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Bottom-up vs. Top-down 
• Key Idea of top-down: search backward from a query g 

to determine if it can be derived from KB. 
 
 
 
 

 

KB C  

g is proved if g ∈ C              

BU never looks at the query g 
•  It derives the same C  
    regardless of the query 

KB answer 

Query g  
Bottom-up Top-down 

TD performs a backward search 
starting at g 



γ1: yes ← e ∧ f 

γ3: yes ← 

Example for (successful) SLD  derivation 

γ0: yes ← a  

γ2: yes ← e 

1 

2 

3 

5 

a← b ∧ c.  a ← e ∧ f.  b← f ∧ k. 
c ← e.  d ← k                   e. 
f ← j ∧ e.             f .                          j ← c. 
 
Query: ?a 

 

Done. “Can we derive a?” 
- Answer:“Yes, we can” 



Correspondence between BU and TD proofs 
If the following is a top-down (TD) derivation in a given KB, 

what would be the bottom-up (BU) derivation of the same 
query? 

 
    TD derivation 
 yes ← a. 
 yes ← b ∧ f. 
 yes ←  b ∧ g ∧ h. 
 yes ←  c ∧ d ∧ g ∧ h. 
 yes ←  d ∧ g ∧ h.  
 yes ←  g ∧ h. 
 yes ←  h. 
 yes ←  . 
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BU derivation 
{} 
{h} 
{g,h} 
{d,g,h} 
{c,d,g,h} 
{b,c,d,g,h} 
{b,c,d,f,g,h} 
{a,b,c,d,f,g,h} 
 
 

Part of KB: 
a ← b ∧ f  
f ← g ∧ h  
b ← c ∧ d  
c. 
d. 
h. 
g. 
 



 
 
 
 

• Inference (Top-down/SLD resolution) 
– State: answer clause of the form yes ← q1 ∧ ... ∧ qk 
– Successor function: all states resulting from substituting first 

atom a with b1 ∧ … ∧ bm  if there is a clause a ← b1 ∧ … ∧ bm 
– Goal test: is the answer clause empty (i.e. yes ←) ? 
– Solution: the proof, i.e. the sequence of SLD resolutions 
– Heuristic function: number of atoms in the query clause  

 

Inference as Standard Search 
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a ←  b ∧ c.  a ←  g. 
a ← h.  b ← j. 
b ← k.   d ← m. 
d ← p.  f ← m.  
f ← p.   g ← m.  
g ← f.   k ← m.  
h ←m.  p.   
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Datalog 
 

• An extension of propositional definite clause (PDC) logic 
– We now have variables 
– We now have relationships between variables 

 
– We can write more powerful clauses, such as  

 
 
 

– We can ask generic queries,  
• E.g. “which wires are connected to w1?“ 
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live(W) ← wire(W) ∧ connected_to(W,W1)  
             ∧ wire(W1) ∧ live(W1). 

? connected_to(W, w1) 



Datalog syntax 

A variable is a symbol starting with an upper case letter 

A constant is a symbol starting with lower-case letter or a 
sequence of digits. 

A predicate symbol is a symbol starting with a lower-case 
letter. 

A term is either a variable or a constant. 

Datalog expands the syntax of PDCL…. 

Examples: X, W1 

Examples: alan, w1 

Examples: live, connected, part-of, in  

Examples: X, Y, alan,  w1 



Datalog Syntax (continued) 
An atom is a symbol of the form p or p(t1 …. tn) where p is a 

predicate symbol and ti  are terms 
 
 
 
 
 

A definite clause is either an atom (a fact) or of the form: 
        h   ←  b1 ∧… ∧ bm  
where h  and the bi are atoms (Read this as ``h  if b.'') 

A knowledge base is a set of definite clauses 

Examples: sunny,   in(alan,X) 

Example: in(X,Z) ← in(X,Y) ∧ part-of(Y,Z)  



Datalog Semantics 
• Semantics still connect symbols and sentences in the 

language with the target domain. Main difference: 
• need to create correspondence both between  terms and 

individuals, as well as between predicate symbols and relations 
 

We won’t cover the formal 
definition of Datalog 
semantics, but if you are 
interested see 12.3.1 and 
12.3.2 in the textbook 



Example proof of a Datalog query 
in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

Query:  yes ← in(alan, cs_building). 
          

yes ← part_of(Z,cs_building), in(alan, Z). 
          

yes ← in(alan, r123). 
          

yes ← part_of(Z, r123), in(alan, Z). 
          

yes ←. 
          

Using clause: in(X,Y) ←  
   part_of(Z,Y) & in(X,Z), 
   with Y = cs_building 

Using clause: 
  part_of(r123,cs_building) 
  with Z = r123 

Using clause:  
  in(alan, r123). Using clause: in(X,Y) ←  

   part_of(Z,Y) & in(X,Z). 

fail 

No clause with 
matching head: 
part_of(Z,r123). 



Datalog: Top Down Proof Procedure 
 
 
 

• Extension of Top-Down procedure for PDCL.  
How do we deal with variables? 
• Idea:  

- Find clauses with heads that match the query 
- Substitute variable in the clause with the matching constant 

• Example:  
 
 
 
 
 

• We will not cover the formal details of this process (called unification) 
 

in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

Query:  yes ← in(alan, cs_building). 
          

yes ← part_of(Z,cs_building), in(alan, Z). 
 
          

in(X,Y) with Y = cs_building 



Example proof of a Datalog query 
in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

Query:  yes ← in(alan, cs_building). 
          

yes ← part_of(Z,cs_building), in(alan, Z). 
          

yes ← in(alan, r123). 
          

yes ← part_of(Z, r123), in(alan, Z). 
          

yes ←. 
          

Using clause: in(X,Y) ←  
   part_of(Z,Y) & in(X,Z), 
   with Y = cs_building 

Using clause: 
  part_of(r123,cs_building) 
  with Z = r123 

Using clause:  
  in(alan, r123). 

Using clause: in(X,Y) ←  
   part_of(Z,Y) & in(X,Z). 
   With Z = alan 

fail 

No clause with 
matching head: 
part_of(Z,r123). 



One important Datalog detail 
 

• In its SLD resolution proof, Datalog always chooses the 
first clause with a matching head it finds in KB 

• What does that mean for recursive function definitions? 
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You cannot have recursive definitions 

You need tail recursion 

The clause(s) defining your base case(s) have to appear first in KB 



One important Datalog detail 
 

• In its SLD resolution proof, Datalog always chooses the 
first clause with a matching head it finds in KB 

• What does that mean for recursive function definitions? 
- The clause(s) defining your base case(s) have to appear first in KB 
- Otherwise, you can get infinite recursions 
- This is similar to recursion in imperative programming languages 
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Tracing Datalog proofs in AIspace 
 

• You can trace the example from the last slide in the  
AIspace Deduction Applet, using file  
http://cs.ubc.ca/~hutter/teaching/cpsc322/in-part-of.pl 
 
 
 
 

• Question 4 of assignment 3 asks you to use this applet 
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Datalog: queries with variables 

What would the answer(s) be?  

Query:  in(alan, X1). 

in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

             Yes(X1) ← in(alan, X1). 



20 

Datalog: queries with variables 

What would the answer(s) be?  
Yes(r123). 
Yes(cs_building). 

 

Query:  in(alan, X1). 

You can trace the SLD derivation for this query  
in the AIspace Deduction Applet, using file 
http://cs.ubc.ca/~hutter/teaching/cpsc322/in-part-of.pl 

in(alan, r123). 
part_of(r123,cs_building). 
in(X,Y) ← part_of(Z,Y) & in(X,Z). 

             Yes(X1) ← in(alan, X1). 



• PDCL syntax & semantics 
- Verify whether a logical statement belongs to the language of 

propositional definite clauses 
- Verify whether an interpretation is a model of a PDCL KB.  
- Verify when a conjunction of atoms is a logical consequence of a KB 

 

• Bottom-up proof procedure 
- Define/read/write/trace/debug the Bottom Up (BU) proof procedure 
- Prove that the BU proof procedure is sound and complete  

 

• Top-down proof procedure 
- Define/read/write/trace/debug the Top-down (SLD) proof procedure 

(as a search problem) 
 

• Datalog 
- Represent simple domains in Datalog 
- Apply the Top-down proof procedure in Datalog 

 

Learning Goals For Logic 
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Logics: Big picture 

Propositional 
Logics 

First-Order 
Logics 

Propositional Definite 
Clause  Logics 

Semantics and Proof 
Theory 

Description  
Logics 

Cognitive Architectures 

Video Games 

Hardware Verification 

Product Configuration 
Ontologies 

Semantic Web 

Information 
Extraction 

Summarization 

Production Systems 

Tutoring Systems 

Satisfiability Testing 
(SAT) 

Software Verification 

PDCL 
Soundness &  
Completeness 

Datalog From  
CSP 
module 



Logics: Big picture 
 

 
• We only covered rather simple logics 

– There are much more powerful representation and reasoning 
systems based on logics  

 
• There are many important applications of logic 

– For example, software agents roaming the web on our behalf 
– Based on a more structured representation: the semantic web 
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Example problem: automated travel agent 
 

• Examples for typical queries 
– How much is a typical flight to Mexico for a given date? 
– What’s the cheapest vacation package to some place in the 

Caribbean in a given week? 
• Plus, the hotel should have a white sandy beach and scuba diving 

 

• If webpages are based on basic HTML 
– Humans need to scout for the information and integrate it 
– Computers are not reliable enough (yet?) 

• Natural language processing can be powerful (see Watson!)  
• But some information may be in pictures (beach), or implicit in the text, 

so simple approaches like Watson still don’t get 
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More structured representation:  
the Semantic Web 

 
 

• Beyond HTML pages only made for humans 
• Languages and formalisms based on logics that allow 

websites to include information in a more structured format 
– Goal: software agents that can roam the web and carry out 

sophisticated tasks on our behalf.  
– This is different than searching content for keywords and popularity! 

 

• For further references, see, e.g. tutorial given at  
2009 Semantic Technology Conference: 
         http://www.w3.org/2009/Talks/0615-SanJose-tutorial-IH 
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Examples of ontologies for the Semantic Web 

• “Ontology”: logic-based representation of the world 
 

• eClassOwl: eBusiness ontology  
– for products and services 
– 75,000 classes (types of individuals) and 5,500 properties 

• National Cancer Institute’s ontology: 58,000 classes 
• Open Biomedical Ontologies Foundry: several ontologies 

– including the Gene Ontology to describe 
• gene and gene product attributes in any organism or protein sequence 
• annotation terminology and data 

• OpenCyc project: a 150,000-concept ontology including 
– Top-level ontology  

• describes general concepts such as numbers, time, space, etc 
– Hierarchical composition: superclasses and subclasses 
– Many specific concepts such as “OLED display”, “iPhone” 
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Course Overview 
Environment 

Problem Type 

Logic 

Planning 

Deterministic Stochastic 

     Constraint 
Satisfaction Search 

Arc  
Consistency 

Search 

Search 

 Logics 

 STRIPS 

Variables +  
Constraints 

Variable 
Elimination 

Bayesian 
Networks 

Decision 
Networks 

 Markov Processes 

Static 

Sequential 

Representation 
Reasoning 
Technique 

Uncertainty 

Decision 
Theory   

Course Module 

Variable 
Elimination 

Value 
Iteration 

Planning 

This concludes 
the logic module 

As CSP (using 
arc consistency) 



29 

Course Overview 
Environment 

Problem Type 

Logic 

Planning 

Deterministic Stochastic 

     Constraint 
Satisfaction Search 

Arc  
Consistency 

Search 

Search 

 Logics 

 STRIPS 

Variables +  
Constraints 

Variable 
Elimination 

Bayesian 
Networks 

Decision 
Networks 

 Markov Processes 

Static 

Sequential 

Representation 
Reasoning 
Technique 

Uncertainty 

Decision 
Theory   

Course Module 

Variable 
Elimination 

Value 
Iteration 

Planning 

For the rest of 
the course, we 
will consider 
uncertainty 

As CSP (using 
arc consistency) 



Types of uncertainty (from Lecture 2) 
• Sensing Uncertainty:  

– The agent cannot fully observe a state of interest 
– E.g.: Right now, how many people are in this room? In this building? 

 

• Effect Uncertainty: 
– The agent cannot be certain about the effects of its actions 
– E.g.: If I work hard, will I get an A?  

 

• Motivation for uncertainty: in the real world, we almost always  
have to handle uncertainty (both types) 
– Deterministic domains are an abstraction  

• Sometimes this abstraction enables much more powerful inference 
– Now we don’t make this abstraction anymore 

• Our representations and reasoning techniques will now handle uncertainty 
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More motivation for uncertainty 
• Interesting article: “The machine age” 

– by Peter Norvig (head of research at Google) 
– New York Post, 12 February 2011 
– http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_ma

chine_age_tM7xPAv4pI4JslK0M1JtxI 
 

– “The things we thought were hard turned out to be easier.” 
• Playing grandmaster level chess,  

or proving theorems in integral calculus 
– “Tasks that we at first thought were easy turned out to be hard.”  

• A toddler (or a dog) can distinguish hundreds of objects (ball, 
bottle, blanket, mother, etc.) just by glancing at them 

• Very difficult for computer vision to perform at this level 
– “Dealing with uncertainty turned out to be more important than 

thinking with logical precision.” 
• AI’s focus shifted from Logic to Probability in the late 1980s 

31 

http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_machine_age_tM7xPAv4pI4JslK0M1JtxI
http://www.nypost.com/f/print/news/opinion/opedcolumnists/the_machine_age_tM7xPAv4pI4JslK0M1JtxI


Learning Goals For Logic 
• PDCL syntax & semantics 

- Verify whether a logical statement belongs to the language of propositional 
definite clauses 

- Verify whether an interpretation is a model of a PDCL KB.  
- Verify when a conjunction of atoms is a logical consequence of a KB 

 

• Bottom-up proof procedure 
- Define/read/write/trace/debug the Bottom Up (BU) proof procedure 
- Prove that the BU proof procedure is sound and complete  

 

• Top-down proof procedure 
- Define/read/write/trace/debug the Top-down (SLD) proof procedure 

(as a search problem) 
 

• Datalog 
- Represent simple domains in Datalog 
- Apply the Top-down proof procedure in Datalog 

 

 

• Assignment 3 is due on Wednesday 
• Posted short answer questions up to logic on WebCT (to be updated) 
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