Is Greedy Coordinate Descent a Terrible Algorithm?

Julie Nutini, Mark Schmidt, Issam Laradji, Michael Friedlander, Hoyt Koepke

University of British Columbia

International Conference on Machine Learning
Lille, France
July 6th-11th, 2015

Funded by NSERC Canada Graduate Scholarship
We consider coordinate descent for large-scale optimization.
Random vs. Greedy

We consider coordinate descent for large-scale optimization. Recent interest began with Nesterov [2012]:

\[\arg\max_i \left| \nabla f(x) \right|. \]
We consider coordinate descent for large-scale optimization. Recent interest began with Nesterov [2012]:

- Global convergence rate for randomized i_k selection.
We consider coordinate descent for large-scale optimization. Recent interest began with Nesterov [2012]:

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations n times cheaper.
We consider coordinate descent for large-scale optimization. Recent interest began with Nesterov [2012]:

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

$$\arg\max_i |\nabla_i f(x)|.$$
Random vs. Greedy

We consider coordinate descent for large-scale optimization. Recent interest began with Nesterov [2012]:

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

$$\argmax_i |\nabla_i f(x)|.$$
Random vs. Greedy

We consider coordinate descent for large-scale optimization.

Recent interest began with Nesterov [2012]:

- Global convergence rate for randomized i_k selection.
- Faster than gradient descent if iterations n times cheaper.

Contrast random with classic Gauss-Southwell (GS) rule:

$$\arg\max_i |\nabla_i f(x)|.$$
Random vs. Greedy

- GS at least as expensive as random.
Random vs. Greedy

- GS at least as expensive as random.
- Nesterov showed same rate as random.
Random vs. Greedy

- GS at least as expensive as random.
- Nesterov showed same rate as random.
- But theory disagrees with practice...
All rules have similar costs for this problem.
Coordinate update n times faster than gradient update for:

1. $h_1(x) = f(Ax) + \sum_{i=1}^{n} g_i(x_i)$, or
2. $h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)$

- f and f_{ij} smooth
- A is a matrix
- $\{V,E\}$ is a graph
- g_i general non-degenerate convex functions

Examples h_1: least squares, logistic regression, lasso, SVMs.

- Often solvable in $O(c r \log n)$ with c and r non-zeros per column/row.
- GS rule can be formulated as a maximum inner-product search (MIPS).

Examples h_2: quadratics, graph-based label propagation, graphical models.

- GS efficient if maximum degree similar to average degree.
- E.g., lattice-structured graphs and complete graphs.
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
h_1(x) = f(Ax) + \sum_{i=1}^{n} g_i(x_i), \quad \text{or} \quad h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i, j) \in E} f_{ij}(x_i, x_j)
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
h_1(x) = f(Ax) + \sum_{i=1}^{n} g_i(x_i), \quad \text{or} \quad h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions

Examples \(h_1 \): least squares, logistic regression, lasso, SVMs.
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
h_1(x) = f(Ax) + \sum_{i=1}^{n} g_i(x_i), \quad \text{or} \quad h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions

Examples \(h_1 \): least squares, logistic regression, lasso, SVMs.

Examples \(h_2 \): quadratics, graph-based label propagation, graphical models.
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
h_1(x) = f(Ax) + \sum_{i=1}^{n} g_i(x_i), \quad \text{or} \quad h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions

Examples \(h_1 \): least squares, logistic regression, lasso, SVMs.
- Often solvable in \(O(cr \log n) \) with \(c \) and \(r \) non-zeros per column/row.

Examples \(h_2 \): quadratics, graph-based label propagation, graphical models.
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
\begin{align*}
 h_1(x) &= f(Ax) + \sum_{i=1}^{n} g_i(x_i), \quad \text{or} \quad h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)
\end{align*}
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions

Examples \(h_1 \): least squares, logistic regression, lasso, SVMs.

\(\rightarrow \) Often solvable in \(O(cr \log n) \) with \(c \) and \(r \) non-zeros per column/row.

\(\rightarrow \) GS rule can be formulated as a maximum inner-product search (MIPS).

Examples \(h_2 \): quadratics, graph-based label propagation, graphical models.
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
\begin{align*}
 h_1(x) &= f(Ax) + \sum_{i=1}^{n} g_i(x_i), \quad \text{or} \quad h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)
\end{align*}
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions

Examples \(h_1 \): least squares, logistic regression, lasso, SVMs.

\(\rightarrow \) Often solvable in \(O(cr \log n) \) with \(c \) and \(r \) non-zeros per column/row.

\(\rightarrow \) GS rule can be formulated as a maximum inner-product search (MIPS).

Examples \(h_2 \): quadratics, graph-based label propagation, graphical models.

\(\rightarrow \) GS efficient if maximum degree similar to average degree.
Problems Suitable for Coordinate Descent

Coordinate update \(n \) times faster than gradient update for:

\[
h_1(x) = f(Ax) + \sum_{i=1}^{n} g_i(x_i), \text{ or } h_2(x) = \sum_{i \in V} g_i(x_i) + \sum_{(i,j) \in E} f_{ij}(x_i, x_j)
\]

- \(f \) and \(f_{ij} \) smooth
- \(A \) is a matrix
- \(\{V, E\} \) is a graph
- \(g_i \) general non-degenerate convex functions

Examples \(h_1 \): least squares, logistic regression, lasso, SVMs.

- Often solvable in \(O(cr \log n) \) with \(c \) and \(r \) non-zeros per column/row.
- GS rule can be formulated as a maximum inner-product search (MIPS).

Examples \(h_2 \): quadratics, graph-based label propagation, graphical models.

- GS efficient if maximum degree similar to average degree.
- E.g., lattice-structured graphs and complete graphs.
We focus on the convex optimization problem

\[
\min_{x \in \mathbb{R}^n} f(x)
\]
Notation and Assumptions

We focus on the convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

- \(\nabla f\) coordinate-wise \(L\)-Lipschitz continuous

\[|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L|\alpha|\]
We focus on the convex optimization problem

\[
\min_{x \in \mathbb{R}^n} f(x)
\]

- \(\nabla f \) coordinate-wise \(L \)-Lipschitz continuous

\[
|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L|\alpha|
\]

- \(f \) \(\mu \)-strongly convex, i.e.,

\[
x \mapsto f(x) - \frac{\mu}{2} \|x\|^2
\]

is convex for some \(\mu > 0 \).
Notation and Assumptions

We focus on the convex optimization problem

$$\min_{x \in \mathbb{R}^n} f(x)$$

- ∇f coordinate-wise L-Lipschitz continuous
 $$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L|\alpha|$$

- f μ-strongly convex, i.e.,
 $$x \mapsto f(x) - \frac{\mu}{2} \|x\|^2$$
 is convex for some $\mu > 0$.

- If f is twice-differentiable, equivalent to
 $$\nabla^2_{ii} f(x) \leq L, \quad \nabla^2 f(x) \succeq \mu \mathbb{I}.$$
Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k.$$
Randomized Coordinate Descent

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k}, \quad \text{for some } i_k.$$

With i_k chosen uniformly from $\{1, \ldots, n\}$ [Nesterov, 2012],

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)].$$
Randomized Coordinate Descent

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k)e_{i_k}, \quad \text{for some } i_k.$$

- With i_k chosen uniformly from $\{1, \ldots, n\}$ [Nesterov, 2012],

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)].$$

- Compare to rate of gradient descent,

$$f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu}{Lf}\right)[f(x^k) - f(x^*)].$$
Randomized Coordinate Descent

Coordinate descent with constant step-size $\frac{1}{L}$ update:

$$x^{k+1} = x^k - \frac{1}{L} \nabla_{i_k} f(x^k)e_{i_k}, \text{ for some } i_k.$$

- With i_k chosen uniformly from $\{1, \ldots, n\}$ [Nesterov, 2012],

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)].$$

- Compare to rate of gradient descent,

$$f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu}{L_f}\right)[f(x^k) - f(x^*)].$$

- Since $Ln \geq L_f \geq L$, coordinate descent is slower per iteration, but n coordinate iterations are faster than one gradient iteration.
Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

\[i_k = \arg\max_i |\nabla_i f(x^k)|. \]
Classic Analysis: Gauss-Southwell Rule

GS rule chooses coordinate with largest directional derivative,

\[i_k = \arg\max_i |\nabla_i f(x^k)|. \]

From Lipschitz-continuity assumption this rule satisfies

\[f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|_\infty^2. \]
GS rule chooses coordinate with largest directional derivative,

\[i_k = \arg\max_i |\nabla_i f(x^k)|. \]

From Lipschitz-continuity assumption this rule satisfies

\[f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|^2_\infty. \]

From strong-convexity we have

\[f(x^*) \geq f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2. \]
GS rule chooses coordinate with largest directional derivative,

\[i_k = \underset{i}{\text{argmax}} \ |\nabla_i f(x^k)|. \]

From Lipschitz-continuity assumption this rule satisfies

\[f(x^{k+1}) \leq f(x^k) - \frac{1}{2L} \|\nabla f(x^k)\|^2_\infty. \]

From strong-convexity we have

\[f(x^*) \geq f(x^k) - \frac{1}{2\mu} \|\nabla f(x^k)\|^2. \]

Using \(\|\nabla f(x^k)\|^2 \leq n\|\nabla f(x^k)\|^2_\infty \) we get

\[f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu}{Ln}\right)[f(x^k) - f(x^*)]. \]
Avoid norm inequality, measure strong-convexity in 1-norm.

\[f(x^*) \geq f(x_k) - \frac{1}{2} \mu_1 \|\nabla f(x_k)\|_\infty^2. \]

This gives a rate of
\[f(x_{k+1}) - f(x^*) \leq \left(1 - \frac{\mu_1}{L}\right) \left[f(x_k) - f(x^*)\right], \]
where \(\mu_n \leq \mu_1 \leq \mu \).

See paper and poster for:
- an explicit formula for \(\mu_1 \) for separable quadratic;
- results showing line-search gives faster rate for sparse problems;
- and analysis for approximate Gauss-Southwell rules.
Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \geq f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_\infty^2.$$
Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \geq f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_\infty^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu_1}{L}\right)[f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \leq \mu_1 \leq \mu.$$
Refined Analysis: Gauss-Southwell Rule

Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

$$f(x^*) \geq f(x^k) - \frac{1}{2\mu_1} \|
abla f(x^k)\|_\infty^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu_1}{L}\right)[f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \leq \mu_1 \leq \mu.$$

See paper and poster for:

- an explicit formula for μ_1 for separable quadratic;
Avoid norm inequality, measure strong-convexity in 1-norm.

We now have

\[
f(x^*) \geq f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_\infty^2.
\]

This gives a rate of

\[
f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu_1}{L}\right)[f(x^k) - f(x^*)],
\]

where

\[
\frac{\mu}{\eta} \leq \mu_1 \leq \mu.
\]

See paper and poster for:
- an explicit formula for \(\mu_1\) for separable quadratic;
- results showing line-search gives faster rate for sparse problems;
Avoid **norm inequality**, measure **strong-convexity in 1-norm**.

We now have

$$f(x^*) \geq f(x^k) - \frac{1}{2\mu_1} \|\nabla f(x^k)\|_\infty^2.$$

This gives a rate of

$$f(x^{k+1}) - f(x^*) \leq \left(1 - \frac{\mu_1}{L}\right) [f(x^k) - f(x^*)],$$

where

$$\frac{\mu}{n} \leq \mu_1 \leq \mu.$$

See paper and poster for:

- an explicit formula for μ_1 for separable quadratic;
- results showing line-search gives faster rate for sparse problems; and
- analysis for approximate Gauss-Southwell rules.
Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_i^k} \nabla_i f(x^k) e_{i_k}.$$
Lipschitz Sampling

Consider the case where we have an \(L_i \) for each coordinate

\[
|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L_i |\alpha|,
\]

and we use a coordinate-dependent step-size,

\[
x^{k+1} = x^k - \frac{1}{L_i} \nabla_i f(x^k) e_i.
\]

Sampling proportional to \(L_i \) yields [Nesterov, 2012]

\[
\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{n\bar{L}}\right)[f(x^k) - f(x^*)],
\]

where \(\bar{L} = \frac{1}{n} \sum_{i=1}^{n} L_i \).
Lipschitz Sampling

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_i} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{\bar{L}}\right)[f(x^k) - f(x^*)],$$

where $\bar{L} = \frac{1}{n} \sum_{i=1}^{n} L_i$.

- Faster than uniform sampling when L_i are distinct.
Lipschitz Sampling

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{\bar{L}_i} \nabla_i f(x^k) e_i.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{n \bar{L}}\right) [f(x^k) - f(x^*)],$$

where $\bar{L} = \frac{1}{n} \sum_{i=1}^{n} L_i$.

- Faster than uniform sampling when L_i are distinct.
- Could be faster or slower than GS rule.
Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{n \bar{L}}\right)[f(x^k) - f(x^*)],$$

where $\bar{L} = \frac{1}{n} \sum_{i=1}^{n} L_i$.

- Faster than uniform sampling when L_i are distinct.
- Could be faster or slower than GS rule.
- So which should we use?
Lipschitz Sampling

Consider the case where we have an L_i for each coordinate

$$|\nabla_i f(x + \alpha e_i) - \nabla_i f(x)| \leq L_i |\alpha|,$$

and we use a coordinate-dependent step-size,

$$x^{k+1} = x^k - \frac{1}{L_{i_k}} \nabla_{i_k} f(x^k) e_{i_k}.$$

Sampling proportional to L_i yields [Nesterov, 2012]

$$\mathbb{E}[f(x^{k+1})] - f(x^*) \leq \left(1 - \frac{\mu}{n\bar{L}}\right)[f(x^k) - f(x^*)],$$

where $\bar{L} = \frac{1}{n} \sum_{i=1}^{n} L_i$.

- Faster than uniform sampling when L_i are distinct.
- Could be faster or slower than GS rule.
- So which should we use?
- The answer is neither!
We obtain a faster rate by using L_i in the GS rule,

$$i_k = \arg \max_i \frac{\left| \nabla_i f(x^k) \right|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.
We obtain a faster rate by using L_i in the GS rule,

$$i_k = \arg\max_i \frac{\left| \nabla_i f(x^k) \right|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L_i is small.
We obtain a faster rate by using L_i in the GS rule,

$$i_k = \arg\max_i \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L_i is small.
We obtain a faster rate by using L_i in the GS rule,

$$i_k = \text{argmax}_i \frac{\|\nabla_i f(x^k)\|}{\sqrt{L_i}},$$

which we call the Gauss-Southwell-Lipschitz (GSL) rule.

Intuition: if gradients are similar, more progress if L_i is small.
The GSL rule obtains a rate of

\[f(x^{k+1}) - f(x^k) \leq (1 - \mu_L)[f(x^k) - f(x^*)], \]

where \(\mu_L \) satisfies the inequality

\[\max \left\{ \frac{\mu}{n\bar{L}}, \frac{\mu_1}{L} \right\} \leq \mu_L \leq \frac{\mu_1}{\min_i\{L_i\}}. \]
The GSL rule obtains a rate of

\[f(x^{k+1}) - f(x^k) \leq (1 - \mu_L)[f(x^k) - f(x^*)], \]

where \(\mu_L \) satisfies the inequality

\[\max \left\{ \frac{\mu}{n\bar{L}}, \frac{\mu_1}{L} \right\} \leq \mu_L \leq \frac{\mu_1}{\min_i \{L_i\}}. \]

- GSL is at least as fast as GS and Lipschitz sampling.
Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

\[f(x^{k+1}) - f(x^k) \leq (1 - \mu_L)[f(x^k) - f(x^*)], \]

where \(\mu_L \) satisfies the inequality

\[
\max \left\{ \frac{\mu}{n\bar{L}}, \frac{\mu_1}{L} \right\} \leq \mu_L \leq \frac{\mu_1}{\min_i \{L_i\}}.
\]

- GSL is at least as fast as GS and Lipschitz sampling.
- GSL is unimprovable for quadratic functions using \(\frac{1}{L_{i_k}} \),

\[f(x^{k+1}) = \arg\min_{i, \alpha} \{ f(x^k + \alpha e_i) \}. \]
Gauss-Southwell-Lipschitz Rule

The GSL rule obtains a rate of

\[f(x^{k+1}) - f(x^k) \leq (1 - \mu_L)[f(x^k) - f(x^*)], \]

where \(\mu_L \) satisfies the inequality

\[\max\left\{ \frac{\mu}{n\bar{L}}, \frac{\mu_1}{L} \right\} \leq \mu_L \leq \frac{\mu_1}{\min_i\{L_i\}}. \]

- GSL is at least as fast as GS and Lipschitz sampling.
- GSL is unimprovable for quadratic functions using \(\frac{1}{L_{ik}} \),

\[f(x^{k+1}) = \arg\min_{i,\alpha} \{ f(x^k + \alpha e_i) \}. \]

- Gives tighter bound for maximum improvement rule.
Consider a special case of h_1 (no g_i functions),

$$\min_x h_1(x) = f(Ax).$$
Consider a special case of h_1 (no g_i functions),

$$\min_x h_1(x) = f(Ax).$$

The GS rule has the form

$$i_k = \arg\max_i |a_i^T r(x^k)|.$$
Consider a special case of h_1 (no g_i functions),

$$\min_x h_1(x) = f(Ax).$$

The GS rule has the form

$$i_k = \arg\max_i |a_i^T r(x^k)|.$$
Dhillon et al. [2011] approximate GS as nearest neighbour,

\[
\arg\min_i \| r(x_k^i) - a_i \| = \arg\min_i \left\{ |\nabla_i f(x_k^i)| - \frac{1}{2} \|a_i\|^2 \right\}.
\]
Dhillon et al. [2011] approximate GS as nearest neighbour,

$$\arg\min_i \| r(x^k) - a_i \| = \arg\min_i \left\{ |\nabla_i f(x^k)| - \frac{1}{2} \|a_i\|^2 \right\}.$$

- Approximation is exact if $\|a_i\| = 1$ for all i.

See paper and poster for numerical results on the nearest neighbour.
Dhillon et al. [2011] approximate GS as nearest neighbour,

\[
\arg\min_i \| r(x^k) - a_i \| = \arg\min_i \left\{ |\nabla_i f(x^k)| - \frac{1}{2} \|a_i\|^2 \right\}.
\]

- Approximation is exact if \(\|a_i\| = 1 \) for all \(i \).

Usually \(L_i = \gamma \|a_i\|^2 \), in this case exact GSL is a nearest neighbour problem,

\[
\arg\min_i \left\| r(x^k) - \frac{a_i}{\|a_i\|} \right\| = \arg\min_i \left\{ \frac{|\nabla_i f(x^k)|}{\sqrt{L_i}} \right\}.
\]

- See paper and poster for numerical results on the nearest neighbour.
Consider the following problem

\[
\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_i g_i(x_i),
\]

where \(f \) is smooth and \(g_i \) might be non-smooth.
Consider the following problem

$$\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_i g_i(x_i),$$

where f is smooth and g_i might be non-smooth.

- e.g., ℓ_1-regularization, bound constraints
Consider the following problem

\[
\min_{x \in \mathbb{R}^n} F(x) \equiv f(x) + \sum_i g_i(x_i),
\]

where \(f \) is smooth and \(g_i \) might be non-smooth.

- e.g., \(\ell_1 \)-regularization, bound constraints

Apply proximal-gradient style update,

\[
x^{k+1} = \text{prox}_{\frac{1}{L}g_{i_k}} \left[x^k - \frac{1}{L} \nabla_{i_k} f(x^k) e_{i_k} \right],
\]

where

\[
\text{prox}_{\alpha g}[y] = \arg\min_{x \in \mathbb{R}^n} \frac{1}{2} \| x - y \|^2 + \alpha g(x).
\]
Several generalizations of GS to this setting:

- **GS-**: Minimize directional derivative, $i_k = \arg\max_i \{ \min_s \in \partial g_i |\nabla f(x_k) + s| \}$.
 - Commonly-used for ℓ_1-regularization, but $\|x_{k+1} - x_k\|$ could be tiny.

- **GS-**: Maximize how far we move, $i_k = \arg\max_i \{|x_{k,i} - \text{prox}_{1Lg_i}[x_{k,i} - 1L\nabla f(x_k)]|\}$.
 - Effective for bound constraints, but ignores $g_i(x_{k+1,i}) - g_i(x_{k,i})$.

- **GS-**: Maximize progress under quadratic approximation of f, $i_k = \arg\min_i \{ \min_d df(x_k) + \nabla f(x_k)d + Ld^2 + g_i(x_{k,i} + d) - g_i(x_{k,i}) \}$.
 - Least intuitive, but has the best theoretical properties.
 - If you use L_i in the GS- rule, it is a generalization of GSL rule.
Several generalizations of GS to this setting:

- **GS-s**: Minimize directional derivative,
 \[
 i_k = \arg\max_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.
 \]

- **GS-r**: Maximize how far we move,
 \[
 i_k = \arg\max_i \left\{ |x_k^i - \text{prox}_1 Lg_{ik}[x_k^i - 1L\nabla_i f(x^k)]| \right\}.
 \]

- **GS-q**: Maximize progress under quadratic approximation of f,
 \[
 i_k = \arg\min_i \left\{ \min d f(x^k) + \nabla_i f(x^k) d + Ld^2 + g_i(x^k_i + d) - g_i(x^k_i) \right\}.
 \]

→ Least intuitive, but has the best theoretical properties.
→ If you use L_i in the GS-q rule, it is a generalization of GSL rule.
Several generalizations of GS to this setting:

- **GS-s:** Minimize directional derivative,
\[
 i_k = \arg\max_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.
\]

→ Commonly-used for ℓ_1-regularization, but $\|x^{k+1} - x^k\|$ could be tiny.

- **GS-r:** Maximize how far we move,
\[
 i_k = \arg\max_i \left\{ \|x^k_i - \text{prox}_{1Lg_i}(x^k) - L\nabla_i f(x^k)\| \right\}.
\]

→ Effective for bound constraints, but ignores $g_i(x^k_i + 1) - g_i(x^k_i)$.

- **GS-q:** Maximize progress under quadratic approximation of f,
\[
 i_k = \arg\min_i \left\{ \min d f(x^k) + \nabla_i f(x^k) d + Ld^2 + g_i(x^k_i + d) - g_i(x^k_i) \right\}.
\]

→ Least intuitive, but has the best theoretical properties.

→ If you use L_i in the GS-q rule, it is a generalization of GSL rule.
Several generalizations of GS to this setting:

- **GS-\(s\):** Minimize directional derivative,
 \[
 i_k = \arg\max_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\} .
 \]

 → Commonly-used for \(\ell_1\)-regularization, but \(\|x^{k+1} - x^k\|\) could be tiny.

- **GS-\(r\):** Maximize how far we move,
 \[
 i_k = \arg\max_i \left\{ \left\| x_i^k - \text{prox} \left(\frac{1}{L} g_i \right) x_i^k - \frac{1}{L} \nabla_i f(x^k) \right\| \right\} .
 \]
Several generalizations of GS to this setting:

- **GS-**s: Minimize directional derivative,

$$i_k = \arg\max_{i} \left\{ \min_{s \in \partial g_i} \left| \nabla_i f(x^k) + s \right| \right\}.$$

→ Commonly-used for ℓ_1-regularization, but $\|x^{k+1} - x^k\|$ could be tiny.

- **GS-**r: Maximize how far we move,

$$i_k = \arg\max_{i} \left\| x_i^k - \text{prox} \frac{1}{L g_i} \left[x_i^k - \frac{1}{L} \nabla_i f(x^k) \right] \right\}.$$

→ Effective for bound constraints, but ignores $g_i(x_i^{k+1}) - g_i(x_i^k)$.
Several generalizations of GS to this setting:

- **GS-s**: Minimize directional derivative,
 \[
 i_k = \arg\max_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.
 \]
 → Commonly-used for ℓ_1-regularization, but $\|x^{k+1} - x^k\|$ could be tiny.

- **GS-r**: Maximize how far we move,
 \[
 i_k = \arg\max_i \left\{ \left| x^k_i - \text{prox}_{\frac{1}{L} g_i} \left[x^k_i - \frac{1}{L} \nabla_i f(x^k) \right] \right| \right\}.
 \]
 → Effective for bound constraints, but ignores $g_i(x^k_{i+1}) - g_i(x^k_i)$.

- **GS-q**: Maximize progress under quadratic approximation of f,
 \[
 i_k = \arg\min_i \left\{ \min_d f(x^k) + \nabla_i f(x^k) d + \frac{L d^2}{2} + g_i(x^k_i + d) - g_i(x^k_i) \right\}.
 \]
Several generalizations of GS to this setting:

- **GS-s**: Minimize directional derivative,
 \[i_k = \arg \max_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}. \]

 Commonly-used for \(\ell_1 \)-regularization, but \(\|x^{k+1} - x^k\| \) could be tiny.

- **GS-r**: Maximize how far we move,
 \[i_k = \arg \max_i \left\{ \left| x_i^k - \text{prox}_{\frac{1}{L}g_i} \left[x_i^k - \frac{1}{L} \nabla_i f(x^k) \right] \right| \right\}. \]

 Effective for bound constraints, but ignores \(g_i(x_i^{k+1}) - g_i(x_i^k) \).

- **GS-q**: Maximize progress under quadratic approximation of \(f \),
 \[i_k = \arg \min_{i} \left\{ \min_{d} f(x^k) + \nabla_i f(x^k) d + \frac{Ld^2}{2} + g_i(x_i^k + d) - g_i(x_i^k) \right\}. \]

 Least intuitive, but has the best theoretical properties.
Several generalizations of GS to this setting:

- **GS-\(s\):** Minimize directional derivative,
 \[
 i_k = \argmax_i \left\{ \min_{s \in \partial g_i} |\nabla_i f(x^k) + s| \right\}.
 \]

 → Commonly-used for \(\ell_1\)-regularization, but \(\|x^{k+1} - x^k\|\) could be tiny.

- **GS-\(r\):** Maximize how far we move,
 \[
 i_k = \argmax_i \left\{ \left\| x^k_i - \text{prox} \frac{1}{L} g_{i_k} \left[x^k_i - \frac{1}{L} \nabla i_k f(x^k) \right] \right\| \right\}.
 \]

 → Effective for bound constraints, but ignores \(g_i(x_i^{k+1}) - g_i(x_i^k)\).

- **GS-\(q\):** Maximize progress under quadratic approximation of \(f\),
 \[
 i_k = \argmin_i \left\{ \min_d f(x^k) + \nabla_i f(x^k)d + \frac{Ld^2}{2} + g_i(x_i^k + d) - g_i(x_i^k) \right\}.
 \]

 → Least intuitive, but has the best theoretical properties.

 → If you use \(L_i\) in the GS-\(q\) rule, it is a generalization of GSL rule.
For random selection, Richtárik and Takáč [2014] show

$$\mathbb{E}[F(x^{k+1})] - F(x^k) \leq \left(1 - \frac{\mu}{L}n\right)[F(x^k) - F(x^*)].$$
For random selection, Richtárik and Takáč [2014] show

\[
\mathbb{E}[F(x^{k+1})] - F(x^k) \leq \left(1 - \frac{\mu}{Ln}\right)[F(x^k) - F(x^*)].
\]

- the same rate as if non-smooth \(g_i\) was not there.
For random selection, Richtárik and Takáč [2014] show
\[E[F(x^{k+1})] - F(x^k) \leq \left(1 - \frac{\mu}{L\ln(n)} \right) [F(x^k) - F(x^*)]. \]

- the same rate as if non-smooth g_i was not there.

For the GS-q rule, we show that
\[
F(x^{k+1}) - F(x^k) \leq \min \left\{ \left(1 - \frac{\mu}{L\ln(n)} \right) [F(x^k) - F(x^*)], \right. \\
\left. \left(1 - \frac{\mu_1}{L} \right) [F(x^k) - F(x^*)] + \epsilon_k \right\},
\]

where $\epsilon_k \to 0$ measures non-linearity of g_i that are not updated.
For random selection, Richtárik and Takáč [2014] show

\[E[F(x^{k+1})] - F(x^k) \leq \left(1 - \frac{\mu}{Ln} \right)[F(x^k) - F(x^*)]. \]

- the same rate as if non-smooth \(g_i \) was not there.

For the GS-\(q \) rule, we show that

\[F(x^{k+1}) - F(x^k) \leq \min \left\{ \left(1 - \frac{\mu}{Ln} \right)[F(x^k) - F(x^*)], \right. \]

\[\left. \left(1 - \frac{\mu_1}{L} \right)[F(x^k) - F(x^*)] + \epsilon_k \right\}, \]

where \(\epsilon_k \to 0 \) measures non-linearity of \(g_i \) that are not updated.

- But, again theory disagrees with practice...
Comparison of Proximal Gauss-Southwell Rules
Discussion

- GS not always practical.
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.

Analyzed proximal variants of GS rule.

GSL-q rule least intuitive, has best empirical performance.
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i, should use GSL.

Analyzed proximal variants of GS rule.
- GSL-q rule least intuitive, has best empirical performance.

See paper and poster for:
- details on problem types for coordinate descent and GS
- analysis of μ vs μ_1 for separable quadratic
- results for exact optimization (chain-structured graph)
- details on GSL and nearest neighbour analysis
- convergence rates for approximate GS rules
- experimental results (e.g., graph-based label propagation)

Current/future work:
- accelerated/parallel methods [Fercocq & Richtárik, 2013]
- primal-dual methods [Shalev-Schwartz & Zhang, 2013]
- without strong-convexity [Luo & Tseng, 1993]
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i, should use GSL.
- Analyzed proximal variants of GS rule.
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate \(L_i \), should use GSL.
- Analyzed proximal variants of GS rule.
 - GSL-\(q \) rule least intuitive, has best empirical performance.
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i, should use GSL.
- Analyzed proximal variants of GS rule.
 - GSL-q rule least intuitive, has best empirical performance.
- See paper and poster for:
 - details on problem types for coordinate descent and GS
 - analysis of μ vs μ_1 for separable quadratic
 - results for exact optimization (chain-structured graph)
 - details on GSL and nearest neighbour analysis
 - convergence rates for approximate GS rules
 - experimental results (e.g., graph-based label propagation)
Discussion

- GS not always practical.
 - But if you can compute GS efficiently, you should use it.
- We proposed GSL rule.
 - If we know/can approximate L_i, should use GSL.
- Analyzed proximal variants of GS rule.
 - GSL-q rule least intuitive, has best empirical performance.
- See paper and poster for:
 - details on problem types for coordinate descent and GS
 - analysis of μ vs μ_1 for separable quadratic
 - results for exact optimization (chain-structured graph)
 - details on GSL and nearest neighbour analysis
 - convergence rates for approximate GS rules
 - experimental results (e.g., graph-based label propagation)
- Current/future work:
 - accelerated/parallel methods [Fercocq & Richtárik, 2013]
 - primal-dual methods [Shalev-Schwartz & Zhang, 2013]
 - without strong-convexity [Luo & Tseng, 1993]
Thank you!