Iterative Deepening and Branch & Bound

CPSC 322 – Search 6

Textbook § 3.7.3 and 3.7.4

January 24, 2011
Lecture Overview

Recap from last week

• Iterative Deepening
• Branch & Bound
Search with Costs

- Sometimes there are costs associated with arcs.

Def.: The cost of a path is the sum of the costs of its arcs

\[
\text{cost}(\langle n_0, \ldots, n_k \rangle) = \sum_{i=1}^{k} \text{cost}(\langle n_{i-1}, n_i \rangle)
\]

- In this setting we often don't just want to find any solution
 - we usually want to find the solution that **minimizes cost**

Def.: A search algorithm is **optimal** if

when it finds a solution, it is the best one:

it has the lowest path cost
Lowest-Cost-First Search (LCFS)

- Expands the path with the lowest cost on the frontier.
- The frontier is implemented as a priority queue ordered by path cost.

How does this differ from Dijkstra's algorithm?
- The two algorithms are very similar
- But Dijkstra's algorithm
 - works with nodes not with paths
 - stores one bit per node (infeasible for infinite/very large graphs)
 - checks for cycles
Heuristic search

Def.:
A search heuristic \(h(n) \) is an estimate of the cost of the optimal (cheapest) path from node \(n \) to a goal node.
Best-First Search (LCFS)

• Expands the path with the lowest h value on the frontier.

• The frontier is implemented as a priority queue ordered by h.

• Greedy: expands path that appears to lead to the goal quickest
 - Can get trapped
 - Can yield arbitrarily poor solutions
 - But with a perfect heuristic, it moves straight to the goal
A*

- Expands the path with the lowest cost + h value on the frontier

- The frontier is implemented as a priority queue ordered by $f(p) = \text{cost}(p) + h(p)$
Admissibility of a heuristic

Def.: Let $c(n)$ denote the cost of the optimal path from node n to any goal node. A search heuristic $h(n)$ is called admissible if $h(n) \leq c(n)$ for all nodes n, i.e. if for all nodes it is an underestimate of the cost to any goal.

- E.g. Euclidian distance in routing networks
- General construction of heuristics: relax the problem, i.e. ignore some constraints
 - Can only make it easier
 - Saw lots of examples on Wednesday:
 Routing network, grid world, 8 puzzle, Infinite Mario
Admissibility of A*

- A* is **complete** (finds a solution, if one exists) and **optimal** (finds the optimal path to a goal) if:
 - *the branching factor is finite*
 - *arc costs are > 0*
 - *h is admissible.*

- This property of A* is called **admissibility of A***
Why is A* admissible: complete

If there is a solution, A* finds it:
- \(f_{\text{min}} := \text{cost of optimal solution path } s \) (unknown but finite)
- Lemmas for prefix \(pr \) of \(s \) (exercise: prove at home)
 - Has cost \(f(pr) \leq f_{\text{min}} \) (due to admissibility)
 - Always one such \(pr \) on the frontier (prove by induction)
- A* only expands paths with \(f(p) \leq f_{\text{min}} \)
 - Expands paths \(p \) with minimal \(f(p) \)
 - Always a \(pr \) on the frontier, with \(f(pr) \leq f_{\text{min}} \)
 - Terminates when expanding \(s \)
- Number of paths \(p \) with cost \(f(p) \leq f_{\text{min}} \) is finite
 - Let \(c_{\text{min}} > 0 \) be the minimal cost of any arc
 - \(k := f_{\text{min}} / c_{\text{min}} \). All paths with length > \(k \) have cost > \(f_{\text{min}} \)
 - Only \(b^k \) paths of length \(k \). Finite \(b \Rightarrow \text{finite} \)
Proof by contradiction

- Assume (for contradiction):
 First solution s' that A* expands is suboptimal: i.e. $\text{cost}(s') > f_{\text{min}}$

- Since s' is a goal, $h(s') = 0$, and $f(s') = \text{cost}(s') > f_{\text{min}}$

- A* selected $s' \Rightarrow$ all other paths p on the frontier
 had $f(p) \geq f(s') > f_{\text{min}}$

- But we know that a prefix pr of optimal solution path s is on the frontier, with $f(pr) \leq f_{\text{min}}$
 \Rightarrow Contradiction!

Summary: any prefix of optimal solution is expanded before suboptimal solution would be expanded
Learning Goals for last week

• Select the most appropriate algorithms for specific problems
 - Depth-First Search vs. Breadth-First Search
 vs. Least-Cost-First Search vs. Best-First Search vs. A*
• Define/read/write/trace/debug different search algorithms
 - With/without cost
 - Informed/Uninformed
• Construct heuristic functions for specific search problems
• Formally prove A* optimality
 - Define optimal efficiency
Learning Goals for last week, continued

- Apply basic properties of search algorithms:
 - completeness, optimality, time and space complexity

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N (Y if no cycles)</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>LCFS (when arc costs available)</td>
<td>Y Costs > 0</td>
<td>Y Costs ≥ 0</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Best First (when h available)</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>A* (when arc costs and h available)</td>
<td>Y Costs > 0 h admissible</td>
<td>Y Costs ≥ 0 h admissible</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
</tbody>
</table>
Lecture Overview

- Recap from last week
- Iterative Deepening
- Branch & Bound
Iterative Deepening DFS (short IDS): Motivation

Want low space complexity but completeness and optimality
Key Idea: re-compute elements of the frontier rather than saving them

<table>
<thead>
<tr>
<th></th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N (Y if no cycles)</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>LCFS (when arc costs available)</td>
<td>Y Costs > 0</td>
<td>Y Costs >=0</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Best First (when h available)</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>A (when arc costs and h available)</td>
<td>Y Costs > 0 h admissible</td>
<td>Y Costs >=0 h admissible</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
</tbody>
</table>
Iterative Deepening DFS (IDS) in a Nutshell

- Use DFS to look for solutions at depth 1, then 2, then 3, etc
 - For depth D, ignore any paths with longer length
 - Depth-bounded depth-first search
(Time) Complexity of IDS

- That sounds wasteful!
- Let’s analyze the time complexity
- For a solution at depth m with branching factor b

<table>
<thead>
<tr>
<th>Depth</th>
<th>Total # of paths at that level</th>
<th>#times created by BFS (or DFS)</th>
<th>#times created by IDS</th>
<th>Total #paths for IDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>b</td>
<td>1</td>
<td>m</td>
<td>mb</td>
</tr>
<tr>
<td>2</td>
<td>b^2</td>
<td>1</td>
<td>$m-1$</td>
<td>$(m-1) b^2$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>m-1</td>
<td>b^{m-1}</td>
<td>1</td>
<td>2</td>
<td>$2 b^{m-1}$</td>
</tr>
<tr>
<td>m</td>
<td>b^m</td>
<td>1</td>
<td>1</td>
<td>b^m</td>
</tr>
</tbody>
</table>
Solution at depth m, branching factor b

Total # of paths generated:

$$b^m + 2b^{m-1} + 3b^{m-2} + \ldots + mb$$

$$= b^m (1 \cdot b^0 + 2 \cdot b^{-1} + 3 \cdot b^{-2} + \ldots + m \cdot b^{1-m})$$

$$= b^m \left(\sum_{i=1}^{m} ib^{1-i} \right) = b^m \left(\sum_{i=1}^{m} i(b^{-1})^{i-1} \right)$$

$$\leq b^m \left(\sum_{i=0}^{\infty} i(b^{-1})^{i-1} \right) = b^m \left(\frac{1}{1-b^{-1}} \right)^2 = b^m \left(\frac{b}{b-1} \right)^2 \in O(b^m)$$

Geometric progression: for $|r|<1$:

$$\sum_{i=0}^{\infty} r^i = \frac{1}{1-r}$$

$$\frac{d}{dr} \sum_{i=0}^{\infty} r^i = \sum_{i=0}^{\infty} ir^{i-1} = \frac{1}{(1-r)^2}$$
Further Analysis of Iterative Deepening DFS (IDS)

- **Space complexity**
 - DFS scheme, only explore one branch at a time
 - $O(b^m)$, $O(m^b)$, $O(bm)$, $O(b+m)$

- **Complete?**
 - Yes, No
 - Only finite # of paths up to depth m, doesn’t explore longer paths

- **Optimal?**
 - Yes, No
 - Proof by contradiction
Search methods so far

<table>
<thead>
<tr>
<th>Method</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>(Y if no cycles)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>LCFS (when arc costs available)</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Costs > 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs >= 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best First</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when h available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A* (when arc costs and h available)</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>Costs > 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Costs >= 0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>h admissible</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
(Heuristic) Iterative Deepening: IDA*

- Like Iterative Deepening DFS
 - But the depth bound is measured in terms of the f value

- If you don’t find a solution at a given depth
 - Increase the depth bound:
 - to the minimum of the f-values that exceeded the previous bound
Analysis of Iterative Deepening A* (IDA*)

• Complete and optimal? Same conditions as A*
 – h is admissible
 – all arc costs > 0
 – finite branching factor

• Time complexity: $O(b^m)$

• Space complexity:

 \[
 O(b^m) \quad O(m^b) \quad O(bm) \quad O(b+m)
 \]

 – Same argument as for Iterative Deepening DFS
Lecture Overview

• Recap from last week

• Iterative Deepening

 Branch & Bound
Heuristic DFS

- Other than IDA*, can we use heuristic information in DFS?
 - When we expand a node, put all its neighbours on the stack
 - In which order?
 - Can use heuristic guidance: h or f
 - Perfect heuristic: would solve problem without any backtracking

- Heuristic DFS is very frequently used in practice
 - Often don’t need optimal solution, just some solution
 - No requirement for admissibility of heuristic
 - As long as we don’t end up in infinite paths
Branch-and-Bound Search

• Another way to combine DFS with heuristic guidance

• Follows exactly the same search path as depth-first search
 - But to ensure optimality, it does not stop at the first solution found

• It continues, after recording upper bound on solution cost
 • upper bound: $UB = \text{cost of the best solution found so far}$
 • Initialized to ∞ or any overestimate of solution cost

• When a path p is selected for expansion:
 • Compute $LB(p) = f(p) = \text{cost}(p) + h(p)$
 • If $LB(p) \geq UB$, remove p from frontier without expanding it (pruning)
 • Else expand p, adding all of its neighbors to the frontier
 • Requires admissible h
• Arc cost = 1
• $h(n) = 0$ for every n

• $UB = \infty$

Solution! $UB = 5$
• Arc cost = 1
• $h(n) = 0$ for every n

• UB = 5

Cost = 5
Prune! (Don’t expand.)
• Arc cost = 1
• $h(n) = 0$ for every n
• $UB = 5$
• Arc cost = 1
• \(h(n) = 0 \) for every \(n \)
• UB = 3

Cost = 3
Prune!

Cost = 3
Prune!
Branch-and-Bound Analysis

• Complete? [YES] [NO] [IT DEPENDS]
 • Can’t handle infinite graphs (but can handle cycles)

• Optimal? [YES] [NO] [IT DEPENDS]
 • If it halts, the goal will be optimal
 • But it could find a goal and then follow an infinite path …

• Time complexity: $O(b^m)$

• Space complexity [O(b^m) O(m^b) O(bm) O($b+m$)]
 • It’s a DFS
Combining B&B with heuristic guidance

- We said
 - “Follows exactly the same search path as depth-first search”
 - Let’s make that heuristic depth-first search

- Can freely choose order to put neighbours on the stack
 - Could e.g. use a separate heuristic $h’$ that is NOT admissible

- To compute $LB(p)$
 - Need to compute f value using an admissible heuristic h

- This combination is used a lot in practice
 - Sudoku solver in assignment 2 will be along those lines
 - But also integrates some logical reasoning at each node
<table>
<thead>
<tr>
<th>Search Method</th>
<th>Complete</th>
<th>Optimal</th>
<th>Time</th>
<th>Space</th>
</tr>
</thead>
<tbody>
<tr>
<td>DFS</td>
<td>N (Y if no cycles)</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>BFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>IDS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>LCFS</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs available)</td>
<td>Costs > 0</td>
<td>Costs >=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Best First</td>
<td>N</td>
<td>N</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when h available)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A*</td>
<td>Y</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(b^m)$</td>
</tr>
<tr>
<td>(when arc costs and h available)</td>
<td>Costs > 0</td>
<td>Costs >=0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDA*</td>
<td>Y (same cond. as A*)</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
<tr>
<td>Branch & Bound</td>
<td>Y (same cond. as A*)</td>
<td>Y</td>
<td>$O(b^m)$</td>
<td>$O(mb)$</td>
</tr>
</tbody>
</table>
Memory-bounded A^*

- Iterative deepening A^* and B & B use little memory
- What if we've got more memory, but not $O(b^m)$?
- Do A^* and keep as much of the frontier in memory as possible
- When running out of memory
 - delete worst path (highest f value) from frontier
 - Back its f value up to a common ancestor
- Subtree gets regenerated only when all other paths have been shown to be worse than the “forgotten” path

- Details are beyond the scope of the course, but
 - Complete and optimal if solution is at depth manageable for available memory
Learning Goals for today’s class

• Define/read/write/trace/debug different search algorithms
 - New: Iterative Deepening,
 Iterative Deepening A*, Branch & Bound

• Apply basic properties of search algorithms:
 – completeness, optimality, time and space complexity

Announcements:
 – New practice exercises are out: see WebCT
 • Heuristic search
 • Branch & Bound
 • Please use these! (Only takes 5 min. if you understood things…)
 – Assignment 1 is out: see WebCT