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Announcements (1) 
• Assignment 4 due in one week 

– Can only use 2 late days 
• So we can give out solutions to study for the final exam 

 

 

• Final exam in two weeks: Monday, April 11 
– 3:30 – 6pm in DMP 310 
– Same format as midterm (60% short questions) 

• List of short questions is on WebCT up to uncertainty 
– Emphasis on material after midterm 
– How to study? 

• Practice exercises, assignments, short questions, lecture notes, book, … 
• Use office hours (extra office hours next week) 
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Announcements (2) 
 

• Teaching Evaluations are online 
– You should have gotten an email about them 

 
• Your feedback is important! 

– I use it to assess and improve my teaching 
– The department as a whole uses it to shape the curriculum 
– Teaching evaluation results are important for instructors 

• Appointment, reappointment, tenure, promotion and merit 
 

– Evaluations close at 11PM on December 10th, 2011  
• Before exams, but  

instructors can’t see results until grades are submitted 
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Lecture Overview 
 

• Entailed Independencies: Recap and Examples 
 

• Inference in General Bayesian Networks 
– Factors:  

• Assigning Variables 
• Summing out Variables  
• Multiplication of Factors 

– The variable elimination algorithm 
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Recap: Information flow through chain structure 
• Unobserved node in a chain lets information pass 

 
 
 
 
 
 
 

• Observed node in a chain blocks information 
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Fire Alarm Leaving 

Fire Alarm Leaving 

Fire ╨ Leaving 

Fire ╨ Leaving | Alarm 



Recap: Information flow through chain structure 
• Information flow is symmetric (X ╨ Y | Z and Y ╨ X | Z are identical) 

– Unobserved node in a chain lets information pass (both ways) 
 
 
 

 
 
 
 
 

– Observed node in a chain blocks information (both ways) 
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Fire Alarm Leaving 

Fire Alarm Leaving 

Leaving ╨ Fire  

Leaving ╨ Fire | Alarm 



AssignmentGrade ╨ ExamGrade | UnderstoodMaterial 

Recap: Information flow through common parent 
• Unobserved common parent lets information pass 

 
 
 
 
 

 
• Observed common parent blocks information 
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Understood
Material 

Assignment 
Grade 

Exam 
Grade 

Understood
Material 

Assignment 
Grade 

Exam 
Grade 

AssignmentGrade ╨ ExamGrade 



Recap: Information flow through common child 
• Unobserved common child blocks information 

 
 
 
 
 
 
 

 
• Observed common child lets information pass: explaining away 

Alarm 

Smoking At 
Sensor 

Fire 

Alarm 

Smoking At 
Sensor 

Fire 

SmokingAtSensor ╨ Fire 

Fire ╨ SmokingAtSensor | Alarm 

P(fire|alarm) is quite high 
P(fire|alarm, smokingAtSensor) is low 



Recap: Information flow through common child 
• Exception: unobserved common child lets information pass if 

one of its descendants is observed 
– This is just as if the child itself was observed 

• E.g., Leaving could be a deterministic function of Alarm,  
so observing Leaving means you know Alarm as well 
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Leaving 

Alarm 

Smoking At 
Sensor 

Fire 

Fire ╨ SmokingAtSensor | Leaving 



• In these cases, X and Y are (conditionally) dependent  
 

Z 

Z 

Z 

X Y 

E 

1 

2 

3 

• In 3, X and Y become dependent as soon as there is evidence on Z or on any 
of its descendants.  

Summary: (Conditional) Dependencies 



• Blocking paths for probability propagation. Three ways in which a path 
between Y to X (or vice versa) can be blocked, given evidence E  
 

Z 

Z 

Z 

X Y E 
1 

2 

3 

Summary: (Conditional) Independencies 



 
Training your understanding of 

conditional independencies in AIspace  
 

• These concepts take practice to get used to 
 

 

• Use the AIspace applet for Belief and Decision networks 
(http://aispace.org/bayes/) 
– Load the “conditional independence quiz” network (or any other one) 
– Go in “Solve” mode and select “Independence Quiz” 

 

• You can take an unbounded number of quizzes: 
– It generates questions, you answer, and then get the right answer 
– It also allows you to ask arbitrary queries 
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http://aispace.org/bayes/


Conditional Independencies in a BN 
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Is H conditionally  
independent  
of E given I?  
 
I.e., H ╨ E | I ? 

No Yes 



Conditional Independencies in a BN 
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Is H conditionally  
independent  
of E given I?  
 
I.e., H ╨ E | I ? 
 
Yes! Information flow is blocked 
by the unobserved common child F 



Conditional Independencies in a BN 
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Is A conditionally  
independent  
of I given F?  
 
I.e., A ╨ I | F ? 

No Yes 



Conditional Independencies in a BN 
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Is A conditionally  
independent  
of I given F?  
 
I.e., A ╨ I | F ? 
 
No. Information can pass through  
(all it takes is one possible path) 
 



Lecture Overview 
 

• Entailed Independencies: Recap and Examples 
 

• Inference in General Bayesian Networks 
– Factors:  

• Assigning Variables 
• Summing out Variables  
• Multiplication of Factors 

– The variable elimination algorithm 
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Factors 
• A factor is a function from a tuple of random variables to 

the real numbers R 
• We write a factor on variables X1,… ,Xj as f(X1,… ,Xj)  

 

 
 
 

• P(Z|X,Y) is a factor f (X,Y,Z) 
– Factors do not have to sum to one 
– P(Z|X,Y) is a set of probability  

distributions: one for each  
combination of values of X and Y 
 

• P(Z=f|X,Y) is a factor f(X,Y)  
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X Y Z val 

t t t 0.1 
t t f 0.9 
t f t 0.2 
t f f 0.8 

f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

 f(X, Y)Z=f 



Operation 1: assigning a variable 
• We can make new factors out of an existing factor 

 
• Our first operation:  

we can assign some or all of the variables of a factor. 

X Y Z val 
t t t 0.1 
t t f 0.9 
t f t 0.2 

f(X,Y,Z): t f f 0.8 
f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

What is the result of  
assigning X= t   ? 

f(X=t,Y,Z) =f(X, Y, Z)X = t 
 

Y Z val 
t t 0.1 
t f 0.9 
f t 0.2 
f f 0.8 

Factor of Y,Z 
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More examples of assignment 
X Y Z val 
t t t 0.1 
t t f 0.9 
t f t 0.2 

f(X,Y,Z): t f f 0.8 
f t t 0.4 
f t f 0.6 
f f t 0.3 
f f f 0.7 

Y Z val 
t t 0.1 
t f 0.9 
f t 0.2 
f f 0.8 

Y val 
t 0.9 
f 0.8 

f(X=t,Y=f,Z=f): 0.8 

f(X=t,Y,Z) 

f(X=t,Y,Z=f): 

Factor of Y,Z 

Factor of Y 

Number 



Operation 2: Summing out a variable 
• Our second operation on factors:  

we can marginalize out (or sum out) a variable 
– Exactly as before. Only difference: factors don’t sum to 1 
– Marginalizing out a variable X from a factor f(X1,… ,Xn) yields a new 

factor defined on {X1,… ,Xn } \ {X} 
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B A C val 
t t t 0.03 
t t f 0.07 
f t t 0.54 
f t f 0.36 

f3= t f t 0.06 
t f f 0.14 
f f t 0.48 
f f f 0.32 

A C val 

t t 0.57 

t f 0.43 

f t 0.54 

f f 0.46 

(∑Bf3)(A,C) 
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Operation 3: multiplying factors 
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A B C val 
t t t 0.03 

t t f 0.1x0.7 

t f t 0.9x0.6 

t f f … 
f t t 
f t f 
f f t 
f f f 

A B Val 

t t 0.1 

f1(A,B): t f 0.9 

f t 0.2 

f f 0.8 

B C Val 

t t 0.3 

f2(B,C): t f 0.7 

f t 0.6 

f f 0.4 

f1(A,B)× f2(B,C): 



Operation 3: multiplying factors 
• The product of factor f1(A, B)  and f2(B, C), where B is the 

variable in common, is the factor (f1 × f2)(A, B, C) defined 
by 
 

 
• Note: A, B, and C can be sets of variables 

– The domain of f1 × f2 is A ∪ B ∪ C 
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Lecture Overview 
 

• Entailed Independencies: Recap and Examples 
 

• Inference in General Bayesian Networks 
– Factors:  

• Assigning Variables 
• Summing out Variables  
• Multiplication of Factors 

– The variable elimination algorithm 
– Example trace of variable elimination 
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General Inference in Bayesian Networks 
Given  

– A Bayesian Network BN, and 
– Observations of a subset of its variables E: E=e 
– A subset of its variables Y that is queried 

 

Compute the conditional probability P(Y=y|E=e) 
 
 
 
 
 
All we need to compute is the  
joint probability of the query variable(s) and the evidence! 
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Definition of  
conditional probability 

Marginalization over Y:  
P(E=e) = Σy’∈dom(Y) P(E=e,Y=y’) 
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Variable Elimination: Intro (1) 
• We can express the joint probability as a factor 

 
– f(Y,  E1…, Ej ,   Z1…,Zk  ) 

 

• We can compute P(Y, E1=e1, …, Ej=ej)  by 
– Assigning E1=e1, …, Ej=ej 
– Marginalizing out variables Z1, …, Zk, one at a time 

• the order in which we do this is called our elimination ordering 
 
 
 
 

• Are we done? 
– No. This would still represent the whole JPD (as a single factor) 
– We need to exploit the compactness of Bayesian networks 
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Variable Elimination: Intro (2) 
• Recall the joint probability distribution of a Bayesian network 

– P(X1, …, Xn) = ∏  𝑛
𝑖=1 P(Xi|X1,...,Xi-1)  

                      

                     = ∏  𝑛
𝑖=1 P(Xi|pa(Xi) ) 

 

• We will have a factor fi for each conditional probability:  
– For each variable Xi,there is a factor fi with domain {Xi} ∪ pa(Xi): 

 

fi ({Xi} ∪ pa(Xi)) =  P(Xi|pa(Xi) ) 
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Computing sums of products 
• Inference in Bayesian networks thus reduces to computing 

the sums of products 
– Example: it takes 9 multiplications to evaluate the expression  

ab + ac + ad + aeh + afh + agh.  
– How can this expression be evaluated more efficiently? 

• Factor out the a and then the h giving a(b + c + d + h(e + f + g)) 
• This takes only 2 multiplications (same number of additions as above) 

 

• Similarly, how can we compute                   efficiently? 
 
– Factor out those terms that don't involve Zk, e.g.: 
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Summing out a variable efficiently 
• To sum out a variable Zk from a product  f1 × …× fk of 

factors: 
– Partition the factors into 

• those that don't contain Zk, say f1 × …× fi 
• those that contain Zk, say fi+1 × …× fk 

 

• We know: 
 
 

 
• We thus have 

 

• Store f’ explicitly, and discard fi+1 … fk 
• Now we've summed out Zk 29 
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The variable elimination algorithm 
To compute P(Y=y|E=e): 
1. Construct a factor for each conditional probability 
2. Assign the observed variables E to their observed values 
3. Decompose the sum 
4. Sum out all variables Z1…,Zk  not involved in the query 
5. Multiply the remaining factors (which only involve Y) 
6. Normalize by dividing the resulting factor f(Y) by 

∑ 𝑓(𝑌)𝑦∈𝑑𝑑𝑑 𝑌  
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Lecture Overview 
 

• Entailed Independencies: Recap and Examples 
 

• Inference in General Bayesian Networks 
– Factors:  

• Assigning Variables 
• Summing out Variables  
• Multiplication of Factors 

– The variable elimination algorithm 
– Example trace of variable elimination 
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Variable elimination example: compute P(G|H=h1) 
Step 1: construct a factor for each cond. probability 

 
P(G,H) = ∑A,B,C,D,E,F,I P(A,B,C,D,E,F,G,H,I) = 
 

= ∑A,B,C,D,E,F,I P(A)P(B|A)P(C)P(D|B,C)P(E|C)P(F|D)P(G|F,E)P(H|G)P(I|G) 
 

= ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 
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Variable elimination example: compute P(G|H=h1) 
Step 2: assign observed variables their observed value 

Observe H=h1: 
P(G,H=h1)=∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C)  

                             

                                                f5(F, D) f6(G,F,E) f9(G) f8(I,G)  
 
 

 
P(G,H) = ∑A,B,C,D,E,F,I P(A,B,C,D,E,F,G,H,I) = 
 

= ∑A,B,C,D,E,F,I P(A)P(B|A)P(C)P(D|B,C)P(E|C)P(F|D)P(G|F,E)P(H|G)P(I|G) 
 

= ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f7(H,G) f8(I,G) 

Assigning the variable H=h1: 
 f7(H,G) H=h1  = f9(G)
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Variable elimination example: compute P(G|H=h1) 
Step 3: decompose sum 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 
 
 

Elimination ordering: A, C, E, I, B, D, F 34 



Variable elimination example: compute P(G|H=h1) 
Step 3: decompose sum 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 
 
 

Elimination ordering: A, C, E, I, B, D, F 35 



Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) 
 
 

Elimination ordering: A, C, E, I, B, D, F 

Summing out A: ∑A f0(A) f1(B,A) = f10(B)  
This new factor does not depend on C, E, or I, 
so we can push it outside of those sums. 
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Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 
 
 

Elimination ordering: A, C, E, I, B, D, F 37 



Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 
 
 

Elimination ordering: A, C, E, I, B, D, F 

Note the increase in dimensionality: 
f12(G,F,D,B) is defined over 4 variables 
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Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) 
 
 

Elimination ordering: A, C, E, I, B, D, F 39 



Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) f14(G,F,D) 
 
 
 

Elimination ordering: A, C, E, I, B, D, F 40 



Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) f14(G,F,D) 
 

                    = f9(G) f13(G) ∑F f15(G,F) 
 
 
 

Elimination ordering: A, C, E, I, B, D, F 41 



Variable elimination example: compute P(G|H=h1) 
Step 4: sum out non- query variables (one at a time) 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) f14(G,F,D) 
 

                    = f9(G) f13(G) ∑F f15(G,F) 
 

                    = f9(G) f13(G) f16(G) 
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Variable elimination example: compute P(G|H=h1) 
Step 5: multiply the remaining factors 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) f14(G,F,D) 
 

                    = f9(G) f13(G) ∑F f15(G,F) 
 

                    = f9(G) f13(G) f16(G) 
 

                    = f17(G) 
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Variable elimination example: compute P(G|H=h1) 
Step 6: normalize 

P(G,H=h1) = ∑A,B,C,D,E,F,I f0(A) f1(B,A) f2(C) f3(D,B,C) f4(E,C) f5(F, D) f6(G,F,E) f9(G) f8(I,G) 
 

= f9(G) ∑F ∑D f5(F, D) ∑B ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C) ∑A f0(A) f1(B,A)  
 

= f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) ∑C f2(C) f3(D,B,C) f4(E,C)  
 

       = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) ∑I  f8(I,G) ∑E  f6(G,F,E) f11(D,B,E)  
 

                    = f9(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) ∑I  f8(I,G) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) ∑B f10(B) f12(G,F,D,B) 
 

                    = f9(G) f13(G) ∑F ∑D f5(F, D) f14(G,F,D) 
 

                    = f9(G) f13(G) ∑F f15(G,F) 
 

                    = f9(G) f13(G) f16(G) 
 

                    = f17(G) 
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VE and conditional independence 
• So far, we haven’t use conditional independence! 

– Before running VE, we can prune all variables Z that are conditionally 
independent of the query Y given evidence E:   Z ╨ Y | E 
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• Example: which variables can we prune for 
the query P(G=g| C=c1, F=f1, H=h1) ? 
 

B A D E 



VE and conditional independence 
• So far, we haven’t use conditional independence! 

– Before running VE, we can prune all variables Z that are conditionally 
independent of the query Y given evidence E:   Z ╨ Y | E 
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• Example: which variables can we prune for  
the query P(G=g| C=c1, F=f1, H=h1) ? 
 
– A, B, and D. Both paths are blocked  

• F is observed node in chain structure 
• C is an observed common parent 

 
 
– Thus, we only need to consider this subnetwork 



One last trick 
 

• We can also prune unobserved leaf nodes 
– And we can do so recursively 

 

•            E.g., which nodes can we prune if the query is P(A)? 
 
 
 
 

•              Recursively prune unobserved leaf nodes: 
•              we can prune all nodes other than A ! 
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I H G All nodes other than A 



• Identify implied (in)dependencies in the network 
• Variable elimination 

– Carry out variable elimination by using factor representation and 
using the factor operations 

– Use techniques to simplify variable elimination 
 

• Practice Exercises 
– Reminder: they are helpful for staying on top of the material,  

and for studying for the exam 
– Exercise 10 is on independence 
– Exercise 11 is on variable elimination 

• Assignment 4 is due in one week 
– You should now be able to solve questions 1, 2, 3, and 5 

 

• Final exam in two weeks: Monday, April 11 
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Learning Goals For Today’s Class 
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