Decision Theory: Optimal Policies for Sequential Decisions

CPSC 322 – Decision Theory 3

Textbook §9.3

April 4, 2011
Lecture Overview

Recap: Sequential Decision Problems and Policies

- Expected Utility and Optimality of Policies
- Computing the Optimal Policy by Variable Elimination
- Summary & Perspectives
Recap: Single vs. Sequential Actions

- **Single Action (aka One-Off Decisions)**
 - One or more *primitive* decisions that can be treated as a single macro decision to be made before acting

- **Sequence of Actions (Sequential Decisions)**
 - Repeat:
 - observe
 - act
 - Agent has to take actions not knowing what the future brings
Recap: Optimal single-stage decisions

Definition (optimal single-stage decision)
An optimal single-stage decision is the decision $D = d_{\text{max}}$ whose expected value is maximal:

$$d_{\text{max}} \in \arg\max_{d_i \in \text{dom}(D)} E[U|D=d_i]$$

Best decision: (wear pads, short way)
Recap: Single-Stage decision networks

- Compact and explicit representation
 - Compact: each random/decision variable only occurs once
 - Explicit: dependences are made explicit
 • e.g., which variables affect the probability of an accident?

- Extension of Bayesian networks with
 - Decision variables
 - A single utility node
Recap: Types of nodes in decision networks

• A **random variable** is drawn as an ellipse.
 – Parents \(\text{pa}(X) \): encode dependence
 Conditional probability \(p(X \mid \text{pa}(X)) \)
 Random variable \(X \) is conditionally independent
 of its non-descendants given its parents
 – Domain: the values it can take at random

• A **decision variable** is drawn as an rectangle.
 – Parents \(\text{pa}(D) \)
 information available when decision \(D \) is made
 • Single-stage: \(\text{pa}(D) \) only includes decision variables
 – Domain: the values the agents can choose (actions)

• A **utility node** is drawn as a diamond.
 – Parents \(\text{pa}(U) \): variables utility directly depends on
 • utility \(U(\text{pa}(U)) \) for each instantiation of its parents
 – Domain: does not have a domain!
Recap: VE for computing the optimal decision

- Denote
 - the random variables as X_1, \ldots, X_n
 - the decision variables as D

 $$E[U|D = d] = \sum_w P(w|D = d)U(w)$$
 $$= \sum_{X_1,\ldots,X_n} P(X_1,\ldots,X_n|D = d)U(pa(U))$$
 $$= \sum_{X_1,\ldots,X_n} \prod_{i=1}^{n} P(X_i|pa(X_i))U(pa(U))$$

- To find the optimal decision we can use VE:
 1. Create a factor for each conditional probability and for the utility
 2. Sum out all random variables, one at a time
 - This creates a factor on D that gives the expected utility for each d_i
 3. Choose the d_i with the maximum value in the factor
Recap: Sequential Decision Networks

- General Decision networks:
 - Just like single-stage decision networks, with one exception: the parents of decision nodes can include random variables.
Recap: Sequential Decision Networks

• General Decision networks:
 – Just like single-stage decision networks, with one exception: the parents of decision nodes can include random variables
Recap: Policies for Sequential Decision Problems

Definition (Policy)
A policy π is a sequence of $\delta_1, \ldots, \delta_n$ decision functions $\delta_i : \text{dom}(\text{pa}(D_i)) \rightarrow \text{dom}(D_i)$

I.e., when the agent has observed $o \in \text{dom}(pD_i)$, it will do $\delta_i(o)$

- One example for a policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true
Recap: Policies for Sequential Decision Problems

Definition (Policy)
A policy \(\pi \) is a sequence of \(\delta_1, \ldots, \delta_n \) decision functions
\[
\delta_i : \text{dom}(\text{pa}(D_i)) \rightarrow \text{dom}(D_i)
\]

I.e., when the agent has observed \(o \in \text{dom}(\rho D_i) \), it will do \(\delta_i(o) \)

There are \(2^2 = 4 \) possible decision functions \(\delta_{cs} \) for Check Smoke:
- Each decision function needs to specify a value for each instantiation of parents

<table>
<thead>
<tr>
<th>(\delta_{cs})</th>
<th>(R=t)</th>
<th>(R=f)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\delta_{cs 1}(R))</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>(\delta_{cs 2}(R))</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>(\delta_{cs 3}(R))</td>
<td>F</td>
<td>T</td>
</tr>
<tr>
<td>(\delta_{cs 4}(R))</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>
Recap: Policies for Sequential Decision Problems

Definition (Policy)
A policy π is a sequence of $\delta_1, \ldots, \delta_n$ decision functions

\[\delta_i : \text{dom}(pa(D_i)) \rightarrow \text{dom}(D_i) \]

I.e., when the agent has observed $o \in \text{dom}(pD_i)$, it will do $\delta_i(o)$

There are $2^8 = 256$ possible decision functions δ_{cs} for Call:

<table>
<thead>
<tr>
<th>$\delta_{cal}1(R)$</th>
<th>$R=t$, $CS=t$, $SS=t$</th>
<th>$R=t$, $CS=t$, $SS=f$</th>
<th>$R=t$, $CS=f$, $SS=t$</th>
<th>$R=t$, $CS=f$, $SS=f$</th>
<th>$R=f$, $CS=t$, $SS=t$</th>
<th>$R=f$, $CS=t$, $SS=f$</th>
<th>$R=f$, $CS=f$, $SS=t$</th>
<th>$R=f$, $CS=f$, $SS=f$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\delta_{cal}2(R)$</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>$\delta_{cal}3(R)$</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
</tr>
<tr>
<td>$\delta_{cal}4(R)$</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>F</td>
</tr>
<tr>
<td>$\delta_{cal}5(R)$</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>T</td>
<td>F</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
<td>\ldots</td>
</tr>
<tr>
<td>$\delta_{cal}256(R)$</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
<td>F</td>
</tr>
</tbody>
</table>

Copy-paste typos in printout
Recap: How many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k

- If there are b possible values for a decision variable, how many different decision functions are there for it if it has k binary parents?

\[2^{kp}, \quad b \times 2^k, \quad b^{2^k}, \quad 2^{kb} \]
Recap: How many policies are there?

• If a decision D has k binary parents, how many assignments of values to the parents are there?
 – 2^k

• If there are b possible value for a decision variable, how many different decision functions are there for it if it has k binary parents?
 – b^{2^k}, because there are 2^k possible instantiations for the parents and for every instantiation of those parents, the decision function could pick any of b values

• If there are d decision variables, each with k binary parents and b possible actions, how many policies are there?
 \[db^k b^{dk} d(b^{2^k}) (b^{2^k})^d \]
Recap: How many policies are there?

- If a decision D has k binary parents, how many assignments of values to the parents are there?
 - 2^k

- If there are b possible values for a decision variable, how many different decision functions are there for it if it has k binary parents?
 - b^{2^k}, because there are 2^k possible instantiations for the parents and for every instantiation of those parents, the decision function could pick any of b values

- If there are d decision variables, each with k binary parents and b possible actions, how many policies are there?
 - $(b^{2^k})^d$, because there are b^{2^k} possible decision functions for each decision, and a policy is a combination of d such decision functions
Lecture Overview

• Recap: Sequential Decision Problems and Policies

→ Expected Utility and Optimality of Policies

• Computing the Optimal Policy by Variable Elimination

• Summary & Perspectives
Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy π, written $w \models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w).

- Consider our previous example policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

- Does the following possible world satisfy this policy?
 - \negtampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call

 Yes No
Possible worlds satisfying a policy

Definition (Satisfaction of a policy)
A possible world w satisfies a policy π, written $w \vDash \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w).

- Consider our previous example policy:
 - Check smoke (i.e. set CheckSmoke=true) if and only if Report=true
 - Call if and only if Report=true, CheckSmoke=true, SeeSmoke=true

- Do the following possible worlds satisfy this policy?
 - \neg tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, call
 - Yes! Conditions are satisfied for each of the policy’s decision functions

- \neg tampering, fire, alarm, leaving, report, smoke, checkSmoke, seeSmoke, \negcall

Yes | No
Possible worlds satisfying a policy

Definition (Satisfaction of a policy)

A possible world w satisfies a policy π, written $w \models \pi$, if the value of each decision variable in w is the value selected by its decision function in policy π (when applied to w).

- Consider our previous example policy:
 - Check smoke (i.e. set $\text{CheckSmoke}=\text{true}$) if and only if $\text{Report}=\text{true}$
 - Call if and only if $\text{Report}=\text{true}$, $\text{CheckSmoke}=\text{true}$, $\text{SeeSmoke}=\text{true}$

- Do the following possible worlds satisfy this policy?
 - $\neg \text{tampering}, \text{fire}, \text{alarm}, \text{leaving}, \neg \text{report}, \text{smoke}, \neg \text{checkSmoke}, \neg \text{seeSmoke}, \neg \text{call}$
 - Yes! Conditions are satisfied for each of the policy’s decision functions
 - $\neg \text{tampering}, \text{fire}, \text{alarm}, \text{leaving}, \neg \text{report}, \text{smoke}, \neg \text{checkSmoke}, \neg \text{seeSmoke}, \neg \text{call}$
 - No! The policy says to call if Report and CheckSmoke and SeeSmoke all true
 - $\neg \text{tampering}, \text{fire}, \text{alarm}, \text{leaving}, \neg \text{report}, \neg \text{smoke}, \neg \text{checkSmoke}, \neg \text{seeSmoke}, \neg \text{call}$
 - Yes! Policy says to neither check smoke nor call when there is no report
Expected utility of a policy

Definition (expected utility of a policy)
The expected utility $E[\pi]$ of a policy π is:

$$E[\pi] = \sum_{w \notin \pi} P(w) \ U(w)$$

This term is zero if D_j’s value does not agree with what the policy dictates given D_j’s parents.
Optimality of a policy

Definition (expected utility of a policy)
The expected utility $E[\pi]$ of a policy π is:

$$E[\pi] = \sum_{w \in \pi} P(w) U(w)$$

Definition (optimal policy)
An optimal policy π_{max} is a policy whose expected utility is maximal among all possible policies Π:

$$\pi_{max} \in \arg\max_{\pi \in \Pi} E[\pi]$$
Lecture Overview

• Recap: Sequential Decision Problems and Policies
• Expected Utility and Optimality of Policies

Computing the Optimal Policy by Variable Elimination

• Summary & Perspectives
One last operation on factors: maxing out a variable

- Maxing out a variable is similar to marginalization
 - But instead of taking the sum of some values, we take the max

\[
\left(\max_{X_1}\right)\left(X_2, \ldots, X_j\right) = \max_{x \in \text{dom}(X_1)} f(X_1 = x, X_2, \ldots, X_j)
\]

\[
\max_B f_3(A,B,C) = f_4(A,C)
\]
One last operation on factors: maxing out a variable

- Maxing out a variable is similar to marginalization
 - But instead of taking the sum of some values, we take the max

\[
\left(\max_{X_1} \right) (X_2, \ldots, X_j) = \max_{x \in \text{dom}(X_1)} f(X_1 = x, X_2, \ldots, X_j)
\]

\[
\max_B f_3(A, B, C) = f_4(A, C)
\]

<table>
<thead>
<tr>
<th>B</th>
<th>A</th>
<th>C</th>
<th>(f_3(A, B, C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>0.03</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>0.07</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>0.54</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>f</td>
<td>0.36</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>t</td>
<td>0.06</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>f</td>
<td>0.14</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>0.48</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
<td>0.32</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A</th>
<th>C</th>
<th>(f_4(A, C))</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>0.54</td>
</tr>
<tr>
<td>t</td>
<td>f</td>
<td>0.36</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>0.48</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>0.32</td>
</tr>
</tbody>
</table>
A decision network has the no-forgetting property if

- Decision variables are totally ordered: D_1, \ldots, D_m
- If a decision D_i comes before D_j, then
 - D_i is a parent of D_j
 - any parent of D_i is a parent of D_j
Idea for finding optimal policies with VE

- Idea for finding optimal policies with variable elimination (VE): **Dynamic programming**: precompute optimal future decisions
 - Consider the last decision D to be made
 - Find optimal decision D=d for each instantiation of D’s parents
 - For each instantiation of D’s parents, this is just a single-stage decision problem
 - Create a factor of these maximum values: max out D
 - I.e., for each instantiation of the parents, what is the best utility I can achieve by making this last decision optimally?
 - Recurse to find optimal policy for reduced network (now one less decision)
Finding optimal policies with VE

1. Create a factor for each CPT and a factor for the utility
2. While there are still decision variables
 – 2a: Sum out random variables that are not parents of a decision node.
 • E.g Tampering, Fire, Alarm, Smoke, Leaving
 – 2b: Max out last decision variable D in the total ordering
 • Keep track of decision function
3. Sum out any remaining variable:
 this is the expected utility of the optimal policy.
Computational complexity of VE for finding optimal policies

- We saw:
 For \(d \) decision variables (each with \(k \) binary parents and \(b \) possible actions), there are \((b^{2k})^d \) policies
 - All combinations of \((b^{2k}) \) decision functions per decision

- Variable elimination saves the final exponent:
 - Dynamic programming: consider each decision functions only once
 - Resulting complexity: \(O(d \times b^{2k}) \)
 - Much faster than enumerating policies (or search in policy space), but still doubly exponential
 - CS422: approximation algorithms for finding optimal policies
Lecture Overview

• Recap: Sequential Decision Problems and Policies
• Expected Utility and Optimality of Policies
• Computing the Optimal Policy by Variable Elimination

Summary & Perspectives
Big Picture: Planning under Uncertainty

- Probability Theory
- Decision Theory

One-Off Decisions/Sequential Decisions

Markov Decision Processes (MDPs)
- Fully Observable MDPs
- Partially Observable MDPs (POMDPs)

Decision Support Systems (medicine, business, …)

- Economics
- Control Systems
- Robotics
Decision Theory: Decision Support Systems

E.g., Computational Sustainability

• New interdisciplinary field, AI is a key component
 – Models and methods for decision making concerning the management and allocation of resources
 – to solve most challenging problems related to sustainability

• Often constraint optimization problems. E.g.
 – Energy: when are where to produce green energy most economically?
 – Which parcels of land to purchase to protect endangered species?
 – Urban planning: how to use budget for best development in 30 years?

Source: http://www.computational-sustainability.org/
Planning Under Uncertainty

• Learning and Using POMDP models of Patient-Caregiver Interactions During Activities of Daily Living

• **Goal**: Help older adults living with cognitive disabilities (such as Alzheimer's) when they:
 – forget the proper sequence of tasks that need to be completed
 – lose track of the steps that they have already completed

Source: Jesse Hoey UofT 2007
Planning Under Uncertainty

Helicopter control: MDP, reinforcement learning
(states: all possible positions, orientations, velocities and angular velocities)

Source: Andrew Ng, 2004
Planning Under Uncertainty

Autonomous driving: DARPA Grand Challenge

Source: Sebastian Thrun
Learning Goals For Today’s Class

• Sequential decision networks
 – Represent sequential decision problems as decision networks
 – Explain the non forgetting property

• Policies
 – Verify whether a possible world satisfies a policy
 – Define the expected utility of a policy
 – Compute the number of policies for a decision problem
 – Compute the optimal policy by Variable Elimination
Announcements

• Final exam is next Monday, April 11. DMP 310, 3:30-6pm
 – The list of short questions is online … please use it!
 – Also use the practice exercises (online on course website)

• Office hours this week
 – Simona: Tuesday, 1pm-3pm (change from 10-12am)
 – Mike: Wednesday 1-2pm, Friday 10-12am
 – Vasanth: Thursday, 3-5pm
 – Frank:
 • X530: Tue 5-6pm, Thu 11-12am
 • DMP 110: 1 hour after each lecture

• Optional Rainbow Robot tournament: this Friday
 – Hopefully in normal classroom (DMP 110)
 – Vasanth will run the tournament,
 I’ll do office hours in the same room (this is 3 days before the final)