Arc Consistency

CPSC 322 – CSP 3

Textbook § 4.5

February 2, 2011
Lecture Overview

Solving Constraint Satisfaction Problems (CSPs)
- Recap: Generate & Test
- Recap: Graph search
- Arc consistency
We’ll now focus on CSP.
Constraint Satisfaction Problems (CSPs): Definition

Definition:
A **constraint satisfaction problem (CSP)** consists of:
- a set of **variables** \(\mathcal{V} \)
- a **domain** \(\text{dom}(V) \) for each variable \(V \in \mathcal{V} \)
- a set of **constraints** \(C \)

An example CSP:
- \(\mathcal{V} = \{V_1, V_2\} \)
 - \(\text{dom}(V_1) = \{1,2,3\} \)
 - \(\text{dom}(V_2) = \{1,2\} \)
- \(C = \{C_1, C_2, C_3\} \)
 - \(C_1: V_2 \neq 2 \)
 - \(C_2: V_1 + V_2 < 5 \)
 - \(C_3: V_1 > V_2 \)

Possible worlds for this CSP:
- \(\{V_1=1, V_2=1\} \)
- \(\{V_1=1, V_2=2\} \)
- \(\{V_1=2, V_2=1\} \) (one model)
- \(\{V_1=2, V_2=2\} \)
- \(\{V_1=3, V_2=1\} \) (another model)
- \(\{V_1=3, V_2=2\} \)

Definition:
A **possible world** of a CSP is an assignment of values to all of its variables.

Definition:
A **model** of a CSP is a possible world that **satisfies** all constraints.
Generate and Test (GT) Algorithms

- **Generate and Test:**
 - **Generate** possible worlds one at a time
 - **Test** constraints for each one.

Example: 3 variables A, B, C

```python
For a in dom(A)
    For b in dom(B)
        For c in dom(C)
            if {A=a, B=b, C=c} satisfies all constraints
                return {A=a, B=b, C=c}
            fail
```

- **Simple, but slow:**
 - k variables, each domain size d, c constraints: $O(cd^k)$
Lecture Overview

• Solving Constraint Satisfaction Problems (CSPs)
 - Recap: Generate & Test
 - Recap: Graph search
 - Arc consistency
Backtracking algorithms

• Explore search space via DFS but evaluate each constraint as soon as all its variables are bound.

• Any partial assignment that doesn’t satisfy the constraint can be pruned.

• Example:
 - 3 variables A, B, C, each with domain {1,2,3,4}
 - {A = 1, B = 1} is inconsistent with constraint $A \neq B$
 regardless of the value of the other variables
 \Rightarrow Prune!
CSP as Graph Searching

Check unary constraints on V_1
If not satisfied \Rightarrow PRUNE

Check constraints on V_1 and V_2 If not satisfied \Rightarrow PRUNE
Standard Search vs. Specific R&R systems

• Constraint Satisfaction (Problems):
 – **State**: assignments of values to a subset of the variables
 – **Successor function**: assign values to a “free” variable
 – **Goal test**: all variables assigned a value and all constraints satisfied?
 – **Solution**: possible world that satisfies the constraints
 – **Heuristic function**: none (all solutions at the same distance from start)

• Planning:
 – **State**
 – **Successor function**
 – **Goal test**
 – **Solution**
 – **Heuristic function**

• Inference
 – **State**
 – **Successor function**
 – **Goal test**
 – **Solution**
 – **Heuristic function**
CSP as Graph Searching

Check unary constraints on V_1
If not satisfied \Rightarrow PRUNE

Check constraints on V_1 and V_2 If not satisfied \Rightarrow PRUNE

Problem?
Performance heavily depends on the order in which variables are considered.
E.g. only 2 constraints:
$V_n = V_{n-1}$ and $V_n \neq V_{n-1}$
CSP as a Search Problem: another formulation

- **States**: partial assignment of values to variables
- **Start state**: empty assignment
- **Successor function**: states with the next variable assigned
 - Assign *any* previously unassigned variable
 - A state assigns values to some subset of variables:
 - E.g. \(\{V_7 = v_1, V_2 = v_1, V_{15} = v_1\} \)
 - Neighbors of node \(\{V_7 = v_1, V_2 = v_1, V_{15} = v_1\} \):
 - nodes \(\{V_7 = v_1, V_2 = v_1, V_{15} = v_1, V_x = y\} \)
 - for any variable \(V_x \in V \setminus \{V_7, V_2, V_{15}\} \) and any value \(y \in \text{dom}(V_x) \)
- **Goal state**: complete assignments of values to variables that satisfy all constraints
 - That is, models
- **Solution**: assignment (the path doesn’t matter)
CSP as Graph Searching

- 3 Variables: A, B, C. All with domains = \{1, 2, 3, 4\}
- Constraints: A < B, B < C
Selecting variables in a smart way

- Backtracking relies on one or more **heuristics** to select which variables to consider next
 - E.g, variable involved in the highest number of constraints
 - Can also be smart about which **values** to consider first
Learning Goals for solving CSPs so far

- Verify whether a possible world satisfies a set of constraints (i.e., whether it is a model, a solution)

- Implement the Generate-and-Test Algorithm. Explain its disadvantages.

- Solve a CSP by search (specify neighbors, states, start state, goal state). Compare strategies for CSP search. Implement pruning for DFS search in a CSP.
Lecture Overview

• Solving Constraint Satisfaction Problems (CSPs)
 - Recap: Generate & Test
 - Recap: Graph search
 - Arc consistency
Can we do better than Search?

Key idea

- prune the domains as much as possible before “searching” for a solution.

Def.: A variable is domain consistent if no value of its domain is ruled impossible by any unary constraints.

- Example: \(\text{dom}(V_2) = \{1, 2, 3, 4\} \). \(V_2 \neq 2 \)
- Variable \(V_2 \) is not domain consistent.
 - It is domain consistent once we remove 2 from its domain.

- Trivial for unary constraints. Trickier for k-ary ones.
Graph Searching Redoes Work

- 3 Variables: A, B, C. All with domains = \{1,2,3,4\}
- Constraints: A < B, B < C
- A ≠ 4 is rediscovered 3 times. So is C ≠ 1
 - Solution: remove values from A’s and C’s domain once and for all
Def. A constraint network is defined by a graph, with
- one node for every variable (drawn as circle)
- one node for every constraint (drawn as rectangle)
- undirected edges running between variable nodes and constraint nodes whenever a given variable is involved in a given constraint.

Example:
- Two variables X and Y
- One constraint: X<Y
Def. A **constraint network** is defined by a graph, with
- one **node** for every **variable** (drawn as **circle**)
- one **node** for every **constraint** (drawn as **rectangle**)
- **undirected edges** running between **variable nodes** and **constraint nodes** whenever a given variable is involved in a given constraint.

- **Whiteboard example:**
 - 3 Variables A,B,C
 - 3 Constraints: A<B, B<C, A+3=C
 - 6 edges in the constraint network:
 - ⟨A,A<B⟩, ⟨B,A<B⟩
 - ⟨B,B<C⟩, ⟨C,B<C⟩
 - ⟨A, A+3=C⟩, ⟨C,A+3=C⟩
A more complicated example

- How many variables are there in this constraint network?
 - Variables are drawn as circles
 - 5 6
 - 9 14

- How many constraints are there?
 - Constraints are drawn as rectangles
 - 5 6
 - 9 14
Arc Consistency

Definition:
An arc \(<x, r(x,y)> \) is **arc consistent** if for each value \(x \) in \(\text{dom}(X) \) there is some value \(y \) in \(\text{dom}(Y) \) such that \(r(x,y) \) is satisfied.
A network is arc consistent if all its arcs are arc consistent.

Is this arc consistent?

- **T**
- **F**

Not arc consistent:
No value in domain of \(B \) that satisfies \(A < B \) if \(A = 3 \)

Arc consistent:
Both \(B = 2 \) and \(B = 3 \) have ok values for \(A \) (e.g. \(A = 1 \))
How can we enforce Arc Consistency?

- If an arc $<X, r(X,Y)>$ is not arc consistent
 - Delete all values x in $\text{dom}(X)$ for which there is no corresponding value in $\text{dom}(Y)$
 - This deletion makes the arc $<X, r(X,Y)>$ arc consistent.
 - This removal can never rule out any models/solutions
 - Why?

http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-network.xml
Arc Consistency Algorithm: high level strategy

- Consider the arcs in turn, making each arc consistent
- Reconsider arcs that could be made inconsistent again by this pruning

- See “simple problem 1” in Alspace for an example:
Which arcs need to reconsider?

- When we reduce the domain of a variable X to make an arc $\langle X, c \rangle$ arc consistent, which arcs do we need to reconsider?

 - You do not need to reconsider other arcs
 - If an arc $\langle X, c' \rangle$ was arc consistent before, it will still be arc consistent
 - Nothing changes for arcs of constraints not involving X

Diagram:

- Z_1 connected to c_1 connected to c_2 connected to c_3 connected to X connected to c connected to Y connected to c_4 connected to A
Which arcs need to reconsidered?

- Consider the arcs in turn, making each arc consistent
- Reconsider arcs that could be made inconsistent again by this pruning

- Trace on “simple problem 1” and on “scheduling problem 1”, trying to predict
 - which arcs are not consistent and
 - which arcs need to be reconsidered after each removal
Arc consistency algorithm (for binary constraints)

Procedure \(\text{GAC}(V, \text{dom}, C) \)

Inputs
- \(V \): a set of variables
- \(\text{dom} \): a function such that \(\text{dom}(X) \) is the domain of variable \(X \)
- \(C \): set of constraints to be satisfied

Output
- arc-consistent domains for each variable

Local
- \(D_X \) is a set of values for each variable \(X \)
- \(\text{TDA} \) is a set of arcs

1: for each variable \(X \) do
2: \(D_X \leftarrow \text{dom}(X) \)
3: \(\text{TDA} \leftarrow \{ (X, c) \mid c \in C \text{ and } X \in \text{scope}(c) \} \)
4: while \((\text{TDA} \neq \{\}) \) do
5: \(\text{select } (X, c) \in \text{TDA} \)
6: \(\text{TDA} \leftarrow \text{TDA} \setminus \{ (X, c) \} \)
7: \(\text{ND}_X \leftarrow \{ x \mid x \in D_X \text{ and } \exists y \in D_Y \text{ s.t. } (x, y) \text{ satisfies } c \} \)
8: if \((\text{ND}_X \neq D_X) \) then
9: \(\text{TDA} \leftarrow \text{TDA} \cup \{ (Z, c') \mid X \in \text{scope}(c'), c' \neq c, Z \in \text{scope}(c') \setminus \{X\} \} \)
10: \(D_X \leftarrow \text{ND}_X \)
11: return \(\{ D_X \mid X \text{ is a variable} \} \)

Scope of constraint \(c \) is the set of variables involved in that constraint

\(\text{TDA} \): ToDoArcs, blue arcs in AIspace

\(\text{ND}_X \): values \(x \) for \(X \) for which there a value for \(y \) supporting \(x \)

X’s domain changed: \(\Rightarrow \) arcs \((Z, c') \) for variables \(Z \) sharing a constraint \(c' \) with \(X \) could become inconsistent
Arc Consistency Algorithm: Interpreting Outcomes

- Three possible outcomes (when all arcs are arc consistent):
 - Each domain has a single value, e.g.
 http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-network.xml
 • We have a (unique) solution.
 - At least one domain is empty, e.g.
 http://cs.ubc.ca/~hutter/teaching/cpsc322/aispace/simple-infeasible.xml
 • No solution! All values are ruled out for this variable.
 - Some domains have more than one value, e.g.
 built-in example “simple problem 2”
 • There may be a solution, multiple ones, or no one
 • Need to solve this new CSP problem: same constraints, domains have been reduced
Arc Consistency Algorithm: Complexity

- Worst-case complexity of arc consistency procedure on a problem with N variables
 - let \(d \) be the max size of a variable domain
 - let \(c \) be the number of constraints

- How often will we prune the domain of variable V? \(O(d) \) times

- How many arcs will be put on the ToDoArc list when pruning domain of variable V?
 - \(O(\text{degree of variable } V) \)
 - In total, across all variables: sum of degrees of all variables = …
 - \(2 \times \text{number of constraints}, \text{i.e. } 2 \times c \)
 - Together: we will only put \(O(dc) \) arcs on the ToDoArc list

- Checking consistency is \(O(d^2) \) for each of them

- Overall complexity: \(O(cd^3) \)

- Compare to \(O(d^N) \) of DFS!! Arc consistency is MUCH faster
Learning Goals for arc consistency

• Define/read/write/trace/debug the arc consistency algorithm.
• Compute its complexity and assess its possible outcomes

Arc consistency practice exercise is on WebCT
• Coming up: Domain splitting
 – I.e., combining arc consistency and search
 – Read Section 4.6
• Also coming up: local search, Section 4.8

• Assignment 1 is due next Monday