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Lecture Overview 
 

• Recap: Utility and Expected Utility 
 

• Single-Stage Decision Problems 
– Single-Stage decision networks 
– Variable elimination (VE) for computing the optimal decision 

 

• Sequential Decision Problems 
– General decision networks 
– Time-permitting: Policies 
– Next lecture: variable elimination for  

finding the optimal policy in general decision networks 
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Utility 
• Utility: a measure of desirability of possible worlds to an agent 

– Let U be a real-valued function such that U(w) represents an agent's 
degree of preference for world w 
 

• Simple goals can still be specified: e.g. 
– Worlds that satisfy the goal have utility 100 
– Other worlds have utility 0 

 

• Utilities can be more complicated 
– For example, in the robot delivery domains, they could involve 

• Amount of damage 
• Reached the target room? 
• Energy left 
• Time taken 
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Delivery Robot Example 
• Decision variable 1: the robot can choose to wear pads  

– Yes: protection against accidents, but extra weight 
– No: fast, but no protection 

• Decision variable 2: the robot can choose the way 
– Short way: quick, but higher chance of accident 
– Long way: safe, but slow 

• Random variable: is there an accident? 
Agent decides 

Chance decides 
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Possible worlds and decision variables 
• A possible world specifies a value 

for each random variable and each decision variable 
• For each assignment of values to all decision variables  

– the probabilities of the worlds satisfying that assignment sum to 1. 
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Expected utility of a decision 
• The expected utility of a decision is: 

𝐸 𝑈|𝐷 = 𝑑 =  �𝑃 𝑤|𝐷 = 𝑑 𝑈(𝑤)
𝑤
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Lecture Overview 
 

• Recap: Utility and Expected Utility 
 

• Single-Stage Decision Problems 
– Single-Stage decision networks 
– Variable elimination (VE) for computing the optimal decision 

 

• Sequential Decision Problems 
– General decision networks 
– Time-permitting: Policies 
– Next lecture: variable elimination for  

finding the optimal policy in general decision networks 
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Single Action vs. Sequence of Actions 
•  Single Action (aka One-Off Decisions) 

– One or more primitive decisions that can be treated as a single macro 
decision to be made before acting 

– E.g., “WearPads” and “WhichWay” can be combined into macro 
decision (WearPads, WhichWay) with domain {yes,no} × {long, short} 

 
•  Sequence of Actions (Sequential Decisions) 

–  Repeat: 
• make observations 
• decide on an action 
• carry out the action 

–  Agent has to take actions not knowing what the future brings 
• This is fundamentally different from everything we’ve seen so far 
• Planning was sequential, but we still could still think first and then act 
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Optimal single-stage decision 
 

• Given a single (macro) decision variable D 
– the agent can choose D=di for any value di ∈ dom(D) 
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Definition (optimal single-stage decision) 
An optimal single-stage decision is the decision D=dmax 
whose expected value is maximal: 
 

dmax ∈ argmax
𝑑i 
∈ 𝑑𝑑𝑑(𝐷)

𝐸 𝑈|D=di  



What is the optimal decision in the example? 

0.01 
0.99 

0.2 

0.8 

0.01 
0.99 

0.2 

0.8 

Utility 
35 35 
95 

Conditional  
probability E[U|D] 

83 

35 30 
75 

35 3 
100 

35 0 
80 

74.55 

80.6 

79.2 

Definition (optimal single-stage decision) 
An optimal single-stage decision is the decision D=dmax 
whose expected value is maximal: 

dmax ∈ argmax
𝑑i 
∈ 𝑑𝑑𝑑(𝐷)

𝐸 𝑈|D=di  

(Wear pads, long  way) 
(Wear pads, short way) 

(No pads, short way) 
(No pads, long way) 



Optimal decision in robot delivery example 
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Definition (optimal single-stage decision) 
An optimal single-stage decision is the decision D=dmax 
whose expected value is maximal: 

dmax ∈ argmax
𝑑i 
∈ 𝑑𝑑𝑑(𝐷)

𝐸 𝑈|D=di  

Best decision: (wear pads, short way) 



Single-Stage decision networks 

• Extend belief networks with: 
– Decision nodes, that the agent chooses the value for 

• Parents: only other decision nodes allowed 
• Domain is the set of possible actions  
• Drawn as a rectangle 

– Exactly one utility node 
• Parents: all random & decision  variables on which the utility depends 
• Does not have a domain 
• Drawn as a diamond 

 

• Explicitly shows dependencies 
– E.g., which variables affect the probability of an accident? 13 



Types of nodes in decision networks 
• A random variable is drawn as an ellipse. 

– Arcs into the node represent probabilistic 
dependence 

– As in Bayesian networks:  
a random variable is conditionally independent  
of its non-descendants given its parents 
 

• A decision variable is drawn as an rectangle.  
– Arcs into the node represent  

information available when the decision is made 

 
• A utility node is drawn as a diamond. 

– Arcs into the node represent variables that the utility 
depends on. 

– Specifies a utility for each instantiation of its parents 
 



Example Decision Network 

Decision nodes do not 
have an associated table. 
 
The utility node  
does not have a domain. 
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Which way     Accident      Wear Pads Utility 

long                 true                true   
long                 true                false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

30 
0  
75  
80 
35 
3 
95  
100 

Which Way W Accident A P(A|W) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 



Computing the optimal decision: we can use VE 

 
• Denote 

– the random variables as X1, …, Xn  
– the decision variables as D 
– the parents of node N as pa(N) 

 
 
 
 

• To find the optimal decision we can use VE: 
1. Create a factor for each conditional probability and for the utility 
2. Sum out all random variables, one at a time 

• This creates a factor on D that gives the expected utility for each di  

3. Choose the di with the maximum value in the factor 
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VE Example: Step 1, create initial factors 
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Which way W    Accident A      Pads P Utility 

long                    true                true   
long                    true                false 
long                    false               true 
long                    false               false 
short                   true                true 
short                   true                false 
short                   false              true 
short                   false              false 

30 
0  
75  
80 
35 
3 
95  
100 

Which Way W Accident A P(A|W) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 

f1(A,W) 

f2(A,W,P) 

∑=
A

PWAUWAPUE ),,()|()(

∑=
A

PWAfWAf ),,(),( 21

Abbreviations: 
W = Which Way 
P  = Wear Pads 
A  = Accident 



VE example: step 2, sum out A 
Step 2a: compute product 
f1(A,W) × f2(A,W,P) 

What is the right form for the product f1(A,W) × f2(A,W,P)? 
 

f(A,P) f (A,W) f(A) f(A,P,W) 
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VE example: step 2, sum out A 

What is the right form for the product f1(A,W) × f2(A,W,P)? 
• It is f(A,P,W):  

the domain of the product is the union of the multiplicands’ domains 
• f(A,P,W)  =  f1(A,W) × f2(A,W,P) 

– I.e., f(A=a,P=p,W=w)  =  f1(A=a,W=w) × f2(A=a,W=w,P=p) 
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Step 2a: compute product 
f(A,W,P) = f1(A,W) × f2(A,W,P) 
   



Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
 
 
??? 

VE example: step 2, sum out A 
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Which way W   Accident A     Pads P f2(A,W,P) 

long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

30 
0  
75  
80 
35 
3 
95  
100 

Which way W Accident A f1(A,W)  
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 

f (A=a,P=p,W=w)  =  f1(A=a,W=w) × f2(A=a,W=w,P=p) 

0.01 * 80 0.99 * 30 

0.99 * 80 0.8 * 30 

Step 2a: compute product 
f(A,W,P) = f1(A,W) × f2(A,W,P) 
   



Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 

VE example: step 2, sum out A 
Step 2a: compute product 
f(A,W,P) = f1(A,W) × f2(A,W,P) 
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Which way W   Accident A     Pads P f2(A,W,P) 

long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

30 
0  
75  
80 
35 
3 
95  
100 

f (A=a,P=p,W=w)  =  f1(A=a,W=w) × f2(A=a,W=w,P=p) 
Which way W Accident A f1(A,W)  
long 
long  
short 
short 

true  
false  
true  
false 

0.01  
0.99  
0.2  
0.8 



VE example: step 2, sum out A 
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Step 2b: sum A out of the 
product f(A,W,P): 
   

Which way W Pads P f3(W,P) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01*30+0.99*75=74.55 
 
?? 

∑=
A

3 )PW,A,(f  P)(W,f

0.99*80 + 0.8*95 

0.2*35 + 0.2*0.3 

0.2*35 + 0.8*95 

0.8 * 95 + 0.8*100 

Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 



VE example: step 2, sum out A 
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Which way W Pads P f3(W,P) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01*30+0.99*75=74.55 
0.01*0+0.99*80=79.2 
0.2*35+0.8*95=83 
0.2*3+0.8*100=80.6 

Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 

Step 2b: sum A out of the 
product f(A,W,P): 
   ∑=

A
3 )PW,A,(f  P)(W,f



The final factor encodes the  
expected utility of each decision 
• Thus, taking the short way but wearing pads is the best choice, with an 

expected utility of 83 

VE example: step 3, choose decision with max E(U) 
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Which way W Pads P f3(W,P) 
long 
long  
short 
short 

true  
false  
true  
false 

0.01*30+0.99*75=74.55 
0.01*0+0.99*80=79.2 
0.2*35+0.8*95=83 
0.2*3+0.8*100=80.6 

Which way W   Accident A     Pads P f(A,W,P) 
long                 true                 true   
long                 true                 false 
long                 false               true 
long                 false               false 
short                true                true 
short                true                false 
short                false              true 
short                false              false 

0.01 * 30 
0.01*0 
0.99*75 
0.99*80 
0.2*35 
0.2*3 
0.8*95  
0.8*100 

Step 2b: sum A out of the 
product f(A,W,P): 
   ∑=

A
3 )PW,A,(f  P)(W,f



 
Variable Elimination for Single-Stage 

Decision Networks: Summary 
1. Create a factor for each conditional probability  

and for the utility 
2. Sum out all random variables, one at a time 

– This creates a factor on D that gives the expected utility for each di 

3. Choose the di with the maximum value in the factor 
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Lecture Overview 
 

• Recap: Utility and Expected Utility 
 

• Single-Stage Decision Problems 
– Single-Stage decision networks 
– Variable elimination (VE) for computing the optimal decision 

 

• Sequential Decision Problems 
– General decision networks and Policies 
– Next lecture: variable elimination for  

finding the optimal policy in general decision networks 
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Sequential Decision Problems 
•  An intelligent agent doesn't make a multi-step decision 

 and carry it out blindly 
– It would take new observations it makes into account 

•  A more typical scenario: 
– The agent observes, acts, observes, acts, … 

 

•  Subsequent actions can depend on what is observed 
– What is observed often depends on previous actions 
– Often the sole reason for carrying out an action is to provide 

information for future actions 
• For example: diagnostic tests, spying 

 

• General Decision networks: 
– Just like single-stage decision networks, with one exception: 

the parents of decision nodes can include random variables 
27 



Sequential Decision Problems: Example 
• Example for sequential decision problem 

– Treatment depends 
on Test Result (& others) 

 

 
 
 
 
 
 

• Each decision Di has an information set of variables pa(Di), 
whose value will be known at the time decision Di is made 
– pa(Test) = {Symptoms} 
– pa(Treatment) = {Test, Symptoms, TestResult} 

 

Decision node: Agent decides 

Chance node: Chance decides 



• Another example for sequential decision problems 
– Call depends on 

Report and SeeSmoke 
(and on CheckSmoke) 

 
 
 
 
 
 

 

Sequential Decision Problems: Example 

Decision node: Agent decides 

Chance node: Chance decides 



Sequential Decision Problems 
• What should an agent do? 

– What an agent should do depends on what it will do in the future 
• E.g. agent only needs to check for smoke if that will affect whether it calls 

– What an agent does in the future depends on what it did before 
• E.g. when making the decision it needs to whether it checked for smoke 

– We will get around this problem as follows 
• The agent has a conditional plan of what it will do in the future 
• We will formalize this conditional plan as a policy  
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Policies for Sequential Decision Problems 

This policy means that when the agent has observed 
     o ∈ dom(pDi ) , it will do δi(o) 

CheckSmoke 

Report δcs1           δcs2        δcs3             δcs4 
T T T F F 

F T F T F 

Call 

Definition (Policy) 
A policy is a sequence of  δ1 ,….., δn decision functions 
    δi : dom(pa(Di )) → dom(Di)  

There are 22=4 possible decision 
functions δcs for Check Smoke: 
• Decision function needs to specify a 

value for each instantiation of parents 



Policies for Sequential Decision Problems 
Definition (Policy) 
A policy is a sequence of  δ1 ,….., δn decision functions 
    δi : dom(pa(Di )) → dom(Di)  

There are 28=256 possible decision 
functions δcs for Call: 
• Decision function needs to specify a 

value for each instantiation of parents 

Report CheckS  SeeS δcall1  

true  
true 
true 
true 
false 
false 
false 
false 

true 
true 
false 
false 
true 
true 
false 
false 
 

true 
false 
true 
false 
true 
false 
true 
false 

true                
true 
true                
true 
true                 
true                
true               
true 

Call 

δcalln  

false 
false 
false               
false 
false 
false 
false 
false 

…… 



How many policies are there? 
• If a decision D has k binary parents, how many 

assignments of values to the parents are there?  

33 

k2 2k 2+k 2k 



How many policies are there? 
• If a decision D has k binary parents, how many 

assignments of values to the parents are there?  
– 2k 

 
• If there are b possible value for a decision variable, how 

many different decision functions are there for it if it has k 
binary parents?  

34 

b2k 2kp b*2k 2kb 



• Compare and contrast stochastic single-stage (one-off) 
decisions vs. multistage decisions 

• Define a Utility Function on possible worlds 
• Define and compute optimal one-off decisions 
• Represent one-off decisions as single stage decision networks  
• Compute optimal decisions by Variable Elimination 

 
• Next time: 

– Variable Elimination for finding optimal policies 
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Learning Goals For Today’s Class 



Announcements 
• Assignment 4 is due on Monday 
• Final exam is on Monday, April 11 

– The list of short questions is online … please use it! 

• Office hours next week 
– Simona: Tuesday, 10-12 (no office hours on Monday!) 
– Mike: Wednesday 1-2pm, Friday 10-12am 
– Vasanth: Thursday, 3-5pm 
– Frank:  

• X530: Tue 5-6pm, Thu 11-12am  
• DMP 110: 1 hour after each lecture 

 

• Optional Rainbow Robot tournament: Friday, April 8 
– Hopefully in normal classroom (DMP 110) 
– Vasanth will run the tournament,  

I’ll do office hours in the same room (this is 3 days before the final) 
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