
An Improved Exponential-time Algorithm for
�
-SAT

Ramamohan Paturi � , Pavel Pudlák �,
Michael E. Saks �, and Francis Zane �

Abstract

We propose and analyze a simple new algorithm for find-
ing satisfying assignments of Boolean formulae in conjunc-
tive normal form. The algorithm, ResolveSat, is a ran-
domized variant of the DLL (Davis, Longeman and Love-
land) [2] or Davis-Putnam procedure. Rather than apply-
ing the DLL procedure to the input formula � , however,
ResolveSat enlarges � by adding additional clauses using
limited resolution before performing DLL. The basic idea
behind our analysis is the same as in [6]: a critical clause
for a variable at a satisfying assignment gives rise to a unit
clause in the DLL procedure with sufficiently high proba-
bility, thus increasing the probability of finding a satisfy-
ing assignment. In the current paper, we analyze the ef-
fect of multiple critical clauses (obtained through resolu-
tion) in producing unit clauses. We show that, for each � ,
the running time of ResolveSat on a � –CNF formula is sig-
nificantly better than �	� , even in the worst case. In par-
ticular, we show that the algorithm finds a satisfying as-
signment of a general 3–CNF in time
����� ��������� with high
probability; where the best previous algorithm [9, 10] has
running time
��� � ������� � . We obtain a better upper bound of

��������� � �"!$#&%'�)(+*"�,�)%&�.-/
��0�213� 4���5���� for 3-CNF that have at
most one satisfying assignment (unique � -SAT). For each � ,
the bounds for general � -CNF are the best known for the
worst-case complexity of finding a satisfying solution for � -
SAT. As in [6], the idea of succinctly encoding satisfying
solutions can be applied to obtain lower bounds on circuit
size. Here, we exhibit a function 6 such that any depth–3
AND-OR circuit with bottom fan–in bounded by � requires7 ��	8:9���;�<	� gates (with = <?>A@). This is the first such lower
bound with = < >B@ .

C
University of California, San Diego; This research is supported by

NSF grant CCR-9734911 from Theory of Computing ProgramD
Mathematical Institute ČSAV, Žitna 25, Praha 1, Czech Republic.

Supported by grant no. A1019602 of the Academy of Sciences of the
Czech Republic, and grant INT-9600919/ME 103(1997) under the cooper-
ation of MŠMT, Czech Republic and NSF, USAE

Research supported by NSF grant CCR-9700239. Depart-
ment of Mathematics, Rutgers University, New Brunswick, NJ.
saks@math.rutgers.edu.This work was done while on sabbatical
at University of Washington.F

Bell Laboratories, Lucent Technologies

1 Introduction

1.1 � -CNF satisfiability

Given that the problem of deciding whether a given � –
CNF formula is satisfiable is NP-complete for �HGAI , it is
natural to look for algorithms that improve significantly on
the worst case running time of the naive exhaustive search
algorithm, which is JLK�M,N$�'O+�P��� for a formula on O variables.
Monien and Speckenmeyer [5] gave the first real improve-
ment by giving a simple algorithm whose running time is
���Q#R!LS 9 %T� , with U < >WV all � . Algorithms with increas-
ingly better running times (larger values of U <) have been
analyzed recently. Prior to this paper, the best known algo-
rithm for �X-YI was a deterministic algorithm due to Schier-
meyer with running time
��0�Z� ��������� [9, 10]. For � > I , the
randomized algorithm in [6] was the fastest known, with
a running time of
��0�Z�Q#R![#�;�<"%T��� . In this paper, we present
and analyze a very simple randomized algorithm, called Re-
solveSat, for finding satisfying assignments of � –CNF for-
mula which improves known algorithms for all values of
� . In particular, we show that the algorithm finds a satis-
fying assignment of any satisfiable 3-CNF formula in time

���Z� ��������� . The contribution of this paper include a fairly
simple algorithm for satisfiability and and an intricate anal-
ysis of its running time.

1.2 The Algorithm

First, we need a few definitions. For our purposes, a
CNF boolean formula �X�T\ #2] \ ��]_^_^3^"] \ � � is viewed as both
a boolean function and a set of clauses. We say that � is a
� -CNF if all the clauses have size at most � . For a clause`

, we write acbcd)ec� ` � for the set of variables appearing in`
. If agfha�b�d)ec� ` � , the orientation of a is positive if the

literal a is in
`

and is negative if ia is in
`

. Recall that if
� is a CNF boolean formula on variables �'\ #2] \ �]_^_^3^_] \ � �
and b is a partial assignment of the variables, the restriction
of � by b is defined to be the formula �kj[-l�nm b on the set
of variables that are not set by b , obtained by treating each
clause

`
of � as follows: if

`
is set to 1 by b then delete`

, and otherwise replace
`

by the clause
` j obtained by

deleting any literals of
`

that are set to 0 by b . Finally, by

1

a unit clause, we mean a clause that contains exactly one
literal.

The following simple subroutine takes as input an arbi-
trary assignment and tries to modify it to a satisfying as-
signment of formula � by considering the variables one by
one, in the order given by permutation � .

Procedure Modify(CNF formula
� �T\ #] \ �]3^_^_^_] \ � � ,

permutation � of � @] �]3^_^_^R] O�� , assignment �)�
1 -

�
.

for � - @ to O
if
���
![# contains the unit clause \
	 �

�
%

then ��	 �
�
% - @

else if
���
![# contains the unit clause i\
	 �

�
%

then ��	 �
�
% - V

else ��	 �
�
% -��	 �

�
%� �

(# -
� �

with \�	 �
�
% -���	 �

�
%

end /* end for loop */
return � ;
The algorithm Search is obtained by running Modify on

many random permutations.

Search(CNF-formula � , integer �)
repeat � times
� = uniformly random permutation of @]_^3^_^_] O� = uniformly random vector f����] ���2�� = Modify ��] �] �Z� ;
if � satisfies �

then output(�); exit;
end/* end repeat loop */
output(‘Unsatisfiable’);

The algorithm Search was analyzed in [6]; we summa-
rize the results in Theorem 1. The algorithm we investigate
here is obtained by combining Search with a preprocessing
step consisting of bounded resolution. We recall the defini-
tion of resolution. If

`
and

`
� are two clauses we say that`

and
`
� conflict on variable a if one of them contains a

and the other contains ia .
`
and

`
� is a resolvable pair if

they conflict on exactly one variable a . For such a pair their
resolvent, denoted ��� ` #)]

`
� � is the clause

` -�� #�� � �
where � # and � � are obtained by deleting a and ia from

`
#

and
`
� . It is easy to see that any assignment satisfying

`
#

and
`
� also satisfies

`
. Hence if � is a satisfiable CNF for-

mula containing the resolvable pair
`
]
`
� then the formula

� j - ������� ` #]
`
� � has the same satisfying assignments

as � . We say that the resolvable pair
`
#2]
`
� is e -bounded if

m ��� ` #2]
`
� �3m��he . The following function extends a formula

� to a formula ��� by applying as many steps of e -bounded
resolution as possible.

Resolve(CNF Formula � , integer e)
��� -h� .

while ��� has an e -bounded resolvable pair
`
#2]
`
�

with ��� ` #]
`
� �! f � ���� -Y�"�#�$��� ` #2]
`
� � .

return (� �).

In this paper we analyze the following simple combina-
tion of Resolve and Search:

ResolveSat(CNF-formula � , integer e , positive integer �)
��� - Resolve �'�] e � .
Search �'� �] �c� .

1.3 The algorithm Search

The algorithm Search was analyzed in [6]. It is easily
seen that Search ��] ��� runs in time
��%� m �nm J K	M�N+�TO+��� . It is
also clear that Search �'�] �c� always answers “unsatisfiable”
if � is unsatisfiable, and the problem of interest is to up-
per bound the probability that it answer “unsatisfiable” on
a satisfiable formula. For a formula � and assignment �
write &$�'�] ��� to be the probability, over random � and � ,
that Modify �'�] �] ��� returns the assignment � . Define &$�� �
to be the sum of &$��] ��� over � that satisfy � i.e., &$�'� � is
the probability that Modify �'�] �] ��� finds some satisfying
assignment. Then for a satisfiable � the error probability of
Search ��] ��� is equal to � @(' &$�� �P�*) +�),�.-	!�) +�) /)�10+% , which
is at most -�! � provided that m � m�G O32�&$�� � . The main result
about Search in [6] is:

Theorem 1 For any satisfiable � -CNF formula � on O
variables, &$�'� ��G �Z! �Q#�!(49 %T� . Thus the algorithm Search
with ��-BO+�Z�Q#�! 49 %T� has error probability
��5-�! ��� and runs
in time
��0��� #�! 49 %T��J K	M�N$�TO+��� .

In particular, for � - I the running time is

���768 � J K	M�N$�TO+��� which is not as good as the
��0� � ������� � al-
gorithm of [9, 10] mentioned in the introduction, but for
�YG:9 , Theorem 1 gave the best previously known upper
bound.

The analysis of Search in [6] proceeds in two steps.
First, Theorem 1 for is proved for the case of uniquely sat-
isfiable � . Then an averaging argument is used to prove the
result for all satisfiable � . The key idea in [6] is a simple
relationship between the structure of the formula and the
structure of the space of satisfying solutions expressed in
terms of critical clauses and isolated solutions.

It is also shown in [6] that the succinct description of
isolated solutions used in proving Theorem 1 for uniquely
satisfiable � can also be used to obtain better lower bounds
on the size of depth 3 boolean circuits needed to compute
certain functions.

1.4 Main results

In this paper we generalize the approach of [6] to analyze
ResolveSat �'�] e] �c� .

The running time of ResolveSat �'�] e] �c� can be bounded
as follows. Resolve �'�] e � adds at most
��'O � � clauses to �
and can be implemented easily in time
����TO � � �_m �nm J K	M�N+�TO+���
(this can be improved, but suffices for our purposes).
Search �'���] �c� runs in time
��%� ��m �nm�� O � �&JLK�M,N$�'O+�P� . Hence
the overall running time of ResolveSat ��] e] ��� is crudely
bounded from above by �L��m �nm�� O+� � �:J K	M�N$�TO+� . Provided
that e.-��Z�TO32 M�K�� O+� , O$� � -Y�	*"�,�)% and we can bound this by
� m �nm ��*R���)% . For our purposes, it will be sufficient to choose
e either to be some large constant, or to be a slowly growing
function of O , by which we mean that ec�TO+� tends to infinity
with O but is �Z�'O32 M,K�� O+� .

The error probability of ResolveSat ��] e] ��� , is just the
error probability of Search ����] �c� which, as noted above, is
� @7' &$�� � ��� + . So in extending the analysis of Search to Re-
solveSat, we want to lower bound &$��#�_� rather than &$�� � .
Trivially, &$�� � �kG &$�'� � ; the main contribution of this pa-
per is to provide a way to quantify the advantage provided
by the multiple critical clauses provided by the resolution
preprocessing step. Following the approach of [6], we first
upper bound &$�� � � for uniquely satisfiable formulae. For
�nG @ , define:

�
< -

	

�� #

@� � � � #< ![# �
^

Theorem 2 Let � GlI , let e��'O+� be a slowly growing func-
tion. Then for any uniquely satisfiable � -CNF formula � on
O variables,

&$�'���_� Gh� !+� #�!�� 99�� 4 %'��! *"�,�)%
Hence, ResolveSat �'�] e] �c� with � -W� �Q#�! � 99�� 4 %T�)(+*"�,�)%

has error probability �Z� @ � and running time � �Q#�!�� 99�� 4 %T�)(+*"�,�)%
on any uniquely satisfiable � -CNF formula.

It is not hard to show that � 4 -.9 ' 9 M�� � > @	^ �	��� , and
hence for � - I the running time of the algorithm on any
uniquely satisfiable 3-CNF formula is at most ��� 4���5��)(+*"�,�)% .
It is easily seen that � < is an increasing function of � , and
for large � , � < approaches � 	�� # #� 6 - � 	 6� ��� @�^ ��9�9 .

Next we consider general � -CNF formulas. In this case,
we are able to extend the result for the uniquely satisfiable
case, provided that �?G�� :
Theorem 3 Let � G�� , let e��'O+� be a slowly growing func-
tion. Then for any satisfiable � -CNF formula � on O vari-
ables,

&$�'���_� Gh� !+� #�! � 99�� 4 %'��! *"�,�)%

Hence, ResolveSat �'�] e] ��� with � -W� �Q#R!�� 99�� 4 %T�)(*R�,�	%
has error probability �Z� @ � and running time � �Q#R! � 99�� 4 %T�)(*R�,�	%
on any satisfiable � -CNF formula, provided �?G�� .

For the case that ��-YI] 9 , we have an improved constant
in the exponent although we have not matched the result we
obtained for unique 3-SAT.

Theorem 4 Let eh- ec�'O+� be a slowly growing function.
For any satisfiable O variable 3-CNF formula, &$��#�3�gG
��! 1_� ������� and so ResolveSat �'�] e] �c� with � -hO+�)13� ������� has
error probability �Z� @ � and running time � 1_� �������)(*R�,�	% .
Theorem 5 Let eh- ec�'O+� be a slowly growing function.
For any satisfiable O variable 3-CNF formula, &$��#�3�gG
��! 1_� ������� and so ResolveSat �'�] e] �c� with � -hO+�)13� ������� has
error probability �Z� @ � and running time �	1_� �������)(*R�,�	% .

As in [6], the main lemmas used to prove our results can
be used to prove lower bounds on the size of depth-3 circuits
needed to compute certain functions. Consider the class of
such circuits with bottom fan-in bounded by � . Previous
techniques [12, 3, 8, 7] do not give lower bounds better
than �	�	;�< for � G I . In this paper, we obtain a modest
improvement over the existing bounds by exhibiting an ex-
plicit boolean function for which we prove a ��8 9 �	;�< lower
bound where = < > @ is bounded away from 1 for all � .

One motivation for studying lower bounds on unbounded
fan-in depth-3 OR-AND-OR circuits is that strong lower
bounds in this model (even with bottom fan-in limited by
O[S) imply nonlinear bounds on the number of gates required
by fan-in 2 logarithmic depth AND-OR-NOT circuits [11].
The computational model, circuits with linearly many fan-
in 2 Boolean gates and logarithmic depth, is one of the
weakest models that one aspires to separate from NP. Strong
lower bounds on even bounded bottom fan-in depth-3 cir-
cuits imply nonlinear lower bounds on series-parallel log-
arithmic depth Boolean circuits. More precisely, a lower
bound of

7 �0�	�	;��3� on bounded bottom fan-in circuits im-
plies a nonlinear size lower bound on series-parallel depth-3
circuits [11].

2 Upper bounding � �"!$#&%('
Our main results give lower bounds on &$� � � which is

sum of &$� �] ��� over all satisfying assignments � of
�

. Here
we present a lemma which lower bounds &$� �] ��� in terms
of the clause structure of

�
. This lemma formalizes one of

the key ideas in [6].
Consider the run of Modify � �] �] ��� . Recall that each

variable \ � is assigned so as to satisfy some unit clause,
or is set to � � . A variable whose assignment is determined
by a unit clause is said to be forced. Let �)� d =*-+* � �] �] ���
denote the set of variables that are forced. The following
easy fact characterizes, for each fixed � , the set of � such
that Modify � �] �] ��� is equal to � .

Proposition 1 Let � be a satisfying assignment of
�

.
Modify � �] �] ��� - � if and only if � and � agree
on all variables outside of �)� d2= - *L� �] �] ��� . Thus, for
fixed � , the probability with respect to random � that
Modify � �] �] ��� - � is equal to �) 0+* � 8 ��� � ��� 	 � � %) 2	� � .
Therefore:

&$� �] ��� - @� � O 	
 	 �) 0+* � 8 ��� � �
� 	 � � %)
- � ! ��� 	� �) 0+* � 8 ��� � ��� 	 � � %) �]

where � 	 denotes expectation with respect to random � .

Now, by the concavity of the exponential func-
tion, we can lower bound the last expression by
��! �	(������) 0+* � 8 ��� � ��� 	 � � %) � . Next, we find an alternative ex-
pression for the expectation apppearing in the exponent

If a is a variable of formula
�

and � is a satisfying as-
signment we say that a clause

`
is critical for �'a]

�
] ��� if`

is in
�

, aHf a�b�d)ec� ` � , and under the assignment � , the
only true literal in

`
is the one corresponding to a . Sup-

pose that
`

is critical for �'a]
�
] ��� , and that � is a permu-

tation such that a appears last among the variables of
`

.
Then, in the run Modify � �] �] ��� , by the time a is assigned,
all of the other literals in

`
have been falsified and so

a f �)� d2= - *L� �] �] �c� (conversely, if a fg�)� d =*-+* � �] �] ���
then a must appear last in some critical clause for �Ta]

�
] �c�).

Let � M������ ���'a]
�
] �c� be the set of permutations � of the

variables such that for at least one critical clause
`

for
�Ta]
�
] ��� a appears last among all variables in a�bcd)e�� ` � ,

and let !X�Ta]
�
] ��� denote the probability that a random per-

mutation � belongs to � M����"���	�'a]
�
] ��� , which is equivalent

to the probability that a f �)� d =*-+* � �] �] ��� for random
� . By linearity of expectation, � 	� m �)� d2= - *L� �] �] ���_m � -
�$#%!X�Ta]

�
] �c� . Putting things together we have:

Lemma 1 For any satisfying assignment � of the CNF for-
mula

�
:

&$� �] �c� G � ! �)(�$&"' � # � �
� � % ^
In particular, if !X�Ta]

�
] �c�kG)(for all variables a then

&$� �] ��� Gh� !+� #�!�*"%'� .

It is important to emphasize that while the function Mod-
ify depends on random � and � , the probability represented
by !X�Ta]

�
] �c� is independent of � .

3 Unique SAT

3.1 Overview

Using Lemma 1, the proof of Theorem 1 for the case of
uniquely satisfiable � is nearly immediate. Indeed, let � be
the unique satisfying assignment for the � -CNF � . Then for

each variable a , � must contain at least one critical clause` # for �Ta] �] �c� , otherwise the assignment obtained from �
by complementing the value in position a is also a satisfy-
ing assignment. Since

` # has at most � variables, we con-
clude that for a random permutation � , a appears last in

` #
with probability at least @ 2)� , i.e., !X�Ta] �] ��� G @ 2)� and so
Lemma 1 implies &$�'� � - &$��] ��� Gg��!+�Q#R! 49 %T� as required.

Note that the argument uses only the fact that each vari-
able has at least one critical clause; if there are more critical
clauses for each variable we could get a better lower bound.
For example, let � contain two critical clauses for the vari-
able \ # at the all-true satisfying assignment, for example
�T\ # � i\ � � i\ 4 � and �T\ #�� i\ � � i\ � � with all of \ #2] \ �] \ 4�] \ � and
\ � distinct. In this case, the probability that a unit clause
for \ # occurs is @ 2	� , rather than @ 2)I obtained using only a
single critical clause. In general, � need contain only one
critical clause per variable, so we can’t hope for a general
improvement of this kind. However, what we will show
is that for appropriately chosen e , � � contains many criti-
cal clauses for each variable, and this will enable us to get
a better lower bound on !X�'a] � �] ��� . The main technical
contribution of the paper is a technique to account for the
advantage obtained by multiple critical clauses.

The argument in the first paragraph actually proves a
more general result: that if � is a � -CNF, and � is an
isolated satisfying assignment, in the sense that no assign-
ment differing from � in only one position satisfies � , then
&$�'�] �c� G ��!+� #�!(49 %T� . Similarly, our result will hold in a
more general situation. We say that a satisfying assignment
� of � is * -isolated (in �) for integer * G @ , if there is no
other satisfying assignment within Hamming distance * of
� . We will prove:

Theorem 6 Let � be a � -CNF formula on O -variables and
suppose that � is a * -isolated satisfying assignment of � .
Then for e G � � ,

&$��"�] ��� Gh� ! �Q#R! � 99�� 4 (,+ 9 � � %T%'�]
where for each � , � < is as defined before Theorem 2 and- < � *�� is a function that tends to 0 as * gets large.

If � uniquely satisfies � , then � is * -isolated for any * ,
and so Theorem 2 follows.

In order to prove this result, we will need to be able
to make a precise statement about the structure of critical
clauses for �Ta] � �] ��� . This structure will be described in
terms of a rooted tree with some of the nodes labeled by
variables. We’ll need some definitions. The degree of a
node in a rooted tree is the number of its children. The
depth of a node is its distance from the root. The depth of
the tree is the minimum depth of any leaf. A subset . of
nodes is a cut if it does not include the root, and every path
from the root to a leaf includes a node of . . If . is a set
of nodes, write / �0..� for the set of variables that appear as
labels of nodes of . .

A rooted tree is said to be admissible with respect to a
given set of boolean variables if it has the following proper-
ties:

� The root is labeled by a variable

� Each node in the tree is either labeled by a variable or
unlabeled

� For any path ! from the root to a leaf, no two nodes
have the same label. In other words, if node b is an
ancestor of node

�
and both are labeled, then they have

different labels.

A tree is said to be a critical clause tree for variable a ,
formula

�
and satisfying assignment � if it is admissible

and in addition satisfies

� The root label is a
� For any cut . of the tree,

�
has a critical clause

` � . �
for �Ta]

�
] �c� such that a�bcd2ec� ` � ..����� / �0..�����3a � .

A critical clause tree for �Ta]
�
] ��� is a convenient way of

representing the set of multiple critical clauses for �'a]
�
] ���

so that one can account for the probability of forcing a . We
prove two lemmas that together imply Theorem 6 and hence
Theorem 2.

Lemma 2 Let � be a � -CNF formula and � be a * -isolated
satisfying assignment of � . If a is any variable then for any
e G � � , there exists a critical clause tree for �Ta] � �] ��� of
depth * and maximum degree � ' @ .

The second lemma asserts that the existence of a suf-
ficiently deep critical clause tree for �Ta]

�
] �c� of bounded

degree implies a lower bound on !X�Ta]
�
] ��� .

Lemma 3 Let
�

be a formula, � a satisfying assignment,
and a a variable. If there is a critical clause tree for
�Ta]
�
] ��� of depth * and maximum degree � 'g@ , then:

!X�'a]
�
] ��� G

�
<� 'g@ '

-
< � *c�]

where for each � , - < � *�� tends to 0 as * gets large.

Combining these two lemmas with Lemma 1 immedi-
ately yields Theorem 6. So it remains to prove these two
lemmas.

3.2 Existence of a deep, bounded-degree critical
clause tree

In this subsection we prove Lemma 2. Fix a � -CNF for-
mula � , and * -isolated assignment � ; we will assume with-
out loss of generality that �g- @ � . Let a be an arbitrary

variable of � . For a set of variables � , ���	� denotes the as-
signment obtained from � by complementing the variables
of � .

We “grow” a tree of depth * by the following process.
Start with a tree � 1 consisting of one node labeled a . We
construct a sequence of trees � #] � �)]_^3^_^ as follows. Having
constructed � � !$# , if all leaves have depth * stop. Otherwise,
choose a leaf

� �
of depth less than * , and let ! � be the set of

nodes appearing on the path from
�*�

to the root (including
� �

and the root). Since � is * -isolated, and m ! � m � * , �
� /.� ! � �
does not satisfy � ; choose a clause

` �
that is not satisfied

by ���)/ �0! � � . For each variable � of acbcd)ec� ` � � ' / �0! � � ,
give

� �
a child labeled � . If a�bcd)e�� ` � � ' /.� ! � � is empty,

give
�

an unlabeled child. Let � denote the set of nodes
corresponding to the children of

�*�
.

Clearly the above procedure terminates with an admissi-
ble tree of depth * and maximum degree � 'B@ . The total
number of nodes in the final tree is bounded above by � � ,
and hence any clause whose variables all appear as node
labels in the tree has size at most e .

We will prove by induction on � that � � is a critical clause
tree for �'a] ���] ��� , i.e., that for any cut . , �#� contains a crit-
ical clause

` � . � for �'a] ���] ��� whose variable set is con-
tained in / �0..��� � a � . The result is vacuously true for � 1 ,
which has no cuts. For � # , the tree has only one cut. � # is
constructed from a clause

`
which is not satisfied by ��� a ,

which is a critical clause for a at � .
Now suppose � G � and the result holds for � � ![# . �

�
consists of � � !$# together with the node set � . Assume
that � � is obtained by extending the path ! � of � � ![# . Let
. be a cut of � � , and let ..jX- . '

�
. Note that for

each b f ! � ' �3a � , the set .�� - ..j�� b is a cut of
� � and a cut of � � !$# . Hence, by the induction hypothe-
sis, there is a critical clause

` � .��)� for �Ta] ���] �c� such that
acbcd)ec� ` �0. � ����� /.� . � � . If for some b , a�b�d)ec� ` �0. � �����
/ �0. j � , then we may take

` � .��)� to be
` �0..� . Similarly, if

for some b�j - b , /.� ` � ��� acbcd)ec� ` �0. ��� �P� , then /.�'bZ� f
/ �0.����0� , implying that / � .��)��� /.� ..jQ� and that we can
again take

` � . � � to be
` �0. j � . Now, we assume that for

each b f ! � ' �3a � , b is labeled, /.�'bZ� f / � ..jQ� and / �'bZ� f
acbcd)ec� ` �0.��	���	� /.� . j�� � b � � but / �b�j�� fYa�b�d)ec� ` �0.����P�
for b�j.f ! � ' �3a �] b�j - b . It follows that

` � .��)� can be
written as ��� � /.�'bZ� � a , where ��� is a clause consisting
entirely of negated variables, disjoint from /.� ! � � .

Now consider the clause
` �

that is used to construct � �
from � � !$# . We can write

`�� -Wa �
` j� � ����� � � # d

� � or`�� - ` j� � � � � � � # d
� � where

` j� is a clause consisting of
the negation of variables of / �� � � , and d #] d �]_^3^_^"] d � are
variables in / �0! � � ' � a � . Let b � denote the unique node
with label d � .

Let � 1 - = � and for @ � � �! define the clause
� � - a �

` j� � ��� � " � � (# d " � � �#�
�
" � # ���%$	� (where a

vacuous disjunction is regarded as False). Then for each

@ �
� �& , � � !$# and

` �0.��(' � are resolvable on variable

d � , and � � - ���%� � ![#2]
` �0.��('3��� . By induction on

�
, since

each of the � � have size most e , each is in � � . Then � � is
the desired critical clause

` � . � .
3.3 Lower Bounding !X�'a]

�
] ���

We now proceed to the proof of Lemma 3. We are given
a critical clause tree for �Ta]

�
] �c� of depth * and maximum

degree � ' @ and we want to deduce a lower bound on
!X�Ta]

�
] ��� , the probability with respect to a random per-

mutation � , that a appears last in some critical clause.
For the analysis, it will be useful to view the permutation

� as a random variable on the following probability space.
A placement of the variables is a function � that maps each
variable to � V�]3@ � . We take the set of placements as our
sample space and consider the uniform distribution, i.e.,
the values � ���[� are independent and uniformly distributed
on � V�]_@ � . Given a placement � we define a permutation
� -���� obtained by ranking the variables according to their� values, breaking ties by some (any) arbitrary rule. Since �
is one-to-one with probability 1, � is uniformly distributed
over all permutations. Henceforth, all probabilities we com-
pute are with respect to this probability space. Events are
defined by (measurable) sets of placements.

For an admissible tree � with root labeled by variable a ,
we define the event � � ��� to consist of all placements � such
that for some cut . of � , � � �.�	�
� �TaZ� for all � f /.� ..� .
We define � � � � �Td)� for d fl� V�]_@ � to consist of all � such
that for some cut . of � , � � � ���Yd for all � f /.� ..� . We
define � � (resp. � � �Td)�) to be the probability � � � � (resp.
� � �� �Td)�) occurs. From the definitions we have:

Proposition 2 If � is a critical clause tree for �Ta]
�
] ��� ,

then !X�Ta]
�
] �c� G�� � .

So to prove the lemma, it suffices to lower bound � � in
the case that � is a depth * tree of maximum degree � ' @ .

Now it is easy to see that � � �'d)� is just equal to the con-
ditional probability of � � ��� given that � �'a�� - d (here we
need to use the fact that in an admissible tree, no other node
has the same label as the root). Hence:

� � -
� #
1
� � �Td)� *�d ^

We say that � is trivial if it consists of one node; in this
case � � -�� � �'d)� - V for all d . Otherwise, for each child
b of the root, the subtree �k�'bZ� rooted at b is admissible if
and only if b is labeled. We have the following recursive
lower bound on � � �Td)� :
Lemma 4 Let � be an admissible tree with more than
one node with root labelled by a and d fW� V�]_@ � . Let
� #] � �]3^_^_^3] � � be the admissible subtrees rooted at the la-
beled children of the root of � . Then:

� � �Td)� G ��� � #
�'d �B� @ ' d)��� ��� �'d)�P�]

where an empty product is interpreted as 1.

We apply this lemma in the case that � is a tree of degree
at most � ' @ and depth at least * . For fixed � and d , define
the sequence ��� < � � �'d2����*XG V � recursively by � < � 1 �Td)� - V ,
and � < � � �Td)� - �Td �A� @ ' d)��� < � � ![# �Td)��� < !$# . Also define
� < � � -�� #1 � < � � �'d)� *�d . Lemma 4 together with induction
on * yields:

Lemma 5 If � is an admissible tree of degree at most � ' @
and depth at least * then for all d f � V�]_@ � :� � �'d2� G�� < � � �'d)� and � � G�� < � � ^

Thus, we can complete the proof of Lemma 3 by estab-
lishing a suitable lower bound on � #1 � < � � �Td)� *�d .
3.4 Evaluating the Integral

In order to lower bound � < � � , we will first show that
for each � and d , the sequence ��� < � � �'d2��� * G V � con-
verges. Then, by choosing * sufficiently large, we can
closely approximate this limit behavior. For fixed � and
d f � V�]_@ � , define the function 6 �< �'\ � - �Td �B� @ ' d)�:\ ��< ![# .
Note that � < � � �'d)�k- 6 �< ��� < � � !$# �'d2��� . Let us define � < �Td)�
to be the smallest nonnegative real root of the equation
6 �< �T\ � ' \ - V ; � < �Td)� is well defined since 1 is a root

of 6 �< �T\ � ' \ - V . Let � < - � #1 � < �Td)� *�d . It is easy to show
that � < � @ � - @ , and we define d < to be the least d such that
� < �Td)� - @ .

By elementary analytic arguments one can show:

Proposition 3 Let � GgI .

1. � < �Td)� is continuous and strictly increasing on the in-
terval V�] d < � - @ and � < �Td)� - @ on the interval d <�]3@ �

2. For each fixed * , � < � � �'d2� is a continuous, nondecreas-
ing function of d on V�]_@ � , with � < � � � V �B- V and� < � � � @ � - @ .

3. For each fixed d , � < � � �Td)� is nondecreasing in * , and
strictly increasing if d f � V�]_@ � .

4. For each fixed d , ��� < � � �'d)��� * G V � converges to
� < �Td)� .

5. ��� < � � ��*nG V � converges to � < .
We will show that � < - � 9< !$# , where � < is as defined

before the statement of Theorem 2. Then Proposition 2 and
Lemma 5 and Proposition 3 imply Lemma 3.

For �X-BI , we can explicitly solve for � 4 �'d2� to get

� 4 �Td)� -�� � �
#�! � �P� d � @ 2	�
@ d G @ 2	�

Integrating this from 0 to 1 yields � 4 - � ' � M�� �gG
V�^ � @ I�� .

For � > I , we invert the function � < �Td)� and then inte-
grate the inverse function. As we noted, � < �'d)� is a con-
tinuous strictly increasing function on V�] d < � and is 1 on
 d <�]_@ � . Therefore we can define a unique function � < � P� on
the interval V�]_@ � which is an inverse for � < �'d)� on the in-
terval V�] d < � , and � #1 � < �'d)� *�d - � #1 � @ ' � < � P�P�"* (draw a
picture!).

Now � < � P� is the unique value of d satisfying - �'d �
� @ ' d2� P�P< !$# , which is:

� < � P� - 49�� 4 '
@ '

.
We now have

� < -
� #
1
� @ ' � < � P�P�"* -

�
<� 'g@]

completing the proof.

4 General � -SAT

We now proceed to the analysis of general � -CNF for-
mulae. Theorem 6 applies to any formulae that has a suffi-
ciently isolated satisfying assignment, but a satisfiable for-
mula need not have such an assignment. Recall that iso-
lation comes into the building of the critical clause tree:
we need * -isolation to guarantee that the tree will extend
to depth * . Intuitively, though, if � has few satisfying as-
signments, then it should be close to the unique-SAT case,
and if it has many satisfying assignments, then finding one
should be easy. Our aim is to formalize this intuition. As
described in the Sections 1.3 and 1.4, upper bounding the
running time of Search ����] �c� is accomplished by upper
bounding &$����_� , the probability that Modify �'�#�] �] ��� re-
turns a satisfying assignment.

The method for bounding &$� � � outlined in Section 2 and
applied in the uniquely satisfiable case focused on the prob-
ability &$� �] ��� of accepting a particular assignment. We
will need a more general approach. We start with a sim-
ple combinatorial lemma. If b is a partial assignment to the
variables �3\ #]3^_^_^_] \ � � , the subcube defined by b is the set
of all assignments that extend b .

Lemma 6 Let . be a nonempty set of assignments (i.e.,
points in � V�]_@ � �). Then � V�]3@ � � can be partitioned into a
family � � � � ��f . � of disjoint subcubes so that ��f�� � for
each ��f . .

If
�

is a satisfiable formula, we apply this lemma in the
case that . is the set � � � � of satisfying assignments of
the formula

�
. We will analyze the probability &$� � � that

Modify � �] �] �Z� finds some satisfying assignment by con-
ditioning according to the subcube � � that contains � . For
satisfying assignments � and � write &$� �] � m � � � for the
probability that Modify � �] �] ��� returns � given �gf � � .
We write &$� � m � � � for the sum of &$� �] � m � � � over all sat-
isfying assignments � . We then have

&$� � � -

���	� � � % &$�
� m � � ��
����� �nf � � �

G

���	� � � % &$�

�
] � m � � ��
����� � f�� � �]

from which we conclude:

Proposition 4 For any satisfiable formula
�

, &$� � � G��� � ���	� � � % &$� �] � m � � � .
So, to lower bound &$� � � , we take a generic satisfying

assignment � and lower bound the probability &$� �] � m � � �
that Modify � �] �] ��� returns � given that �?f�� � .

Let � -�� �5�c� be the set of variables which define the
subcube � � (i.e., the set of variables which are constant over
that subcube) and let - H�5�c� be the remaining variables.
The variables in � �5�c� are referred to as the defining vari-
ables of � and those in H�5�c� are referred to as nondefining.

Now, to lower bound &$� �] � m � � � , we first try to general-
ize the argument leading to Lemma 1. Given that � f�� � ,
we have that � agrees with � on the defining variables, so
Modify � �] �] �Z� returns � if and only if the non-defining
variables are set according to � . Write �)� d =*-+* � � �] �] �Z� for
the set of non-defining variables in �)� d2= - * � �] �] ��� . Then
Proposition 1 can be generalized to conclude:

&$� �] � m � � � -Y� !") �.� � %) � �) 0+* � 8 ����� � ��� 	 � � %) � ^
Continuing the argument, one finally obtains the follow-

ing generalization of Lemma 1:if the average of !X�Ta]
�
] ���

over defining variables is at least (then &$� �] � m � � � G
��! �Q#�!�*_%) �.� � %) .

Next we look to generalize the lower bound on
!X�Ta]

�
] �c� in Theorem 6. What we would like is to get the

same � 9< ![# � -
< � *�� lower bound. The difficulty comes when

we try to construct the critical clause tree of depth * . Recall,
that to extend the tree from a given leaf

�*�
we used a clause`��

that was not satisfied by � � / � ! � � , and the existence
of such a clause was guaranteed by the fact that ��� / �0! � �
does not satisfy the formula (because of the * -isolation of
�). Now, however, such a clause

` �
need not exist because

we don’t know that � is isolated so � � /.� ! � � might satisfy�
. But we do know that if / � ! � � consists only of nondefin-

ing variables then � �$/.� ! � � does not satisfy
�

since � is

the only satisfying assignment in � � . So suppose we mod-
ify the rule for building the tree, to say that we never try to
expand the tree from a leaf labeled by a defining variable.
In this way, we maintain the property that defining variables
appear only at leaves, and so by the above observation, it is
always possible to expand any other leaf. Thus we conclude
the following counterpart to lemma 2

Lemma 7 Let � be a � -CNF formula and � an arbitrary
satisfying assignment, and let � � be as defined above. If
a is any nondefining variable, and * is any integer, and
e G � � , there exists a critical clause tree for �Ta] � �] ��� of
maximum degree � ' @ such that (i) the only nodes labeled
by defining variables are leaves, (ii) any leaf that labeled by
a nondefining variable is at depth * .

We say that such a tree is a depth * tree with respect to
the set �%��� . Such trees are nice, but not good enough to
directly get a result such as Lemma 3. For instance, it could
be that the tree consists of a root together with � '�@ children
all labeled by defining nodes. In this case, we get @ 2)� as
the probability � � , as compared to � < 2Z�0� 'g@ � . This is the
worst case since there must be at least one critical clause
for each nondefining variable. This is weak, but does give
a good lower bound on !X�Ta]

�
] �c� in the case that � �%��� is

a reasonably large fraction of O . Note that !X�Ta]
�
] �c� is

the probability that the variable a f �)� d2= - *L� �] �] ��� for
random � .

Lemma 8 Let � be a boolean formula and � a satisfying
assignment. Then:

!X�Ta]
�
] �c� Gh� ! �Q#�! 49 %) �.� � %)

In particular if m � �5�c�3m 22O G <��< !$#&% 6
�
<�' #< !$# then this

gives the desired � �Q#R! � 99�� 4 %T� lower bound. However, if � �5�c�
is a small fraction of O (so H�%��� is close to O) the above
bound will not be good enough to improve the results of [6].
So, we need a way to handle the “bad case” which, roughly
speaking, is the case that � �%��� is not too big a fraction of
O and there are many shallow leaves labeled by defining
variables.

So, we need to back up somewhat and generalize an ear-
lier part of the argument. Let’s return to the statement of
Proposition 1 which we generalized above. The next step
leading to Lemma 1 was to use concavity to bring the ex-
pectation inside the exponential. This step still provides a
lower bound, but in this case it gives too much away. Intu-
itively here’s why. For a random variable � , the inequal-
ity � ��� � G ��� � � � is tight if � is constant and becomes
very loose if � has a small but non-negligible probability
of being very large. Now consider the random variable of
interest �)� d2= - * � � �] �] ��� . If we consider the “bad case” in
the development sketched above, we see that permutations

for which the defining variables appear early in the permu-
tation will tend to force many more nondefining variables
than permutations for which the defining variables appear
later. This creates exactly the situation where the concavity
bound is loose.

So we proceed as follows. Suppose we identify a set�
of placements having “fairly large” probability with the

property that the average of m �)� d2= - * � � �] �] ���_m conditioned
on � f �

is much larger than the overall average. We then
have

� �) 0+* � 8 ����� � �
� 	 � � %) � G
����� �Hf � � ��� �) 0+* � 8 ����� � ��� 	 � � %) �
where � � denotes the conditional expectation given that� f �

. Following the argument as in Section 2, letting
! � �'a]

�
] ��� denote the probability that � f � M����"���	�'a]

�
] ���

given that � f �
, and repeating the argument in Section 2

we obtain the following generalization of Lemma 1:

Lemma 9 Let
�

be a (measurable) subset of placements.
For any satisfying assignment � of the CNF formula

�
if ! � �'a]

�
] ��� G (for all non-defining variables a then

&$� �] � m � � � Gh� ! �Q#�!�*_%) �.� � %)
����� � f � � .
One choice of

�
is to take all � such that the defining

variables all appear before the nondefining variables. For
such a

�
, the difficulty with shallow defining variables in

the critical tree disappears, indeed, we can completely elim-
inate the defining variables by fixing them to their values
since we know they will appear before all of the nondefin-
ing ones. So we get the same lower bound on !X�Ta] � �] �c�
as in the uniquely satisfiable case. But now, in bound-
ing &$�'���] � m � � � we must multiply by
����� � f � � , and
for this choice of

�
the best lower bound is of the form

� 8��) � � � %)� �*) � � � %) .
Lemma 10 Let � be a � -CNF formula and � a satisfying
assignment. Let *nG @ and e G � � . Then:

&$�'� �] � m � � � Gh� ! �Q#�! � 99�� 4 (,+ 9 � � %T%T� � = 1 m � �%���_mO �) � � � %)]
where = 1 is a constant and for each � , - < � *c� is a function
that tends to 0 as * gets large.

If m � �%���_m - �Z�'O+� the expression for
����� � f � � is
at least ��![*R�,�	% and the bound in this lemma gives what we
want. But for larger � , the
����� � f � � significantly re-
duces the quality of the bound.

So we can handle the case that � �%��� is small and also the
case that � �5�c� is large. To handle intermediate ranges of
� �%��� , we will aim to choose

�
so that the defining elements

tend to occur earlier than the nondefining ones, but so that�
still has reasonably high probability.
To this end, define a distribution function to be a non-

decreasing (finitely) piecewise differentiable function 	 on

 V�]_@ � such that 	H� V �n- V and 	H� @ �X- @ . We say that a
placement � is 	 -good with respect to the set � of vari-
ables provided that, for each d , the number of all defining
variables that are mapped to V�] d � is at least � 	H�Td)�3m � m � .
For fixed � , we define

��� �%� � to be the set of all place-
ments that are 	 -good. We define a constant � � and a se-
quence � � �0��� associated with the function 	 (below � is
the derivative 	 j0�Td)� .)

� � -
� #
1
� �Td)��M�K�� � ��� �Td)�P�"*	d

� � �0��� -
� #
1
	 �Td)� < !$# *	d

The negative of � � is known as differential entropy
where 	 is the distribution function of the random vari-
able d . It is related to the discrete entropy �n�
	�� of the
”quantized” random variable d by � � 	��+�'d � ��M,K�� �
�+�'d � �P� -
� � 	�� �Td � ��M�K�� ��	�� �Td � ��� ' M�K���	 . The quantity to the
left converges to � � as 	 goes to zero. �n��	�� -
' � � 	��+�'d

� ��M�K�� ��	��+�'d � �P� is the discrete entropy of the
quantized random variable. Since � takes at most @ 2	 val-
ues, we have V ���n��	�� �gM�K�� #� . From these observations,
we conclude � � G V .

Observe that for 	H�Td)� - d � � @,' d)� � < �Td)� -�� < �'d)� 49�� 4 ,� � ���� - � 9< !$# as derived in Section 3.4.
It is not hard to derive a lower bound on the probability

that a random placement is in
� � �%� � :

Lemma 11 Let 	 be a distribution function and let � be its
derivative. Then
����� � f ��� �5� � � Gg� !���) �) ![*R�) �) % ^

Next, we want to lower bound ! � �'a]
�
] ��� . Recalling

the definition of � < �Td)� we obtain the following analog of
Lemma 3:

Lemma 12 Let � be a formula, � a satisfying assignment
and let � and be complementary sets of variables. Sup-
pose that a f and that there is a critical clause tree that
is degree � ' @ and depth * with respect to . Let 	H�Td)� be
a distribution function satisfying 	H�'d)� G d��g� @ ' d2� � < �'d)�
for all dkf V�]_@ � . Then

! � �'a]
�
] ��� G�� � �0��� '
��� � � 2�m � m � ' - < � *c�]

where - < � *�� tends to 0 as * gets large.

One natural candidate for 	 is to match the restriction
placed on it in the hypothesis, that is, 	 �Td)�?- d �A� @ 'd2� � < �Td)� . This choice corresponds to the case that the crit-
ical clause tree is infinitely deep with all nodes labelled by
distinct variables. For this 	 , we express � � as a func-
tion of 	 (rather than its derivative) and establish that � �
decreases monotonically with � .

Lemma 13 For 	H�'d2� -hd �Y� @ ' d)� � < �'d2� ,
� � -

� #
1
M�K�� �

� @ ' 	 < ![# � �
@ �Y�0� ' ��� 	 < !$# ' �0� ' @ � 	 < ! � * 	

With some additional calculations, we can also show the
following

Lemma 14 � � decreases monotonically with � .

Suppose that � �5�c� is much larger than eX-A� � and that
* is an increasing function of O . Let 	 - m � �%���_m 2 O . Then
Lemmas 9, 11 and 12 imply

&$�Ta] � � m � � � G � !+�T� #�!����$% ! �Q#�!���� !���� % � !��P%T�]
where � can be made arbitrarily small. Define � -

� @�' � � ' � � � to be the coefficient of 	 in this express.
Using numerical calculation, we show that � G V for ��- � .
Since � � ���� - � < - � 9< ![# for our choice of 	 , it follows
that � � ���� decreases monotonically with � . Since � � de-
creases monotonically with � (Lemma 14), we have �gG V
for � G � . Hence, the right hand side is always at least
��! �Q#�!�� � %T�	(+*R���)% . Summarizing this, and combining with
Lemma 10 we get the following:

Lemma 15 Let � be a � -CNF formula, � a satisfying as-
signment, and H�%��� and � �%��� be as above. Let * be an
increasing function of O , say M�K�� M�K�� O .

1. If � �5�c� - �Z�TO+� then:

&$�� �] ��� Gg� !+�Q#R!�� � ��<R%T%'�)(+*"�,�)%
2. If � �5�c� - 7 �TO+� , 	H�'d2� - d � � @ ' d)� � < �'d)� and � @ '� � ' �

� �0���P� � V , we have:

&$�'a] �"��m � � � G � !+�T�Q#R!����+% !+� #�!���� !���� % ! *"�Q#P%T%T�
3. If � �%��� - 7 �'O+� , 	H�Td)� -Yd � � @7' d)� � < �Td)� and �nG��

&$�'���] � m � � � G � !+� #�!���� ��<"%T%T�)(+*"�,�)%

With numerical calculations, we obtain the following re-
sults, where = is the constant appearing in an upper bound
of �	8 � on the running time of the algorithm.

� � � � < � =
3 1.115 0.614 -0.729 0.533
4 0.666 0.445 -0.111 0.581
5 0.478 0.350 0.172 0.649
6 0.373 0.288 0.339 0.711

For �X-BI] 9 , however, we get appreciably better results.
In those cases, using computer search. we obtain the

improved upper bounds on the running time of ��1_� ������� for
� - I and �213� ������� for � -.9 . The details will appear in the
final paper.

This discussion completes a sketch of the proofs of The-
orems 3, 4 and 5.

5 Lower Bounds for Depth-3 Circuits

Efficient coding of suffciently isolated satisfying solu-
tions implies that if a � -CNF accepts only inputs that are
sufficiently apart in the Hamming space, then it cannot ac-
cept too many inputs. Such limitation on the set of points
accepted by a � –CNF can be exploited to prove a lower
bound on the size of certain depth-3 circuits. Let � 4 < de-
note the class of depth–3 circuits with an OR gate at the top
and bottom fan-in � . A depth–2 subcircuit of a � 4 < circuit is
a � –CNF.

Let Ecc be a binary error–correcting code with minimum
distance * � is a slowly increasing function of O . Let � be
the function where �n�'\ � - @ if \ is a codeword of Ecc, and
0 otherwise.

Lemma 16 No � –CNF can accept more than
� �Q#R! � 99�� 4 (+*"�Q#P%T%T� codewords of Ecc while rejecting all
non-codewords.

Now, we combine this lemma with a simple observation:
If 6 is a Boolean function computed by a � 4 < circuit

`
of

size e , then there must be some depth–2 subcircuit
` j so

that
` j accepts m 6 ![#)� @ �3m 2	e points with 6 �'\ � - @ while re-

jecting all points with 6 �T\ � - V . Also, one can construct er-
ror correcting codes with distance

7 � * � � and �)�Z! *"�,�)% code-
words.

Corollary 1 For any �?G I , any � 4 < circuit computing � ="=
must have size at least � � 99�� 4 ��! *"�,�)% .
Corollary 2 Any � 44 circuit computing � must have size at
least �213� �R#&4�� .

Corollary 3 For any �gG I , any � 4 < circuit computing �
must have size at least � � 99�� 4 � .

Acknowledgments: We thank Professor Ed Bender for his
help in evaluation the integral in Section 3.4. We also thank
Yuming Zhang for his helpful comments and corrections.

References

[1] Alon, N., Spencer, J., and Erdös, P., (1992), “The
Probabilistic Method”, John Wiley & Sons, Inc.

[2] Davis, M., Logemann, G., and Loveland, D., (1962),
A machine program for theorem proving, Communi-
cations of the ACM, 5:394–397.

[3] Håstad, J., (1986), Almost Optimal Lower Bounds for
Small Depth Circuits, in “ Proceedings of the 18th
ACM Symposium on Theory of Computing”, pp. 6–
20.

[4] Håstad, J., Jukna, S., and Pudlák, P., (1993), Top–
Down Lower Bounds for Depth 3 Circuits, “Proceed-
ings of the 34th Annual IEEE Symposium on Founda-
tions of Computer Science”, pp. 124–129.

[5] Monien, B. and Speckenmeyer, E., (1985), Solving
Satisfiability In Less Than � � Steps, Discrete Applied
Mathematics 10, pp. 287–295.

[6] Paturi, R., Pudlák, P., and Zane, F., (1997), Statisfia-
bility Coding Lemma, in Proceedings of the 38th An-
nual IEEE Symposium on Foundations of Computer
Science, pp 566–574, October 1997.

[7] Paturi, R., Saks, M.E., and Zane F., (1997), Exponen-
tial Lower Bounds on Depth 3 Boolean Circuits, in
Proceedings of the 29th Annual ACM Symposium on
Theory of Computing”, pp. 86-91

[8] Razborov, A.A. (1986), Lower Bounds on the Size
of Bounded Depth Networks over a Complete Basis
with Logical Addition, Mathematische Zametki 41 pp.
598–607 (in Russian). English Translation in Mathe-
matical Notes of the Academy of Sciences of the USSR
41, pp. 333–338.

[9] Schiermeyer, I. (1993), Solving 3-Satisfiability in less
than @�^ � ����� Steps, in Selected papers from CSL ’92,
LNCS Vol. 702, pp. 379-394.

[10] Schiermeyer, I. (1996), Pure Literal Look Ahead: An

�� @�^ 9�� �2�Z� 3-Satisfiability Algorithm, Preprint.

[11] Valiant, L.G., (1977), Graph–theoretic arguments in
low–level complexity, in Proceedings of the 6th Sym-
posium on Mathematical Foundations of Computer
Science, Springer–Verlag, Lecture Notes in Computer
Science, vol. 53, pp. 162–176.

[12] Yao, A. C–C. (1985), Separating the Polynomial Hier-
archy by Oracles, in “Proceedings of the 31st Annual
IEEE Symposium on Foundations of Computer Sci-
ence”, pp. 1–10.

[13] Zhang, W. (1996), Number of models and satisfiability
of sets of clauses, Theoretical Computer Science 155,
pp. 277-288.

