
Arc Consistency

CPSC 322 – CSP 3

Textbook § 4.5

February 2, 2011

Lecture Overview

• Solving Constraint Satisfaction Problems (CSPs)
- Recap: Generate & Test
- Recap: Graph search
- Arc consistency

2

3

Course Overview
Environment

Problem Type

Logic

Planning

Deterministic Stochastic

Constraint
Satisfaction Search

Arc
Consistency

Search

Search

Logics

STRIPS

Variables +
Constraints

Variable
Elimination

Bayesian
Networks

Decision
Networks

Markov Processes

Static

Sequential

Representation
Reasoning
Technique

Uncertainty

Decision
Theory

Course Module

Variable
Elimination

Value
Iteration

Planning

We’ll now
focus on CSP

Constraint Satisfaction Problems (CSPs): Definition

4

Definition:
A model of a CSP is a possible world that satisfies all constraints.

Definition:
A constraint satisfaction problem (CSP) consists of:

• a set of variables V
• a domain dom(V) for each variable V ∈V
• a set of constraints C

An example CSP:
• V = {V1,V2}

– dom(V1) = {1,2,3}
– dom(V2) = {1,2}

• C = {C1,C2,C3}
– C1: V2 ≠ 2
– C2: V1 + V2 < 5
– C3: V1 > V2

Possible worlds for this CSP:
{V1=1, V2=1}
{V1=1, V2=2}
{V1=2, V2=1} (one model)
{V1=2, V2=2}
{V1=3, V2=1} (another model)
{V1=3, V2=2}

Definition:
A possible world of a CSP is an assignment of
values to all of its variables.

• Generate and Test:
- Generate possible worlds one at a time
- Test constraints for each one.

Example: 3 variables A,B,C

• Simple, but slow:
- k variables, each domain size d, c constraints: O(cdk)

Generate and Test (GT) Algorithms

For a in dom(A)
For b in dom(B)

For c in dom(C)
if {A=a, B=b, C=c} satisfies all constraints

return {A=a, B=b, C=c}
fail

5

Lecture Overview

• Solving Constraint Satisfaction Problems (CSPs)
- Recap: Generate & Test
- Recap: Graph search
- Arc consistency

6

• Explore search space via DFS but evaluate each
constraint as soon as all its variables are bound.

• Any partial assignment that doesn’t satisfy the
constraint can be pruned.

• Example:
- 3 variables A, B,C, each with domain {1,2,3,4}
- {A = 1, B = 1} is inconsistent with constraint A ≠ B

regardless of the value of the other variables
⇒ Prune!

Backtracking algorithms

7

V1 = v1
V2 = v1

V1 = v1
V2 = v2

V1 = v1
V2 = vk

CSP as Graph Searching

V1 = v1
V2 = v1
V3 = v2

V1 = v1
V2 = v1
V3 = v1

{}

V1 = v1 V1 = vk

Check unary constraints on V1
If not satisfied ⇒ PRUNE

Check constraints on V1
and V2 If not satisfied

⇒ PRUNE

Standard Search vs. Specific R&R systems
• Constraint Satisfaction (Problems):

– State: assignments of values to a subset of the variables
– Successor function: assign values to a “free” variable
– Goal test: all variables assigned a value and all constraints satisfied?
– Solution: possible world that satisfies the constraints
– Heuristic function: none (all solutions at the same distance from start)

• Planning :
– State
– Successor function
– Goal test
– Solution
– Heuristic function

• Inference
– State
– Successor function
– Goal test
– Solution
– Heuristic function

9

V1 = v1
V2 = v1

V1 = v1
V2 = v2

V1 = v1
V2 = vk

CSP as Graph Searching

V1 = v1
V2 = v1
V3 = v2

V1 = v1
V2 = v1
V3 = v1

{}

V1 = v1 V1 = vk

Check unary constraints on V1
If not satisfied ⇒ PRUNE

Check constraints on V1
and V2 If not satisfied

⇒ PRUNE

Problem?
Performance heavily depends
on the order in which
variables are considered.
E.g. only 2 constraints:
Vn=Vn-1 and Vn≠ Vn-1

CSP as a Search Problem: another formulation

• States: partial assignment of values to variables
• Start state: empty assignment
• Successor function: states with the next variable assigned

– Assign any previously unassigned variable
– A state assigns values to some subset of variables:

• E.g. {V7 = v1, V2 = v1, V15 = v1}
• Neighbors of node {V7 = v1, V2 = v1, V15 = v1}:

nodes {V7 = v1, V2 = v1, V15 = v1, Vx = y}
for any variable Vx∈V \ {V7, V2, V15} and any value y∈dom(Vx)

• Goal state: complete assignments of values to variables
that satisfy all constraints
– That is, models

• Solution: assignment (the path doesn’t matter)

11

CSP as Graph Searching
• 3 Variables: A,B,C. All with domains = {1,2,3,4}
• Constraints: A<B, B<C

• Backtracking relies on one or more heuristics to select
which variables to consider next
- E.g, variable involved in the highest number of constraints
- Can also be smart about which values to consider first

Selecting variables in a smart way

13

Learning Goals for solving CSPs so far

• Verify whether a possible world satisfies a set of constraints
(i.e., whether it is a model, a solution)

• Implement the Generate-and-Test Algorithm.
Explain its disadvantages.

• Solve a CSP by search (specify neighbors, states, start state, goal
state). Compare strategies for CSP search. Implement pruning for
DFS search in a CSP.

14

Lecture Overview

• Solving Constraint Satisfaction Problems (CSPs)
- Recap: Generate & Test
- Recap: Graph search
- Arc consistency

15

Can we do better than Search?
Key idea
• prune the domains as much as possible before

“searching” for a solution.

• Example: dom(V2) = {1, 2, 3, 4}. V2 ≠ 2
• Variable V2 is not domain consistent.

- It is domain consistent once we remove 2 from its domain.

• Trivial for unary constraints. Trickier for k-ary ones.

Def.: A variable is domain consistent if no value of its
domain is ruled impossible by any unary constraints.

16

Graph Searching Redoes Work
• 3 Variables: A,B,C. All with domains = {1,2,3,4}
• Constraints: A<B, B<C
• A ≠ 4 is rediscovered 3 times. So is C ≠ 1

- Solution: remove values from A’s and C’s domain once and for all

• Example:
- Two variables X and Y
- One constraint: X<Y

X YX< Y

18

Def. A constraint network is defined by a graph, with
- one node for every variable (drawn as circle)
- one node for every constraint (drawn as rectangle)
- undirected edges running between variable nodes and

constraint nodes whenever a given variable is involved in a
given constraint.

Constraint network: definition

Constraint network: definition

• Whiteboard example:
– 3 Variables A,B,C
– 3 Constraints: A<B, B<C, A+3=C
– 6 edges in the constraint network:

• 〈A,A<B〉 , 〈B,A<B〉
• 〈B,B<C〉 , 〈C,B<C〉
• 〈A, A+3=C〉 , 〈C,A+3=C〉

19

Def. A constraint network is defined by a graph, with
- one node for every variable (drawn as circle)
- one node for every constraint (drawn as rectangle)
- undirected edges running between variable nodes and

constraint nodes whenever a given variable is involved in a
given constraint.

A more complicated example
• How many variables are there in this constraint network?

– Variables are
drawn as circles

• How many
constraints
are there?

– Constraints are drawn as rectangles 20

14

5

9

6

14

5

9

6

Arc Consistency
Definition:

An arc <x, r(x,y)> is arc consistent if for each value x in
dom(X) there is some value y in dom(Y) such that r(x,y) is
satisfied.
A network is arc consistent if all its arcs are arc consistent.

T FT F

2,5,7 2,3,13
A B

A< B/2

Is this arc
consistent?

1,2,3 2,3
A B

A< B

Not arc consistent:
No value in domain of B
that satisfies A<B if A=3

Arc consistent: Both
B=2 and B=3 have
ok values for A (e.g.
A=1)

21

How can we enforce Arc Consistency?

• If an arc <X, r(X,Y)> is not arc consistent
- Delete all values x in dom(X) for which there is no corresponding

value in dom(Y)
- This deletion makes the arc <X, r(X,Y)> arc consistent.
- This removal can never rule out any models/solutions

• Why?

http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-network.xml

2,3,4 1,2,3
X Y

X< Y

22

Arc Consistency Algorithm:
high level strategy

• Consider the arcs in turn, making each arc consistent
• Reconsider arcs that could be made inconsistent

again by this pruning

• See “simple problem 1” in AIspace for an example:

23

Which arcs need to reconsidered?

24

every arc 〈Z,c'〉 where c’ ≠ c
involves Z and X:Z1 c1

Z2 c2

Z3 c3

Yc

T
H
E
S
E

X

Ac4

• When we reduce the domain of a variable X to make
an arc 〈X,c〉 arc consistent, which arcs do we need to
reconsider?

• You do not need to reconsider other arcs
- If an arc 〈X,c'〉 was arc consistent before, it will still be arc

consistent
- Nothing changes for arcs of constraints not involving X

• Consider the arcs in turn, making each arc consistent
• Reconsider arcs that could be made inconsistent

again by this pruning

• Trace on “simple problem 1” and on
“scheduling problem 1”, trying to predict

- which arcs are not consistent and
- which arcs need to be reconsidered after each removal

25

Which arcs need to reconsidered?

Arc consistency algorithm (for binary constraints)

26

Procedure GAC(V,dom,C)
Inputs

V: a set of variables
dom: a function such that dom(X) is the domain of variable X
C: set of constraints to be satisfied

Output
arc-consistent domains for each variable

Local
DX is a set of values for each variable X
TDA is a set of arcs

1: for each variable X do
2: DX ←dom(X)
3: TDA ←{〈X,c〉| c ∈ C and X ∈ scope(c)}

4: while (TDA ≠ {})
5: select 〈X,c〉 ∈TDA
6: TDA ←TDA \ {〈X,c〉}
7: NDX ←{x| x ∈ DX and ∃ y ∈ DY s.t. (x, y) satisfies c}
8: if (NDX ≠ DX) then
9: TDA ←TDA ∪ { 〈Z,c'〉 | X ∈ scope(c'), c' ≠ c, Z ∈ scope(c') \ {X} }
10: DX ←NDX

11: return {DX| X is a variable}

Scope of constraint c is
the set of variables
involved in that
constraint

NDX: values x for X for
which there a value for y
supporting x

X’s domain changed:
⇒ arcs (Z,c’) for
variables Z sharing a
constraint c’ with X
could become
inconsistent

TDA:
ToDoArcs,
blue arcs
in AIspace

Arc Consistency Algorithm: Interpreting Outcomes
• Three possible outcomes

(when all arcs are arc consistent):
– Each domain has a single value, e.g.

http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-network.xml
• We have a (unique) solution.

– At least one domain is empty, e.g.
http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-infeasible.xml
• No solution! All values are ruled out for this variable.

– Some domains have more than one value, e.g.
built-in example “simple problem 2”
• There may be a solution, multiple ones, or no one
• Need to solve this new CSP problem:

same constraints, domains have been reduced

• How often will we prune the domain
of variable V? O(d) times

• How many arcs will be put on the
ToDoArc list when pruning domain of variable V?
- O(degree of variable V)
- In total, across all variables: sum of degrees of all variables = …

• 2*number of constraints, i.e. 2*c
• Together: we will only put O(dc) arcs on the ToDoArc list
• Checking consistency is O(d2) for each of them

• Overall complexity: O(cd3)
• Compare to O(dN) of DFS!! Arc consistency is MUCH faster

Arc Consistency Algorithm: Complexity
• Worst-case complexity of arc consistency procedure on a

problem with N variables
– let d be the max size of a variable domain
– let c be the number of constraints

Learning Goals for arc consistency

• Define/read/write/trace/debug the arc consistency
algorithm.

• Compute its complexity and assess its possible
outcomes

• Arc consistency practice exercise is on WebCT
• Coming up: Domain splitting

– I.e., combining arc consistency and search
– Read Section 4.6

• Also coming up: local search, Section 4.8

• Assignment 1 is due next Monday

	Slide Number 1
	Lecture Overview
	Slide Number 3
	Constraint Satisfaction Problems (CSPs): Definition
	Generate and Test (GT) Algorithms
	Lecture Overview
	Backtracking algorithms
	Slide Number 8
	Standard Search vs. Specific R&R systems
	Slide Number 10
	CSP as a Search Problem: another formulation
	Slide Number 12
	Selecting variables in a smart way
	Learning Goals for solving CSPs so far
	Lecture Overview
	Can we do better than Search?
	Slide Number 17
	Constraint network: definition
	Constraint network: definition
	A more complicated example
	Arc Consistency
	How can we enforce Arc Consistency?
	Arc Consistency Algorithm: �high level strategy
	Which arcs need to reconsidered?
	Which arcs need to reconsidered?
	Arc consistency algorithm (for binary constraints)
	Arc Consistency Algorithm: Interpreting Outcomes
	Arc Consistency Algorithm: Complexity
	Learning Goals for arc consistency

