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Lecture Overview

• Solving Constraint Satisfaction Problems (CSPs)
- Recap: Generate & Test
- Recap: Graph search
- Arc consistency
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Constraint Satisfaction Problems (CSPs): Definition
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Definition: 
A model of a CSP is a possible world that satisfies all constraints. 

Definition: 
A constraint satisfaction problem (CSP) consists of:

• a set of variables V
• a domain dom(V) for each variable V ∈V
• a set of constraints C

An example CSP:
• V = {V1,V2}

– dom(V1) = {1,2,3}
– dom(V2) = {1,2}

• C = {C1,C2,C3}
– C1: V2 ≠ 2
– C2: V1 + V2 < 5
– C3: V1 > V2

Possible worlds for this CSP:
{V1=1, V2=1}
{V1=1, V2=2}
{V1=2, V2=1} (one model)
{V1=2, V2=2}
{V1=3, V2=1} (another model)
{V1=3, V2=2} 

Definition: 
A possible world of a CSP is an assignment of 
values to all of its variables. 



• Generate and Test:
- Generate possible worlds one at a time
- Test constraints for each one.

Example: 3 variables A,B,C

• Simple, but slow: 
- k variables, each domain size d, c constraints: O(cdk)

Generate and Test (GT) Algorithms

For a in dom(A)
For b in dom(B)

For c in dom(C)
if {A=a, B=b, C=c} satisfies all constraints     

return {A=a, B=b, C=c} 
fail
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Lecture Overview
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• Explore search space via DFS but evaluate each 
constraint as soon as all its variables are bound. 

• Any partial assignment that doesn’t satisfy the 
constraint can be pruned.

• Example: 
- 3 variables A, B,C, each with domain {1,2,3,4}
- {A = 1, B = 1} is inconsistent with constraint A ≠ B 

regardless of the value of the other variables
⇒ Prune!

Backtracking algorithms
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V1 = v1
V2 = v1

V1 = v1
V2 = v2 

V1 = v1
V2 = vk 

CSP as Graph Searching

V1 = v1
V2 = v1
V3 = v2

V1 = v1
V2 = v1
V3 = v1

{}

V1 = v1 V1 = vk

Check unary constraints on V1
If not satisfied ⇒ PRUNE

Check constraints on V1
and V2 If not satisfied  

⇒ PRUNE



Standard Search vs. Specific R&R systems
• Constraint Satisfaction (Problems):

– State: assignments of values to a subset of the variables
– Successor function: assign values to a “free” variable
– Goal test: all variables assigned a value and all constraints satisfied?
– Solution: possible world that satisfies the constraints
– Heuristic function: none (all solutions at the same distance from start)

• Planning : 
– State
– Successor function
– Goal test
– Solution
– Heuristic function

• Inference
– State
– Successor function
– Goal test
– Solution
– Heuristic function
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V1 = v1
V2 = v1

V1 = v1
V2 = v2 

V1 = v1
V2 = vk 

CSP as Graph Searching

V1 = v1
V2 = v1
V3 = v2

V1 = v1
V2 = v1
V3 = v1

{}

V1 = v1 V1 = vk

Check unary constraints on V1
If not satisfied ⇒ PRUNE

Check constraints on V1
and V2 If not satisfied  

⇒ PRUNE

Problem?
Performance heavily depends 
on the order in which 
variables are considered.
E.g. only 2 constraints:
Vn=Vn-1 and Vn≠ Vn-1



CSP as a Search Problem: another formulation 

• States: partial assignment of values to variables
• Start state: empty assignment
• Successor function: states with the next variable assigned

– Assign any previously unassigned variable
– A state assigns values to some subset of variables:

• E.g. {V7 = v1, V2 = v1, V15 = v1}
• Neighbors of node {V7 = v1, V2 = v1, V15 = v1}: 

nodes   {V7 = v1, V2 = v1, V15 = v1, Vx = y} 
for any variable Vx∈V \ {V7, V2, V15} and any value y∈dom(Vx)

• Goal state: complete assignments of values to variables 
that satisfy all constraints
– That is, models

• Solution: assignment (the path doesn’t matter)
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CSP as Graph Searching
• 3 Variables: A,B,C. All with domains = {1,2,3,4}
• Constraints: A<B, B<C



• Backtracking relies on one or more heuristics to select 
which variables to consider next
- E.g, variable involved in the highest number of constraints
- Can also be smart about which values to consider first

Selecting variables in a smart way
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Learning Goals for solving CSPs so far

• Verify whether a possible world satisfies a set of constraints 
(i.e., whether it is a model, a solution)

• Implement the Generate-and-Test Algorithm. 
Explain its disadvantages.

• Solve a CSP by search  (specify neighbors, states, start state, goal 
state). Compare strategies for CSP search. Implement pruning for 
DFS search in a CSP.  
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Lecture Overview
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Can we do better than Search?
Key idea
• prune the domains as much as possible before 

“searching” for a solution.

• Example: dom(V2) = {1, 2, 3, 4}. V2 ≠ 2
• Variable V2 is not domain consistent. 

- It is domain consistent once we remove 2 from its domain.

• Trivial for unary constraints. Trickier for k-ary ones.

Def.: A variable is domain consistent if no value of its 
domain is ruled impossible by any unary constraints.
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Graph Searching Redoes Work
• 3 Variables: A,B,C. All with domains = {1,2,3,4}
• Constraints: A<B, B<C
• A ≠ 4 is rediscovered 3 times. So is C ≠ 1

- Solution: remove values from A’s and C’s domain once and for all



• Example: 
- Two variables X and Y
- One constraint: X<Y

X YX< Y
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Def. A constraint network is defined by a graph, with
- one node for every variable (drawn as circle)
- one node for every constraint (drawn as rectangle)
- undirected edges running between variable nodes and 

constraint nodes whenever a given variable is involved in a 
given constraint.

Constraint network: definition



Constraint network: definition

• Whiteboard example:
– 3 Variables A,B,C
– 3 Constraints: A<B, B<C, A+3=C
– 6 edges in the constraint network: 

• 〈A,A<B〉 , 〈B,A<B〉
• 〈B,B<C〉 , 〈C,B<C〉
• 〈A, A+3=C〉 , 〈C,A+3=C〉
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Def. A constraint network is defined by a graph, with
- one node for every variable (drawn as circle)
- one node for every constraint (drawn as rectangle)
- undirected edges running between variable nodes and 

constraint nodes whenever a given variable is involved in a 
given constraint.



A more complicated example
• How many variables are there in this constraint network?

– Variables are 
drawn as circles

• How many 
constraints 
are there?

– Constraints are drawn as rectangles 20

14

5

9

6

14

5

9
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Arc Consistency
Definition:

An arc <x, r(x,y)> is arc consistent if for each value x in 
dom(X) there is some value y in dom(Y) such that r(x,y) is 
satisfied.
A network is arc consistent if all its arcs are arc consistent.

T FT F

2,5,7 2,3,13
A B

A< B/2

Is this arc 
consistent?

1,2,3 2,3
A B

A< B

Not arc consistent: 
No value in domain of B 
that satisfies A<B if A=3

Arc consistent: Both 
B=2 and B=3 have 
ok values for A (e.g. 
A=1)
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How can we enforce Arc Consistency?

• If an arc <X, r(X,Y)> is not arc consistent
- Delete all values x in dom(X) for which there is no corresponding 

value in dom(Y)
- This deletion makes the arc <X, r(X,Y)> arc consistent.
- This removal can never rule out any models/solutions

• Why?

http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-network.xml

2,3,4 1,2,3
X Y

X< Y
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Arc Consistency Algorithm: 
high level strategy

• Consider the arcs in turn, making each arc consistent
• Reconsider arcs that could be made inconsistent 

again by this pruning

• See “simple problem 1” in AIspace for an example:
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Which arcs need to reconsidered?
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every arc 〈Z,c'〉 where c’ ≠ c  
involves Z and X:Z1 c1

Z2 c2

Z3 c3

Yc

T
H
E
S
E

X

Ac4

• When we reduce the domain of a variable X  to make 
an arc 〈X,c〉 arc consistent, which arcs do we need to 
reconsider?

• You do not need to reconsider other arcs
- If an arc 〈X,c'〉 was arc consistent before, it will still be arc 

consistent
- Nothing changes for arcs of constraints not involving X



• Consider the arcs in turn, making each arc consistent
• Reconsider arcs that could be made inconsistent 

again by this pruning

• Trace on “simple problem 1” and on 
“scheduling problem 1”, trying to predict 

- which arcs are not consistent and 
- which arcs need to be reconsidered after each removal

25

Which arcs need to reconsidered?



Arc consistency algorithm (for binary constraints)
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Procedure GAC(V,dom,C) 
Inputs

V: a set of variables 
dom: a function such that dom(X) is the domain of variable X 
C: set of constraints to be satisfied 

Output
arc-consistent domains for each variable 

Local
DX is a set of values for each variable X 
TDA is a set of arcs

1: for each variable X do
2: DX ←dom(X) 
3: TDA ←{〈X,c〉| c ∈ C and X ∈ scope(c)} 

4: while (TDA ≠ {}) 
5: select 〈X,c〉 ∈TDA
6: TDA ←TDA \ {〈X,c〉}
7: NDX ←{x| x ∈ DX and ∃ y ∈ DY s.t. (x, y) satisfies c}
8: if (NDX ≠ DX) then
9: TDA ←TDA  ∪ { 〈Z,c'〉 | X ∈ scope(c'), c' ≠ c, Z ∈ scope(c') \ {X} } 
10: DX ←NDX

11: return {DX| X is a variable} 

Scope of constraint c is 
the set of variables 
involved in that 
constraint

NDX: values x for X for 
which there a value for y 
supporting x

X’s domain changed:
⇒ arcs (Z,c’) for 
variables Z sharing a 
constraint c’ with X 
could become 
inconsistent

TDA: 
ToDoArcs,
blue arcs
in AIspace



Arc Consistency Algorithm: Interpreting Outcomes
• Three possible outcomes 

(when all arcs are arc consistent):
– Each domain has a single value, e.g.

http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-network.xml
• We have a (unique) solution. 

– At least one domain is empty, e.g.
http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-infeasible.xml
• No solution! All values are ruled out for this variable.

– Some domains have more than one value, e.g.
built-in example “simple problem 2”
• There may be a solution, multiple ones, or no one
• Need to solve this new CSP problem: 

same constraints, domains have been reduced



• How often will we prune the domain
of variable V? O(d) times

• How many arcs will be put on the 
ToDoArc list when pruning domain of variable V?
- O(degree of variable V)
- In total, across all variables: sum of degrees of all variables = …

• 2*number of constraints, i.e. 2*c
• Together: we will only put O(dc) arcs on the ToDoArc list
• Checking consistency is O(d2) for each of them

• Overall complexity: O(cd3)
• Compare to O(dN) of DFS!! Arc consistency is MUCH faster

Arc Consistency Algorithm: Complexity
• Worst-case complexity of arc consistency procedure on a 

problem with N variables
– let d be the max size of a variable domain
– let c be the number of constraints



Learning Goals for arc consistency

• Define/read/write/trace/debug the arc consistency 
algorithm. 

• Compute its complexity and assess its possible 
outcomes

• Arc consistency practice exercise is on WebCT
• Coming up: Domain splitting

– I.e., combining arc consistency and search
– Read Section 4.6

• Also coming up: local search, Section 4.8

• Assignment 1 is due next Monday
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