
Distributed Explicit State Model Checking

of Deadlock Freedom

Brad Bingham1, Jesse Bingham2, John Erickson2, and Mark Greenstreet1

1 University of British Columbia,
Department of Computer Science

{binghamb,mrg}@cs.ubc.ca
2 Intel Corporation

{jesse.d.bingham,john.erickson}@intel.com

Abstract. This paper presents a practical method and associated tool
for verifying deadlock freedom properties in guarded command systems.
Such properties are expressed in CTL as AGEF q where q is a set of
quiescent states. We require the user to provide transitions of the system
that are “helpful” in reaching quiescent states. The distributed search
constructs a path consisting of helpful transitions from each reachable
state to a state that is either quiescent or is known to have a path to
a quiescent state. We extended the PReach model-checker with these
algorithms. Performance measurements on both academic and industrial
large-scale models shows that the overhead of checking deadlock-freedom
compared with state-space enumeration alone is small.

Keywords: distributed model checking, murphi, deadlock-freedom,
liveness.

1 Overview

Automatic checking of liveness properties is a challenging task. Approaches to
address this generally require the user to carefully specify system fairness as-
sumptions that are necessary for liveness to hold. Furthermore, checking liveness
is computationally expensive, being more sensitive to the state-space explosion
problem than simple state-space enumeration. A broad class of liveness failures
of practical importance is deadlock, wherein one or more transaction is blocked
due to a cyclic resource dependency [1]. In such a state, there exists no path to
a state where all transactions have completed; this is our motivation for charac-
terizing deadlock-freedom by a property AGEF q.1

PReach [2,3] is a distributed explicit-state model checker for systems de-
scribed in the Murϕ modelling language [4]. At a high level, PReach imple-
ments the Stern-Dill algorithm [5] for message passing based, parallel state-space
enumeration. This algorithm statically partitions the state-space according to a

1 Some literature and tools identify deadlock with the much weaker property that all
reachable states have at least one (possibly unique) successor. We use the stronger
from, AGEF q throughout this paper.

N. Sharygina and H. Veith (Eds.): CAV 2013, LNCS 8044, pp. 235–241, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

236 B. Bingham et al.

random uniform hash function that assigns states to owner threads, the owner
of a state being responsible for storing it once the state is expanded, i.e., had
its successors computed. PReach is designed to be scalable, extensible and ro-
bust, and is capable of checking models with billions of states using hundreds
of heterogenous machines. Several mechanisms are necessary for handling such
large-scale models such as load balancing, flow control methods and state batch-
ing. The message passing layer of PReach is implemented in the distributed
functional language Erlang, and Murϕ’s C++ libraries are borrowed for certain
computationally demanding tasks.

A new feature added to PReach and the focus of this paper is an explicit
state model checking technique to verify the CTL [6] property AGEF q. This
property (of recent interest [7]) says “for all reachable states, there exists a path
to some q-state”. In our approach to verifying AGEF q, the system is modeled
using guarded commands, and the user identifies a subset, H, of these commands
as helpful. These commands are the ones that the user expects will cause the
system to make progress towards q. If s is a state and s′ �= s can be reached from
s by performing a helpful command, then we say that s′ is a helpful successor of
s. Thus, from any reachable state s1,

2 we look for a witness path: If s1 is a q-state,
then the path is trivial; otherwise, PReach computes s2, a helpful successor of
s1. If s2 is a q-state then we have found a witness path for s1; otherwise, s3,
a helpful successor of s2 is computed. This process iterates, building a witness
path ρ = s1, s2, . . . until a state si is found where either

– si is a q-state, or
– si has no helpful successor (referred to as H-stuck), or
– si already appears in ρ.

In the first case, ρ is a witness path for s1 and PReach continues with its
standard state-space exploration algorithm. If a witness path is found for every
reachable state then AGEF q necessarily holds. In the other two cases, PReach
halts and reports the path ρ to the user. These cases do not imply ¬AGEF q.
For example, if the helpful rule list is empty and there exists a reachable state
that is not a q-state, then nontrivial witness paths will never be found. Likewise,
PReach may choose a sequence of transitions that leads to a cycle even though
a path to a q-state exists. While either error could be a false negative, as we
report in Section 4, in practice such failures can show that behaviours of the
model are not those intended by the designer and thereby reveal real errors.

In our experience, guarded command models have a clear partition between
commands that inject new requests and those that service existing ones. There-
fore, it is easy to decide suitable H and q. We show through experimentation
that using only helpful commands to form paths is not only sufficient to verify
AGEF q, but is efficient relative to the performance of state-space enumeration.

It is critical for performance to leverage the known witness paths during sub-
sequent searches. Suppose a witness path ρ1 has been found for state s, and s is

2 PReach can also verify the more general property AG (p → EF q), but for this
paper we assume for brevity that p is true .

Distributed Explicit State Model Checking of Deadlock Freedom 237

encountered on path ρ2 while searching for witness path for s′. Clearly, the con-
catenation of paths ρ1 and ρ2 is a witness path for s′. PReach uses a dedicated
state hash table for this purpose, called EFHT. Each time a witness path is
found for some state, it is added to EFHT; when we check if some state si is a
q-state, we also check for membership in EFHT. Henceforth, we use q ∨ EFHT
to denote states that are either q-states or members of EFHT.

1.1 Related Work

The idea of iteratively firing certain commands to complete in-flight transactions
is very similar to the completion functions used by Park and Dill [8], though their
goal was to verify refinement. As far as we are aware, the two tools closest to
PReach are Divine [9] and Eddy [10]. Neither of these tools are capable of check-
ing CTL properties such as AGEF q, and to the best of our knowledge, neither
has been applied to large scale problems as has been done with PReach [2]. Our
approach differs from the classical CTL model checking algorithm [6], which per-
forms a pre-image fix-point computation from q to compute the set of states that
satisfy EF q, and then checks that the reachable states are contained in this set.
By using a forward search, we ensure that the space and time complexity is pro-
portional to that of doing (explicit) state-space exploration. Doing CTL model
checking only using forward searches has been investigated for symbolic model
checking, e.g. the work of Iwashita et al. [11].

2 Implementation

Extending this core idea work with distributed model checking is non-trivial, and
can be done in several ways. We now summarize the approaches we considered.

2.1 Local Search

This search involves no communication to other threads during a witness search.
When a process in the distributed reachability algorithm encounters a new state
s, the process computes a path ρ as described in Section 1. This path computa-
tion is not distributed across processors, and thus, redundant paths computions
occur across different processors. While this approach scales poorly when the
reachability analysis is run on a large number of machines, it provides a baseline
that is free from communication overhead.

2.2 Pass-the-Path

Pass-the-path (PP) distributes the witness path searches by forwarding the cur-
rent path prefix to the owner of the next state. When a state s is found in the
reachability analysis, if it is already in q ∨ EFHT then a witness path is known
to exist and no further work is needed. Otherwise, an enabled helpful rule is
chosen; the successor state, s′ is computed, and the search message ([s], s′) is

238 B. Bingham et al.

sent to the owner of s′. Here, [s] is a list of states representing the current
prefix path. This process continues constructing a prefix path ρ, communicating
search messages of the form (ρ, scur) to the owner of scur, until a member of
q ∨ EFHT is reached, a cycle is encountered, or no helpful commands are
enabled. In the first case, the owners of all states along the path are notified and
they update their EFHTs, and otherwise a failure is reported. Notice that PP
allows redundant searches and acknowledgments to occur because threads keep
no record of which states have pending searches for paths to q-states.

2.3 Outstanding Search Table

These redundant searches can be avoided if threads keep track of which states
have outstanding witness searches. We have implemented such an approach
where each thread maintains the pending searches in local table ST. This ap-
proach called OST has the benefit of search messages containing only a pair of
states (s, s′). If such a message arrives and there is a pending search for s′ in the
table, then s is added to a list of states that must be acknowledged as having a
witness path once s′ is acknowledged.

3 Performance

We ran PReach on a variety of combinations of Murϕ models and hardware
configurations, summarized in Table 1. For each, we measured the performance of

Table 1. The column “runtime” is the mean runtime of three trials, with the exception
of the large cluster runs which are based on one trial (marked with †). The “overhead”
columns are the additional runtime relative to that of the “no EF” mode run of the
same model run on the same hardware. In PP mode, column “avg. path” is the number
of helpful transitions needed to reach a state that is a member of q ∨ EFHT, averaged
over the searches launched for each non-q-state. This number is also the average number
of times each non-q-state is acknowledged for insertion to EFHT.

model hardware
no EF local PP OST

#states
runtime overhead overhead avg. path overhead

german9 multicore 1365.12 0.76 0.16 1.005 0.21 19844513

flash5 multicore 752.75 1.07 0.30 1.005 0.39 24063542

peterson12 multicore 4018.34 1.11 timeout - 0.38 116039964

mcslock6 multicore 230.09 1.12 0.43 1.093 0.67 12838266

german9 small cluster 85.91 3.43 0.24 1.642 0.35 19844513

flash5 small cluster 57.46 1.52 0.32 1.307 0.52 24063542

flash6 small cluster 1854.42 1.56 0.23 1.021 0.29 609827554

peterson12 small cluster 254.27 9.50 timeout - 0.50 116039964

mcslock6 small cluster 22.04 1.45 2.73 4.763 1.09 12838266

intel small† large cluster 1025.20 7.10 0.84 2.242 0.55 22738573

intel large† large cluster 49041.70 timeout 0.57 - - 906695343

Distributed Explicit State Model Checking of Deadlock Freedom 239

regular state-space enumeration (no EF), local search mode (Section 2.1), Pass-
the-Path mode (Section 2.2) and Outstanding-Search-Table mode (Section 2.3).
The Murϕ models used are the German and Flash cache coherence protocols,
the Peterson mutual exclusion algorithm, the MCS lock mutual exclusion algo-
rithm and an Intel proprietary cache coherence protocol. We use germanX and
flashX to denote these models configured with X caches and two data values;
peterson12 is Peterson’s algorithm with 12 threads and mcslock6 is the MCS
Lock algorithm with 6 threads. All benchmarks and PReach source code is
available online[3]. The compute server farms are as follows:

– multicore: 8 PReach threads on a 2 socket server machine, each processor
is a Intel R© Xeon R© E5520 at 2.26 GHz with 4 cores.

– small cluster: 80 PReach threads on a homogenous cluster of 20 Intel Core
i7-2600K at 3.40 GHz with 4 cores.

– large cluster: 100 PReach threads on a heterogenous network of contempo-
rary Intel R© Xeon R© machines.

4 Summary

We have shown an efficient distributed algorithm and implementation for check-
ing deadlock freedom properties. The simpler approach of PP does some re-
dundant work, but performs well on models of cache coherence where paths to
q-states tend to be relatively short (see Figures 1 and 2). The approach is in-
tolerably slow for the Peterson mutual exclusion algorithm where these paths
are much longer. In this case, our more involved OST algorithm has a favorable
runtime and manageable memory overhead (as shown on the right of Figure 2).
We find that using OST to check deadlock freedom is inexpensive – at most a
109% runtime penalty but typically much smaller.

The utility of our approach was underscored when a counterexample trace was
generated on the peterson12 benchmark. After carefully checking our definitions
of q and H, we found a critical typo in the Murϕ model, which despite being

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

C
ou

nt

Path Length

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1e+09

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

C
ou

nt

Path Length

Fig. 1. Semi-log histograms of path lengths in PP mode, as defined in Table 1. The
left is from german9/multicore, the right is from flash6/small cluster.

240 B. Bingham et al.

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34

C
ou

nt

Path Length

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 0 50 100 150 200 250 300 350 400

ST
 W

or
ds

Seconds

Fig. 2. Left: semi-log histogram of path lengths for intel small/large cluster in PP
mode. Right: memory usage of ST for peterson12/small cluster in OST mode. Here,
“words” are 8 bytes; the peak memory usage over all threads is about 233 MB.

an example model in the popular Murϕ distribution, has persisted for nearly 20
years. Interestingly, the bug in question was not revealed by checking the safety
property mutual exclusion, or by “Murϕ deadlock” (states with no successors)
or even by checking AGEF q. With the bug, there exists a state where a thread
attempting to enter the critical section may not do so until another thread makes
the attempt first. Thus, the model does not satisfy AGEFH q.

CheckingAGEF q has a “buy-one, get-one free” appeal. Once model checking
has been done for safety properties, a small amount of human effort is needed
to identify helpful rules and write a quiesence predicate, q. While this approach
cannot check for subtle liveness errors, especially ones that rely on fairness con-
strains, deadlocks and violations of designer intent can be found as illustrated
by the Peterson example.

References

1. Holt, R.C.: Some deadlock properties of computer systems. ACM Computing Sur-
veys 4(3), 179–196 (1972)

2. Bingham, B., Bingham, J., de Paula, F.M., Erickson, J., Singh, G., Reitblatt,
M.: Industrial strength distributed explicit state model checking. In: Parallel and
Distributed Model Checking (2010)

3. Bingham, B., Bingham, J., Erickson, J.: Preach online (2013),
https://bitbucket.org/binghamb/preach-brads-fork

4. Dill, D.L.: The murphi verification system. In: Alur, R., Henzinger, T.A. (eds.)
CAV 1996. LNCS, vol. 1102, pp. 390–393. Springer, Heidelberg (1996)

5. Stern, U., Dill, D.L.: Parallelizing the murphi verifier. In: Grumberg, O. (ed.) CAV
1997. LNCS, vol. 1254, pp. 256–278. Springer, Heidelberg (1997)

6. Clarke Jr., E.M., Grumberg, O., Peled, D.A.: Model checking. MIT Press, Cam-
bridge (1999)

7. Hassan, Z., Bradley, A.R., Somenzi, F.: Incremental, inductive CTL model
checking. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358,
pp. 532–547. Springer, Heidelberg (2012)

https://bitbucket.org/binghamb/preach-brads-fork

Distributed Explicit State Model Checking of Deadlock Freedom 241

8. Park, S., Dill, D.L.: Protocol verification by aggregation of distributed transactions.
In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102, pp. 300–310.
Springer, Heidelberg (1996)

9. Barnat, J., Brim, L., Češka, M., Lamr, T.: CUDA accelerated LTL Model Checking.
In: ICPADS 2009. IEEE (2009)

10. Melatti, I., Palmer, R., Sawaya, G., Yang, Y., Kirby, R.M., Gopalakrishnan, G.:
Parallel and distributed model checking in eddy. Int’l. J. Softw. Tools Technol.
Transf. 11(1), 13–25 (2009)

11. Iwashita, H., Nakata, T., Hirose, F.: CTL model checking based on forward
state traversal. In: Alur, R., Henzinger, T.A. (eds.) CAV 1996. LNCS, vol. 1102,
pp. 82–87. Springer, Heidelberg (1996)

	Distributed Explicit State Model Checkingof Deadlock Freedom
	1 Overview
	1.1 Related Work

	2 Implementation
	2.1 Local Search
	2.2 Pass-the-Path
	2.3 Outstanding Search Table

	3 Performance
	4 Summary
	References

