only depends on itself and its two neighbors. Another natural restriction yields the feedback shift register
(FSR). Results pertaining to reversibility of FSR have been covered by Golomb [6]. In particular, it is shown that of the
2(2n) possible FSR, 2(2n−1) are reversible. Golomb also provides several necessary and sufficient conditions for FSR
reversibility.

There has been a wealth of work on reversibility of uniform, infinite CA (UICA). An early result by Moore [10]
and Myhill [11] is the Garden-of-Eden Theorem, which states that UICA is surjective if and only if it is injective
when restricted to finite configurations. Another important result is due to Richardson [14], and states that if the
global successor function of a UICA is injective, then it must also be bijective (i.e. reversible). Amoroso and Patt
have given an algorithm that decides reversibility of the (unique) one-dimensional UICA that uses a given rule [1].
Their algorithm, though not described in the language of automata theory, is similar to ours in that it essentially runs
a finite state automaton (FSA) that attempts to construct distinct configurations that have the same successor. Our
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automata are more complex in a sense, since they must deal with different rules at each step. Also, for the case of
PBCA, our automaton Aica of Section 4 must remember some information about the left end of the configurations,
so that it can check that they “wrap around” appropriately at the right end. Kari has shown that decidability of UICA
reversibility does not generalize to higher dimensions; even for two dimensions, the problem becomes undecidable [8].
More recently, Sutner has shown that the reachability problem for one-dimensional reversible UICA can assume any
recursively enumerable degree [16]. Here, reachability is the decision problem that asks, given two finite configurations,
x and y, if the UICA ever reaches y when started in x. Toffoli and Margolus [17] provide an overview of results relating
to reversible UICA and their connection to physics.

We conclude this related work section by noting that our automata constructions are rooted in the linear time sink
algorithm of the first author’s masters thesis [2]. Here a sink is a contiguous group of CA cells that can potentially get
“stuck” in constant states as the CA evolves.

3. Preliminary definitions

For any set A, we let A∗ denote the set of all finite strings over A, and for any n�0, we let An denote the set of
all strings of length n in A∗. For x ∈ An, we denote by xi the ith symbol in x where x1 is the first symbol, i.e. x may
be written as x1, . . . , xn where n is the length of x. Let B = {0, 1} denote the bits. We will typically use lowercase
letters from the beginning of the alphabet (a, b, etc.) to denote elements of B and lowercase letters from the end of the
alphabet (w, x, etc.) to denote strings of B∗.

A function r : B3 → B is called a rule. We will use r to denote a single rule, and � to denote a string of rules. It is
traditional to identify a rule r with its rule number, which is defined by r(111)27 + r(110)26 + · · · + r(000)20. The
rule number is always in the range {0, . . . , 255}.

A one-dimensional nearest neighbor hybrid1 cellular automaton, hereafter simply CA, is a nonempty finite string
of rules �1, . . . , �n. The length of this string n is called the CA’s size. A configuration of a CA of size n is an element
of Bn. Intuitively, a size n CA � can be thought of as linear arrangement of n cells, each storing a single bit; the bit
at each cell is determined by the current configuration. Time evolves discretely and at each time step the cells are all
updated in parallel as follows. If x is the current configuration, the next configuration is such that the ith cell gets the
bit �i (xi−1xixi+1). Thus, cells i − 1 and i + 1 are considered neighbors of cell i (as is cell i itself), since they are the
only cells that can influence the next bit at cell i. An obvious issue here is how one deals with the non-existent cells 0
and n + 1. One may either wrap the CA so that cells 1 and n become neighbors, resulting in the PB condition, or cells
0 and n + 1 can be treated as being constantly the bit 0, resulting in the NB condition. Either approach gives rise to a
successor function, which determines how the rules are used to map a CA configuration to a successor configuration.

Definition 1 (PB successor function �). Given a CA �1, . . . , �n where n�2, the PB successor function �� : Bn → Bn

is defined by ��(x) = y where, for each 1� i�n,

yi =
{

ri(xi−1xixi+1) if 1 < i < n,

r1(xnx1x2) if i = 1,

rn(xn−1xnx1) if i = n.

Definition 2 (NB successor function �0). Given a CA �1, . . . , �n where n�2, the NB successor function �0
� : Bn → Bn

is defined by �0
�(x) = y where, for each 1� i�n,

yi =
{

ri(xi−1xixi+1) if 1 < i < n,

r1(0x1x2) if i = 1,

rn(xn−1xn0) if i = n.

In this paper we are concerned with a certain class of CA called reversible. A CA � is said to be PB reversible (resp.
NB reversible) if �� (resp. �0

�) is a permutation. If � is not reversible, then there must exist distinct configurations x and
y having the same successor; in this case we call the pair (x, y) irreversibility witnesses for �, qualifying with “PB” or
“NB” to indicate which configuration successor function is under consideration.

1 a.k.a. nonuniform.
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A rule r is called balanced if it has the same number of 0’s and 1’s in its truth table; i.e. |r−1(1)| = |r−1(0)| = 4. We

let R denote the set of all balanced rules; by simple counting we find that |R| =
(

8
4

)
= 70. As the following lemma

asserts, a CA can be PB reversible only if all its rules are balanced.

Lemma 1. If CA � is PB reversible, then all its rules are balanced.

Proof. Suppose rule �i is not balanced; without loss of generality let us assume that �i has k 1’s in its truth table
where 4 < k�8. It follows that for exactly k2n−3 > 2n−1 configurations x, the ith component of ��(x) is 1. Since there
are only 2n−1 configurations having ith component 1, there must exist two distinct configurations y and z such that
��(y) = ��(z). �

The analogous result for NB reversibility does not quite hold. If a �1, . . . , �n is NB reversible, it follows that rules
�2, . . . , �n−1 must be balanced, but �1 and �n need not be. Nevertheless, for consistency, we will from here on only
consider CA over the balanced rules R; i.e. we are effectively redefining the notion of CA from being an arbitrary
nonempty string of rules to being a nonempty element of R∗. We make this restriction as it makes some of our
constructions cleaner; however, none of our results depend fundamentally on it.

We conclude this section by noting that the NB successor function can be viewed as a special case of the PB successor
function as follows. For any CA �1, . . . , �n we have that �0

� is equal to ��′ , where �′ is the same as � except that the
first and last rules are tweaked to be independent of their missing neighbors. Indeed, one could define a NBCA to be
any sequence of rules such that the first (resp. last) are independent of their left (resp. right) arguments. We found it
convenient to use our successor function definitions instead.

4. Regularity of PB reversible CA

In this section, we show that the set of PB reversible CA is a regular language. To this end, we define an FSAAica that
accepts the language of PB irreversible CA. Since regular languages are closed under complement, this demonstrates
our claim. We start by recalling some basic definitions from automata theory.

An FSA is a 5-tuple A= (S, �, �, I, F ) where S is a finite set of states, � is a finite alphabet, � ⊆ S ×�×S is called
the transition relation, I ⊆ S are the initial states, and F ⊆ S are the accepting states. Given a string w1, . . . , w� ∈ �∗,
a run of A (on w) is a sequence s0, . . . , s� of states such that s0 ∈ I and (si−1, wi, si) ∈ � for all 1� i��. A run is
called accepting if its final state is in F. The language of A, denoted by L(A), is the set of all strings in �∗ that have
accepting runs. We say that A is deterministic if |I | = 1 and for all s ∈ S and � ∈ � there exists exactly one s′ ∈ S

such that (s, �, s′) ∈ �; otherwise A is called nondeterministic. When A is deterministic, we will treat � as a function
� : S × � → S.

We define a nondeterministic FSA Aica = (Sica, R, �ica, Iica, Fica) such that L(Aica) is precisely the irreversible
periodic CAs. Aica has states of the form (v, ab, cd, ef , gh), where v, a, b, c, d, e, f, g, and h are all bits. Intuitively,
when Aica is in the state (v, ab, cd, ef , gh), this means that the string of rules �1, . . . , �� seen so far are such that
there exists a bit-string x0, . . . , x�+1 with x0x1x�x�+1 = abcd and a bit-string y0, . . . , y�+1 with y0y1y�y�+1 = efgh

that make all the �i’s agree, i.e. �i (xi−1xixi+1) = �i (yi−1yiyi+1) for all i ∈ 1, . . . , �. Furthermore, if v = 1, then
x0, . . . , x�+1 and y0, . . . , y�+1 are known to have differed in at least one bit. In short, Aica attempts to construct PB
irreversibility witnesses for the string of rules it receives as input.

Formally, the components Sica, �ica, and Fica are as follows:

• Sica = B × (B2)4.
• �ica is the set of all transitions of the form

((v, ab, cd, ef , gh), r, (v′, ab, dd ′, ef , hh′))

such that r(cdd ′) = r(ghh′) and

v′ =
{

1 if cdd ′ �= ghh′,
v otherwise.
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• Iica = {(0, ab, ab, ef , ef ) : a, b, e, f ∈ B}.
• Fica = {(1, ab, ab, ef , ef ) : a, b, e, f ∈ B}.

Our key result is now proven in Theorem 1; its supporting Lemma 2 below formalizes the above intuition.

Theorem 1. � ∈ L(Aica) if and only if � is PB irreversible.

Proof. (⇒) Let s0, . . . , sn be an accepting run of Aica on �1, . . . , �n and let (vi, aibi, cidi, eifi, gihi) = si . Since
vn = 1, there exists x0, . . . , xn+1, y0, . . . , yn+1 ∈ B satisfying the three conditions of Lemma 2. Since sn ∈ Fica, we
have that anbn = cndn and enfn =gnhn, and hence x0x1 =xnxn+1 and y0y1 =ynyn+1. These observations and the third
item of Lemma 2 yield �1(xnx1x2)=�1(yny1y2), �n(xn−1xnx1)=�n(yn−1yny1), and �i (xi−1xixi+1)=�i (yi−1yiyi+1)

for all i ∈ {2, . . . , n − 1}. This implies that ��(x1, . . . , xn) = ��(y1, . . . , yn), and hence � is irreversible.
(⇐) Suppose � is irreversible, and let x1, . . . , xn and y1, . . . , yn be CA configurations such that x1, . . . , xn �=

y1, . . . , yn and ��(x1, . . . , xn) = ��(y1, . . . , yn). Let j be the first number in the sequence n, 1, 2, . . . , n − 1 such that
xj �= yj , and then let k = 2 if j ∈ {n, 1, 2}; otherwise let k = j . The following can be verified to be an accepting run
of Aica on �

(0, xnx1, xnx1, yny1, yny1),

(0, xnx1, x1x2, yny1, y1y2),
...

(0, xnx1, xk−2xk−1, yny1, yk−2yk−1),

(1, xnx1, xk−1xk, yny1, yk−1yk),

(1, xnx1, xkxk+1, yny1, ykyk+1),
...

(1, xnx1, xnx1, yny1, yny1). �

Lemma 2. If Aica has a run on �1, . . . , �� ending with a state of the form (1, ab, cd, ef , gh) then there exists
x0, . . . , x�+1, y0, . . . , y�+1 ∈ B such that

(1) x0x1 = ab, x�x�+1 = cd, y0y1 = ef , and y�y�+1 = gh;
(2) x0, . . . , x� �= y0, . . . , y�;
(3) for all 1� i�� we have �i (xi−1xixi+1) = �i (yi−1yiyi+1).

Proof. Let s0, . . . , s� be a run ofAica on �1, . . . , �� and let (vi, aibi, cidi, eifi, gihi)= si , and assume that v� =1. Let
k be minimal such that vk = 1; note that k�1. Let x�+1 = d�, and for all 0� i��, let xi = ci . Similarly, let y�+1 = h�

and for all 0� i��, let yi = gi . Now s0 ∈ Iica and (si−1, �i , si) ∈ �ica for all 1� i�� imply that x0x1 = c0c1 = c0d0 =
a0b0 = a1b1 = · · · = a�b� = ab and y0y1 = g0g1 = g0h0 = e0f0 = e1f1 = · · · = e�f� = ef ; also we observe that
x�x�+1 = c�d� = cd and y�y�+1 = g�h� = gh. Thus, item (1) of the lemma statement holds by construction. Now since
vk = 1 �= vk−1, we have that ck−1ckdk �= gk−1gkhk from the definition of �ica. Thus, xk−1xkxk+1 �= yk−1ykyk+1 and
item (2) follows. Finally, item (3) also follows from the definition of �ica. �

This brings us to a main result of the paper.

Theorem 2. The set of PB reversible CA is regular.

Proof. Follows from Theorem 1 and the fact that regular languages are closed under complement. �

Theorem 2 tells us that there exists an algorithm that tests if a given CA is PB reversible in linear time. To obtain this
algorithm, we must determinize Aica using the well-known subset construction [13]. The resulting automaton, A′

ica,
has 2|Sica| = 2512 states, so clearly it cannot be constructed using the time and space resources of any real computer.
However, we may test if � is PB reversible by constructing only the run s0, . . . , sn ofA′

ica on � (rather than constructing
A′

ica in its entirety), and checking that sn is rejecting, i.e. that � is not irreversible. Since each state ofA′
ica can naturally
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be encoded as a bit-string of length 512, this algorithm’s space and time requirements fall well within the realm of
real computers. Indeed, we have implemented this algorithm and it can easily handle CAs of size 300 in less than
15 sec.

5. A small deterministic automaton for NB reversible CA

In this section, we develop a deterministic FSA Ânb, with a mere nine states, with language being the set of NB
reversible CA.

To develop Ânb, we first define a deterministic automatonAnb having the same language and 1025 states. Roughly,
we then show that only a few states of Anb ever actually occur on accepting paths, which allows us to reduce Anb
to Ânb. One can see Anb as being obtained from Aica as follows. First, we observe that when dealing with the NB
condition, we do not need to “remember” the first couple bits of the irreversibility witnesses. Hence the second and
fourth components of the states of Aica can be removed. Next, the subset construction [13] is used to determinize and
complementAica. Finally, we can in fact remove states having 0 as the first component from the state sets, which brings
us to Anb. The states of Anb are sets of elements of (B2)2, which are best seen as graphs with vertices B2. Rather
than formally derive Anb from Aica in this manner, we define the former without mention of the latter. The proof that
L(Anb) is the set of NB reversible CA; however, does have a similar flavor to that of the proof of Theorem 1.

Let G be the set of undirected graphs on the four vertices B2. We allow loops in the graph of G, and we will write an

edge as a pair (ab, cd), where it is understood that such pairs are unordered. Since there are
(

4
2

)
= 6 possible non-loop

edges and four possible loops in the graphs of G, we have that |G| = 26+4 = 1024.
The deterministic FSA Anb = (Snb, R, �nb, {�}, Fnb) is defined as follows:

• Snb = G ∪ {�}, where � is a state not in G.
• �nb : Snb × R → Snb is defined such that if g ∈ G, then �nb(g, r) is the graph g′ with edges specified as follows:

◦ Newly born edge. Whenever a, b ∈ B are such that r(ab0) = r(ab1), (b0, b1) is an edge of g′.
◦ Propagated edge. Whenever (ab, cd) is an edge of g and r(abe) = r(cdf ) for some e, f ∈ B, (be, df ) is an

edge of g′.
• Also, �nb(�, r) is the graph g′ such that whenever a, b, c, d ∈ B are such that r(0ab) = r(0cd) and ab �= cd, we

have (ab, cd) is an edge of g′.
• Fnb is the set of all graphs in G containing none of the edges (00, 00), (00, 10), or (10, 10).

Note that the above notions of newly born and propagated edges are not inherent to a graph alone, they are really with
respect to a transition (g, r, g′). Also, an edge in g′ might having multiple “reasons” for existing, and could very well
be both newly born and propagated.

Theorem 3. � ∈ L(Anb) if and only if � is an NB reversible CA.

Proof. (⇒) Suppose � is an NB irreversible CA, and let x and y be distinct configurations such that �0
�(x) = �0

�(y).
We define x0 = y0 = xn+1 = yn+1 = 0. Let g0, . . . , gn be the run of Anb on �1, . . . , �n (this run is unique since Anb
is deterministic). Let 1�k′ �n be minimal such that xk′ �= yk′ and let k = max(k′, 2). We show by induction that
(xixi+1, yiyi+1) is an edge of gi for all k − 1� i�n. If k = 2, then (x1x2, y1y2) is an edge of g1, by the definition of
�nb(�, �1). Otherwise, if k > 2, then (xk−1xk, yk−1yk) is a newly born edge of (gk−1, �k, gk). For the inductive step,
assume that (xixi+1, yiyi+1) is an edge of gi for some i�k−1. Then clearly (xi+1xi+2, yi+1yi+2) is a propagated edge
of (gi, �i+1, gi+1). It follows from our claim that (xn0, yn0) is an edge of gn, hence gn /∈ Fnb and �1, . . . , �n /∈ L(Anb).

(⇐) Let g0, . . . , gn be the run of Anb on �1, . . . , �n, and suppose that gn /∈ Fnb. Let (xn0, yn0) be an edge of gn,
which must therefore exist. Note that (xn0, yn0) is a propagated edge in (gn−1, �n, gn), since newly born edges must
involve vertices that disagree in their second components. A propagated edge is “caused” by an edge in the previous
state of Anb, let us call this edge the parent. Let

(xkxk+1, ykyk+1), . . . , (xn−1xn, yn−1yn), (xn0, yn0)
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�1 �2 �3

�6�5�4

Fig. 1. Six viable graphs.

be a maximal sequence of edges such that (xi−1xi, yi−1yi) is a parent of (xixi+1, yiyi+1) in (gi−1, �i , gi) for all
k < i�n, where xn+1 and yn+1 are defined to be 0. We case split on the value of k, noting that k < n:

• k = 1. We claim that x = x1, . . . , xn and y = y1, . . . , yn are NB irreversibility witnesses. To see that x �= y, we note
that since (x1x2, y1y2) is an edge in g1 we have that x1x2 �= y1y2, from the definition of �nb(�, �1). To see that
�0
�(x) = �0

�(y), note that since (xixi+1, yiyi+1) is propagated for all 1 < i�n, we have that

�i (xi−1xixi+1) = �i (yi−1yiyi+1) (1)

holds for such i. That (1) holds for i = 1 follows from the definition of �nb(�, �1).
• k > 1. Note that since (xkxk+1, yiyk+1) is a newly born edge in (gk−1, �k, gk), we have that xk+1 �= yk+1, xk = yk ,

and there exists a ∈ B such that �k(axkxk+1)=�k(aykyk+1); let us define xk−1 = yk−1 = a. Also define xi = yi = 0
for all 0� i < k−1. We claim that x=x1, . . . , xn and y=y1, . . . , yn are NB irreversibility witnesses. Clearly x �= y,
since xk+1 �= yk+1 and k + 1�n. To see that �0

�(x) = �0
�(y), we show (1) for all 1� i�n by case splitting on i:

◦ 1� i < k. Since (xkxk+1, ykyk+1) is newly born, it follows that xk =yk . Therefore, xi =yi for all 0� i�k and
(1) holds for all 1� i < k.

◦ i = k. We previously defined xk−1 and yk−1 such that (1) holds for i = k.
◦ k < i�n. Since (xixi+1, yiyi+1) is propagated for all k < i�n, we have that (1) holds for all such i. �

Note that |Snb| = 1 + 210 << 2512, the latter being the number of states arising if one determinizes Aica. In the
following, we show that there are only six graphs in G that ever appear on accepting runs of Anb. This observation
allows us to define a reduced automaton Ânb with a mere nine states (namely, these six graphs along with � and two
new states and ♦).

Here we define several properties of graphs g ∈ G. g is said to be viable if it is one of the six graphs of Fig. 1; we
let V denote the set containing these six graphs. A loop is an edge of the form (u, u) for some u ∈ B2. A 3-cycle is a
set of three edges {(u, v), (v, w), (w, u)} such that u, v, and w are all distinct. We say a graph is doomed if it contains
a loop or a 3-cycle; note that no viable graph is doomed, though there exist graphs that are neither viable nor doomed.

It turns out that only viable graphs can appear on accepting runs ofAnb, with the possible exception of the last state;
this is captured by the following lemma.

Lemma 3. Let g0, . . . , gn be an accepting run of Anb. Then gi is viable for all 1� i < n.

Proof. If n = 1 then the lemma holds vacuously, thus we assume n�2. On the contrary, suppose at least one graph
g1, . . . , gn−1 is not viable, then let k be minimal such that gk is not viable. It follows that gk−1 ∈ {�} ∪ V, thus, by
Lemmas 4 and 5, we have that gk is doomed. Thus, by inductively applying Lemma 6, gk+1, . . . , gn are all not in
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Table 1
A tabular representation of the function �nb : Snb × R → Snb, restricted to the domain ({�} ∪ V) × R

r � �1 �2 �3 �4 �5 �6

00001111 15 240 ♦ �3 �3 ♦ ♦ �3 ♦
00010111 23 232 ♦ ♦ �4 ♦ ♦ ♦ ♦
00011011 27 228 ♦ �6 ♦ ♦
00011101 29 226 ♦ ♦ ♦ ♦ ♦ ♦ ♦
00011110 30 225 �3 ♦ ♦ ♦
00100111 39 216 ♦ �6 ♦ ♦ ♦
00101011 43 212 ♦ �4 ♦ ♦ ♦ ♦
00101101 45 210 ♦ �3 ♦ ♦ ♦
00101110 46 209 ♦ ♦ ♦ ♦ ♦ ♦
00110011 51 204 �3 ♦ �3 �3 ♦ ♦ �3
00110101 53 202 �1 ♦ ♦ �4 ♦ ♦ ♦
00110110 54 201 �2 ♦ �6 ♦ ♦
00111001 57 198 �2 ♦ �6 ♦ ♦
00111010 58 197 �1 ♦ ♦ �4 ♦ ♦ ♦
00111100 60 195 �3 �3 ♦ �3 �3 ♦ ♦
01000111 71 184 ♦ ♦ ♦ ♦ ♦ ♦ ♦
01001011 75 180 �3 ♦ ♦ ♦
01001101 77 178 ♦ ♦ �4 ♦ ♦ ♦ ♦
01001110 78 177 ♦ �6 ♦ ♦
01010011 83 172 �3 ♦ ♦ �4 ♦ ♦ ♦
01010101 85 170 �1 ♦ �1 �1 ♦ ♦ �1
01010110 86 169 �2 ♦ �5 �5 ♦ ♦ �5
01011001 89 166 �2 ♦ �5 �5 ♦ ♦ �5
01011010 90 165 �1 �3 �2 �1 �4 �6 �5
01011100 92 163 �3 ♦ ♦ �4 ♦ ♦ ♦
01100011 99 156 �3 ♦ �6 ♦ ♦
01100101 101 154 �1 ♦ �5 �5 ♦ ♦ �5
01100110 102 153 �2 ♦ �2 �2 ♦ ♦ �2
01101001 105 150 �2 �3 �1 �2 �6 �4 �5
01101010 106 149 �1 ♦ �5 �5 ♦ ♦ �5
01101100 108 147 �3 ♦ �6 ♦ ♦
01110001 113 142 ♦ �4 ♦ ♦ ♦ ♦
01110010 114 141 ♦ �6 ♦ ♦ ♦
01110100 116 139 ♦ ♦ ♦ ♦ ♦ ♦
01111000 120 135 ♦ �3 ♦ ♦ ♦
Each row is labelled with the (transposed) truth table of some r ∈ R, i.e. r is expressed as the bit-string r(111)r(110) . . . r(000), along with the
rule numbers for both r and the negation of r; both rules always have the same row, allowing for a 2-fold reduction in table height. If �nb(g, r) ∈ V

for the column/row for g/r , then the corresponding entry is �nb(g, r); if �nb(g, r) is doomed and accepting (resp. rejecting), this is specified by
(resp. ♦). Hence the table demonstrates Lemma 5.

Fnb (and also all doomed). Since k < n, this implies that gn /∈ Fnb, which contradicts g0, . . . , gn being an accepting
run. �

Lemma 4. For any r ∈ R, either �nb(�, r) ∈ V or �nb(�, r) is doomed.

Proof. Let g′=�nb(�, r). The edges of g′ only depend on the equivalence classes induced on U ={000, 001, 010, 011}
by r. If r maps three (or four) elements of U to the same value, g′ contains a 3-cycle and is doomed. Left to consider is
the case when r maps two elements of U to 1 and two to 0; here we find g′ ∈ {�1, �2, �3} ⊂ V. �

Lemma 5. For any r ∈ R and g ∈ V, either �nb(g, r) ∈ V, or �nb(g, r) is doomed.

Proof. Table 1 shows the �nb(g, r) for each g ∈ V and r ∈ R, hence proving this lemma by exhaustive
enumeration. �

Lemma 6. For any doomed g ∈ G and r ∈ R, �nb(g, r) is doomed and not in Fnb.
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Proof. Let g′ = �nb(g, r). Suppose g has a loop (xy, xy). Then (y0, y0) is a propagated edge in (g, r, g′), and hence
g′ has an odd cycle. Now suppose g has a 3-cycle ab, cd, ef . Note that exactly two of b, d, and f must be equal,
without loss of generality we assume that b = d �= f . If r(ab0) = r(cd0), then (b0, d0) is a loop in g′ and we are
done. Otherwise either r(ab0) = r(ef 0) or r(cd0) = r(ef 0), without loss of generality let us assume the former. Then
(b0, f 0) = (00, 10) is an edge in g′, hence g′ /∈ Fnb. We case-split:

• There exists xy ∈ {ab, cd, ef } such that r(xy1) = r(ab0). Then (y1, 00) and (y1, 10) are edges in g′ and hence g′
has a 3-cycle.

• If there does not exist such a xy, then it must be that r(ab1)= r(cd1)= r(ef 1)= r(cd0), and it follows that (b1, d1)

is a edge in g′. Since b = d , g′ has a loop.

In both cases we find that g′ is doomed. �

We now define the deterministic automaton Ânb = (Ŝnb, R, �̂nb, {�}, F̂nb). The states of Ânb include two new states
and ♦, which, respectively, represent all doomed states that are accepting (in Anb) and all doomed states that are

not accepting (in Anb).

• Ŝnb = V ∪ {�, , ♦}.
• F̂nb = { } ∪ (V ∩ Fnb) = { , �2, �3, �6}.
• �̂nb is defined by

�̂nb(g, r) =

⎧⎪⎨⎪⎩
�nb(g, r) if g ∈ V ∪ {�} and �nb(g, r) ∈ V,

if g ∈ V, �nb(g, r) /∈ V and �nb(g, r) ∈ Fnb,

♦ if g ∈ V, �nb(g, r) /∈ V and �nb(g, r) /∈ Fnb,

♦ if g ∈ { , ♦}.

Theorem 4. � ∈ L(Ânb) if and only if � is an NB reversible CA.

Proof. We show that L(Ânb) = L(Anb); the result follows by Theorem 3.
(⊇) Let g0, . . . , gn be an accepting run ofAnb on �1, . . . , �n. If gn ∈ Fnb, then by Lemma 3, g1, . . . , gn−1 ∈ V. If

gn ∈ V, then g0, . . . , gn is the run of Ânb on �, and is accepting. If gn /∈ V, then g0, . . . , gn−1, is the run of Ânb on
�, and is also accepting.

(⊆) Let ĝ0, . . . , ĝn be an accepting run of Ânb on �1, . . . , �n. If ĝi ∈ V for all 1� i�n, then clearly ĝ0, . . . , ĝn is also
an accepting run ofAnb. Otherwise, let k�1 be minimal such that ĝk /∈ V. It follows that g0, . . . , gk−1 is a run ofAnb
on �1, . . . , �k−1. If k = n, then ĝn = , since ĝn is accepting, and since ĝn−1 ∈ V, we have that �nb(ĝn−1, �n) ∈ Fnb
and thereforeAnb accepts �1, . . . , �n. If k < n it follows that ĝk+1 = · · ·= ĝn =♦, which contradicts ĝ0, . . . , ĝn being
an accepting run. �

6. Fast random uniform generation of NB reversible CA

In this section we present an algorithm that, given n, generates a random NB reversible CA of size n using O(n2)

time, and generates each NB reversible CA with equal probability (i.e. the generation is from the uniform distribution).
Our algorithm is an instance of the approach of Hickey and Cohen [7] for generating random strings from a context
free grammar, applied to the regular language of NB reversible CA. As observed by Hickey and Cohen, it is easy to
generate a “random” string; one simply traverses the automaton, at each state selecting one of the transitions out of the
state with equal probability. However, this is very unlikely to result in a uniformly distributed selection, and certainly
would not for our automaton Ânb. For instance, Table 1 suggests that the additive rules 90, 105, 150, and 165 appear
in NB reversible CA with a higher frequency than other rules, since they never lead to a doomed state; thus transitions
on these rules should be followed with higher probability.

To solve this problem, one must assign “weights” to the transitions of Ânb that dictate the probability that the
transition should be followed. This weight depends on the number of rules left to generate. Hence, this weighting
depends on the number of rules generated so far.
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Fig. 2. An algorithm that generates a random NB reversible CA from the uniform distribution.

Let Nn = {0, . . . , n}, and let N = {0, 1, . . .}. Given n, our uniform generation algorithm first constructs a table for
the function count : Ŝnb × Nn → N, which is defined inductively by

count(g, i) =
⎧⎨⎩

0 if i = n and g /∈ F̂nb,

1 if i = n and g ∈ F̂nb,∑
r∈R

count(̂�nb(g, r), i + 1) if i < n.

The algorithm also relies on a function prob : Ŝnb × (Nn\{0}) × R → [0, 1], which depends on count:

prob(s, i, r) = count(̂�nb(s, r), i)

count(s, i − 1)
.

The random generation algorithm is given in Fig. 2. Given input n�1 RANDOM_NB_REVERSIBLE_CA first computes
a table storing the value count(s, i) for each (s, i) ∈ Ŝnb × Nn We note that the number of entries in the table is only
|Ŝnb|n=9n. Next, starting with at the initial state�, RANDOM_NB_REVERSIBLE_CA follows n transitions of Ânb, at each
state selecting the next rule according to prob. The sequence of rules generated in this manner yields an NB reversible
CA �1, . . . , �n, selected uniformly from the set of all NB reversible CA of size n. That RANDOM_NB_REVERSIBLE_CA
indeed generates NB reversible CA from the uniform distribution follows from Hickey and Cohen [7], hence we do
not provide a proof. Though both the computation of the count table and the generation of the random CA require
O(n) operations, some of these operations involve addition operations performed on very large integers (i.e. those in
the image of count). These integers involve O(n) bits, and hence a single addition costs time O(n). The net result is
that RANDOM_NB_REVERSIBLE_CA takes O(n2) time. There are no prohibitive hidden constants here, for instance our
implementation generates a reversible CA with 200 cells in 90 seconds on a contemporary laptop computer.

7. Counting NB reversible CA

In this section, we derive a formula involving matrix powers that gives the number of NB reversible CA for a given
size n. We then find the asymptotic growth of this formula.

Let us define the following row vector s, 6 × 6 matrix T , and column vector f .

s = [12 12 12 0 0 0],

T =

⎡⎢⎢⎢⎢⎢⎣
0 0 16 0 0 0
4 4 4 8 8 8
4 4 4 8 8 8
0 0 2 2 0 2
0 0 2 2 0 2
2 2 2 0 12 0

⎤⎥⎥⎥⎥⎥⎦ , f =

⎡⎢⎢⎢⎢⎢⎣
24
24
24
12
12
12

⎤⎥⎥⎥⎥⎥⎦ .

These values are used in our formula that counts the number of NB reversible CA, presented in the following theorem.

Theorem 5. The number of NB reversible CA of size n�2 is sT n−2f .
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Proof. Viewing Ânb as a multi-graph, the number of NB reversible CA of size n is simply the number of walks from
� to an element of F̂nb = { , �2, �3, �6} in Ânb; this follows from Theorem 4 and the fact that Ânb is deterministic.
The proof is essentially an application of the well-known fact that the number of walks of length n between pairs of
vertices in a multi-graph is given by the adjacency matrix raised to the nth power [3].

Let walks(m, �i ) be the number of distinct walks of length m�1 from � to �i . We claim that walks(m, �i ) is the
ith component of sT m−1. For m = 1, the claim follows by inspection of Table 1. For m > 1, we recall that any walk
from � to �i cannot involve or ♦ and only visits � initially, by the definition of F̂nb. Thus,

walks(m, �i ) =
∑

1� j �6

walks(m − 1, �j )|{r ∈ R : �̂nb(�j , r) = �i |,

which is (sT m−2)T , again by inspection of Table 1.
Any walk from � to F̂nb can clearly only visit elements of V internally, hence the total number of such walks of

length n is∑
1� j �6

walks(n − 1, �j )|{r ∈ R : �̂nb(�j , r) ∈ F̂nb|,

which by the above claim is∑
1� j �6

(sT n−2)j |{r ∈ R : �̂nb(�j , r) ∈ F̂nb|.

By inspection of Table 1, this is equal to sT n−2f . �

We now determine the asymptotic growth of this formula.

Theorem 6. The number of NB reversible CA of size n grows as �(�n) where � ≈ 17.98.

Proof. Given 6 × 6 matrix A, let ‖A‖ = sT Âf , where Â is the matrix of entry-wise absolute values of A. It is
straightforward to verify that ‖ · ‖ is a matrix norm [9, Chapter 5]. By Theorem 5, the number of NB reversible CA of
size n is sT n−2f = ‖T n−3‖, since T contains no negative entries. According to Meyer [9, p. 619],

�k = lim
k→∞ ‖T k‖,

where � is the spectral radius of T . Thus, ‖T n−3‖ grows as �(�n−3). Since � is constant, we have �n =�(�n−3), hence
the number of NB reversible CA is �(�n). Numerically, we have computed � to be approximately 17.98. �

We conclude this section by contrasting the number of NB reversible CA, �(�n), with the total number of CA of
size n, which is exactly 256n. Clearly the ratio of NB reversible CA vanishes as n goes to infinity.

8. Conclusions and future work

We have presented an automaton construction to prove that the set of PB reversible CA are regular. Also we have
developed a very simple automaton for NB reversible CA, and used this automaton to define a practical algorithm for
random uniform generation of NB reversible CA, and also to count the NB reversible CA. An immediate avenue of
future work is to provide a sufficiently simple automaton for PB reversible CA to allow for similar results for such CA.

Our automata constructions might be applicable to deciding reversibility of infinite hybrid one-dimensional CA.
Such CA might be specified as the bi-infinite concatenation of a finite string of rules �, i.e. . . . ��� . . . . We also wonder
if our approach can be generalized to handle higher dimensional finite hybrid CA.

Finally, we note that Table 1 can be used to make observations about how frequently different rules appear in NB
reversible CA. For instance, we see that the four additive rules {90, 165, 105, 150} never lead to a doomed state, and
hence appear with high frequency. On the other hand, the eight rules {29, 226, 46, 209, 71, 184, 116, 139} always lead
to the rejecting doomed state ♦, and hence never appear in NB reversible CA.
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