A* optimality proof, cycle checking

CPSC 322 – Search 5

Textbook § 3.6 and 3.7.1

January 21, 2011
Taught by Mike Chiang
Lecture Overview

Recap

- Admissibility of A*
- Cycle checking and multiple path pruning
Search heuristics

Def.: A search heuristic $h(n)$ is an estimate of the cost of the optimal (cheapest) path from node n to a goal node.

- Think of $h(n)$ as only using readily obtainable (easy to compute) information about a node.
- h can be extended to paths:

$$h(\langle n_0, \ldots, n_k \rangle) = h(n_k)$$

Def.: A search heuristic $h(n)$ is admissible if it never overestimates the actual cost of the cheapest path from a node to the goal.
How to Construct a Heuristic

Identify relaxed version of the problem:
• where one or more constraints have been dropped
• problem with fewer restrictions on the actions

Result:
The cost of an optimal solution to the relaxed problem is an admissible heuristic for the original problem
(because it is always weakly less costly to solve a less constrained problem!)
Example 2

Search problem: robot has to find a route from start to goal location on a grid with obstacles

Actions: move *up, down, left, right* from tile to tile

Cost: number of moves

Possible h(n)? *Manhattan distance* (L_1 distance) between two points → sum of the (absolute) difference of their coordinates
Example 2

Search problem: robot has to find a route from start to goal location on a grid with obstacles

Actions: move up, down, left, right from tile to tile

Cost: number of moves

Possible $h(n)$? Would the Euclidian distance (straight line distance) be an admissible heuristic?
Would the Euclidean distance (straight line distance) be an admissible heuristic for the robot grid problem?

- It is an admissible search heuristic
- It is a search heuristic, but it is not admissible
- It is not a suitable search heuristic for this problem
A* Search

- A* search takes into account both
 - the cost of the path to a node $c(p)$
 - the heuristic value of that path $h(p)$.

- Let $f(p) = c(p) + h(p)$.
 - estimate of the cost of a path from the start to a goal via p.

- A* always chooses the path on the frontier with the lowest estimated distance from the start to a goal node constrained to go via that path.
Lecture Overview

• Recap of Lecture 8

Admissibility of A*

• Cycle checking and multiple path pruning
Admissibility of A*

- A* is complete (finds a solution, if one exists) and optimal (finds the optimal path to a goal) if:
 - the branching factor is finite
 - arc costs are > 0
 - \(h(n) \) is admissible -> an underestimate of the length of the shortest path from \(n \) to a goal node.

- This property of A* is called admissibility of A*
Why is A* admissible: complete

- It halts (does not get caught in cycles) because:
 - Let f_{min} be the cost of the optimal solution path s (unknown but finite if there exists a solution)
 - Each sub-path p of s has cost $f(p) \leq f_{\text{min}}$
 - Due to admissibility (exercise: prove this at home)
 - Let $f_{\text{min}} > 0$ be the minimal cost of any arc
 - All paths with length $> f_{\text{min}} / c_{\text{min}}$ have cost $> f_{\text{min}}$
 - A* expands path on the frontier with minimal $f(n)$
 - Always a prefix of s on the frontier
 - Only expands paths p with $f(p) \leq f_{\text{min}}$
 - Terminates when expanding s

See how it works on the “misleading heuristic” problem in AI space:
Why is A* admissible: optimal

- Let p^* be the optimal solution path, with cost c^*.
- Let p' be a suboptimal solution path. That is $c(p') > c^*$.

We are going to show that any sub-path p'' of p^* on the frontier will be expanded before p' => A* won’t be caught by p'
Analysis of A*

- If fact, we can prove something even stronger about A* (when it is admissible)

- A* is optimally efficient among the algorithms that extend the search path from the initial state.

- It finds the goal with the minimum # of expansions
Why A* is Optimally Efficient

• No other **optimal algorithm** is guaranteed to expand fewer nodes than A*

• This is because any algorithm that **does not** expand every node with \(f(n) < f^* \) risks to miss the optimal solution
Effect of Search Heuristic

A search heuristic that is a better approximation on the actual cost reduces the number of nodes expanded by A^*.

Example: 8puzzle
- tiles can move anywhere
- $(h_1: \text{number of tiles that are out of place})$
- tiles can move to any adjacent square
- $(h_2: \text{sum of number of squares that separate each tile from its correct position})$

average number of paths expanded: $(d = \text{depth of the solution}; \text{IDS} = \text{iterative depth first, see next lecture})$

$d=12$
- IDS = 3,644,035 paths
 - $A^*(h_1) = 227$ paths
 - $A^*(h_2) = 73$ paths

$d=24$
- IDS = too many paths
 - $A^*(h_1) = 39,135$ paths
 - $A^*(h_2) = 1,641$ paths
Time Space Complexity of A^*

- **Time complexity** is $O(b^m)$
 - the heuristic could be completely uninformative and the edge costs could all be the same, meaning that A^* does the same thing as BFS

- **Space complexity** is $O(b^m)$ like BFS, A^* maintains a frontier which grows with the size of the tree
Learning Goals for today’s class

• Formally prove A* optimality

• Define optimally efficient

• Construct admissible heuristics for specific problems.
Lecture Overview

• Recap of Lecture 8

• Admissibility of A*

Cycle checking and multiple path pruning
Cycle Checking

• You can prune a node \(n \) that is on the path from the start node to \(n \).
• This pruning cannot remove an optimal solution => cycle check

• What is the computational cost of cycle checking?
Computational Cost of Cycle Checking?

Constant time: set a bit to 1 when a node is selected for expansion, and never expand a node with a bit set to 1

Linear time in the path length: before adding a new node to the currently selected path, check that the node is not already part of the path

It depends on the algorithm

None of the above