DeepIV: A Flexible Approach for Counterfactual Prediction

Jason Hartford and Kevin Leyton-Brown

University of British Columbia

Greg Lewis* and Matt Taddy†

Microsoft Research & *NBER / [†] University of Chicago

a place of mind THE UNIVERSITY OF BRITISH COLUMBIA

I need a model that predicts the effect of price on ticket sales

annin ann

Highten

Jason

The observational distribution

The interventional distribution

"policy / treatment"

Identification of causal effects

Identification of causal effects

Identification of causal effects

Simulate a world without latent effects on price

Simulate a world without latent effects on price

The learning problem

These assumptions imply the following **identity**¹,

$$\frac{E[y|x,z]}{E[y|x,z]} = E[g(p,x)|x,z] = \int g(p,x) dF(p|x,z)$$

So we can recover g(p, x) solve the implied **inversion problem**...

$$\min_{g \in G} \sum_{t=1}^{n} \left(y_t - \int g(p, x_t) dF(p|x, z) \right)^2$$

1. This holds if E[e|x] = 0. In general we recover g(p, x) up to a constant wrt p – see paper for details.

A two-stage solution

$$\min_{g \in G} \sum_{t=1}^{n} \left(y_t - \int g(p, x_t) dF(p|x, z) \right)^2$$

Stage 1: fit $\widehat{F_{\phi}}(p|x,z)$ using the model of your choice.

 $\widehat{F_{\phi}}(p|x,z)$

Stage 2: train network \widehat{g}_{θ} using stochastic gradient descent with monte-carlo integration.

We use **mixture density networks** [Bishop 94]

$$\nabla L(\theta) = -2 \left(y_t - \frac{1}{|\dot{p_1}|} \sum_{\substack{p_1 \sim \widehat{F}(p|x,z)}} \widehat{g}(\dot{p}_1, x_t) \right) \times$$
teach SGD
$$\left(\frac{1}{|\dot{p_2}|} \sum_{\substack{p_2 \sim \widehat{F}(p|x,z)}} \nabla_{\theta} \widehat{g}(\dot{p}_2, x_t) \right)$$

Causal Validation

- In general, out-of-sample validation causal models is challenging / impossible...
- But... both our losses depend only on **observable** quantities **and** reflect causal loss, so we can simply use **standard validation sets**.

Evaluation

Simulation & Bing Ads Experiments

Simulation Experiments

Implications and future directions

- We recover heterogeneous treatment effects in settings with unobserved confounding effects for both discrete and continuous variables... and SGD scales naturally to very large datasets.
- Can leverage the flexibility of deep nets for rich data types. E.g. raw text in our Bing ads application experiments / images in simulation.

Future work:

• Methods for **uncertainty** estimates over predictions.

Code and paper available at http://bit.ly/DeeplV

Poster #127