
Control Abstractions for Local Search

Pascal Van Hentenryck and Laurent Michel

Department of Computer Science

Brown University

Providence, Rhode Island 02912

CS-03-06

March 2003





Control Abstractions for Local Search

Pascal Van Hentenryck1 and Laurent Michel2

1 Brown University, Box 1910, Providence, RI 02912
2 University of Connecticut, Storrs, CT 06269-3155

Abstract. Comet is an object-oriented language supporting a constraint-
based architecture for local search through declarative and search com-
ponents. This paper proposes three novel and lightweight control ab-
stractions for the search component, significantly enhancing the compo-
sitionality, modularity, and reuse of Comet programs. These abstrac-
tions, which includes events and checkpoints, rely on first-class closures
as the enabling technology. They are especially useful for expressing, in
a modular way, heuristic and meta-heuristics, unions of heterogeneous
neighborhoods, and sequential composition of neighborhoods.

1 Introduction

Historically, most research on modeling and programming tools for combina-
torial optimization has focused on systematic search, which is at the core of
branch & bound and constraint satisfaction algorithm. It is only recently that
more attention has been devoted to programming tools for local search and its
variations (e.g., [6, 26, 23, 11, 14, 25]).

Comet [13] is a novel, object-oriented, programming language specifically
designed to simplify the implementation of local search algorithms. Comet sup-
ports a constraint-based architecture for local search organized around two main
components: a declarative component which models the application in terms of
constraints and functions, and a search component which specifies the search
heuristic and meta-heuristic. Constraints, which are a natural vehicle to express
combinatorial optimization problems, are differentiable objects in Comet: They
maintain a number of properties incrementally and they provide algorithms to
evaluate the effect of various operations on these properties. The search compo-
nent then uses these functionalities to guide the local search using multidimen-
sional, possibly randomized, selectors and other high-level control structures.
The architecture enables local search algorithms to be high-level, compositional,
and modular. It is possible to add new constraints and to modify or remove
existing ones, without having to worry about the global effect of these changes.
Comet also separates the modeling and search components, allowing program-
mers to experiment with different search heuristics and meta-heuristics without
affecting the problem modeling. This separation of concerns give Comet some
flavor of aspect-oriented programming [9] and feature engineering [24], since
constraints represent and maintain properties across a wide range of objects.
Comet has been applied to many applications and can be implemented to be
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competitive with tailored algorithms, primarily because of its fast incremental
algorithms [13].

This paper focuses on the search component and aims at fostering the com-
positionality, modularity, and genericity of Comet. It introduces three novel
control abstractions whose main benefit is to separate, in the source code, com-
ponents which are usually presented independently in scientific papers. Indeed,
most local search descriptions cover the neighborhood, the search heuristic, and
the meta-heuristic separately. Yet typical implementations of these algorithms
exhibit complex interleavings of these independent aspects and/or require many
intermediary classes and/or interfaces. The resulting code is opaque, less extensi-
ble, and less reusable. The new control abstractions address these limitations and
reduce the distance between high-level descriptions and their implementations.

The first abstraction, events, enables programmers to isolate the search heuris-
tic from the meta-heuristic, as well as animation code from the modeling and
search components. The second abstraction, neighbors, aims at expressing natu-
rally unions of heterogeneous neighborhoods, which often arise in complex rout-
ing and scheduling applications. It allows to separate the neighborhood defini-
tion from its exploration, while keeping move evaluation and execution textually
close. The third abstraction, checkpoints, simplifies the sequential composition
of neighborhoods, which is often present in large-scale neighborhood search.

These three control abstractions, not only share the same conceptual moti-
vation, but are also based on a common enabling technology: first-class closures.
Closures make it possible to separate the definition of a dynamic behaviour from
its use, providing a simple and uniform implementation technology for the three
control abstractions. Once closures are available, the control abstractions really
become lightweight extensions, which is part of their appeal.

The rest of this paper is organized as follows. Section 2 briefly reviews the
local search architecture and its implementation in Comet. Section 3 gives a
brief overview of closures. Sections 4, 5, and 6 present the new control abstrac-
tions and sketches their implementation. Section 7 presents some experimental
results showing the viability of the approach. Section 8 concludes the paper.

2 The Constraint-Based Architecture for Local Search

This section is a brief overview of the constraint-based architecture for local
search and its implementation in Comet. See [13] for more detail. The architec-
ture consists of a declarative and a search component organized in three layers.
The kernel of the architecture is the concept of invariants over algebraic and
set expressions [14]. Invariants are expressed in terms of incremental variables
and specify a relation which must be maintained under modifications to its vari-
ables. Once invariants are available, it becomes natural to support the concept of
differentiable objects, a fundamental abstraction for local search programming.
Differentiable objects maintain a number of properties (using invariants) and
can be queried to evaluate the effect of local moves on these properties. They are
fundamental because many local search algorithms evaluate the effect of various
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1. range Size = 1..1024;

2. LocalSolver ls();

3. UniformDistribution distr(Size);

4. inc{int} queen[i in Size](ls,Size) := distr.get();

5. int neg[i in Size] = -i;

6. int pos[i in Size] = i;

7. ConstraintSystem S(ls);

8. S.post(new AllDifferent(queen));

9. S.post(new AllDifferent(queen,neg));

10. S.post(new AllDifferent(queen,pos));

11. inc{set{int}} conflicts(ls) <- argMax(q in Size) S.violations(queen[q]);

12. m.close();

13. Counter it(ls);

14. while (!S.isTrue()) {
15. select(q in conflicts)

16. selectMin(v in Size)(S.getAssignDelta(queen[q],v))

17. queen[q] := v;

18. it++;

19. }

Fig. 1. The Queens Problem in Comet.

moves before selecting the neighbor to visit. Two important classes of differen-
tiable objects are constraints and functions. A differentiable constraint maintains
properties such as its satisfiability, its violation degree, and how much each of
its underlying variables contribute to the violations. It can be queried to evalu-
ate the effect of local moves (e.g., assignments and swaps) on these properties.
Differentiable objects also capture combinatorial substructures arising in many
applications and are appealing for two main reasons. On the one hand, they are
high-level modeling tools which can be composed naturally to build complex
local search algorithms. As such, they bring into local search some of the nice
properties of modern constraint satisfaction systems. On the other hand, they
are amenable to efficient incremental algorithms that exploit their combinatorial
properties. The use of combinatorial constraints is also advocated in [3, 7, 17, 26].

These first two layers, invariants and differentiable objects, constitute the
declarative component of the architecture. The third layer of the architecture is
the search component which aims at simplifying the implementation of heuris-
tics and meta-heuristics, another critical aspect of local search algorithms. It
does not prescribe any specific heuristic or meta-heuristic. Rather, it features
high-level constructs and abstractions to simplify the neighborhood exploration
and the implementation of meta-heuristics. These includes several multidimen-
sional selectors, abstractions to manipulate solutions, and advanced simulation
techniques.
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Figure 1 illustrates the architecture, and its implementation in Comet, on
the queens problem. The Comet algorithm is based on the min-conflict heuristic
[16]. The algorithm starts with an initial random configuration. Then, at each
iteration, it chooses the queen violating the largest number of constraints and
moves it to a position minimizing its violations. This step is iterated until a
solution is found. Since a queen must be placed on every column, the algorithm
uses an array queen of variables and queen[i] denotes the row of the queen
placed on column i. Lines 1-6 declare a range, a local solver, a uniform distri-
bution, an array of incremental variables for representing the row of each queen,
as well as two arrays of constants. The modeling component is given in Lines
7-12. Line 7 declares a constraint system. Lines 8-10 add the three traditional
AllDifferent constraints, showing how Comet supports “global” combinato-
rial constraints for local search. Line 11 expresses an invariant which maintains
the set of queens with the most violations. Operator argMax(v in S) E simply
returns the set of values v in S which maximizes E. The search component is
given in lines 13-19. It iterates lines 15-17 until the constraint system is true,
i.e., no constraint is violated. Line 15 selects a most violated queen, while line
16 selects a new value v for the selected queen. The value is selected to minimize
the number of violations of the selected queen. To implement this min-conflict
heuristic, Comet queries the constraint system, a differential object, to find out
the effect of assigning queen q to each row. Line 17 simply executes the move,
automatically updating all invariants and constraints. The use of the counter it
will become clear later in the paper.

Observe that the search and declarative components are clearly separated in
the program. It is thus easy to modify one of them (e.g., adding a constraint
and/or changing the search heuristic) without affecting the other. Although
the two components are physically separated in the program code, they closely
collaborate during execution. The declarative component is used to guide the
search, while the assignment queen[q] := v starts a propagation phase which
updates all invariants and constraints. This compositionality and clear separa-
tion of concerns are some of the appealing features of the architecture. This is
precisely such properties which this paper tries to foster further. Note also that
the declarative component only specifies the properties of the solutions, as well
as the data structures to maintain. It does not specify how to update them,
which is the role of the incremental algorithms in the Comet runtime system.

3 Closures in Comet

Closures are the common enabling technology behind all three control abstrac-
tions introduced in this paper. A closure is a piece of code together with its en-
vironment. Closures are ubiquitous in functional programming languages, where
they are first-class citizens. They are rarely supported in object-oriented lan-
guages however. To illustrate the use of closures in Comet, consider the follow-
ing class
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1. class DemoClosure {
2. DemoClosure() {}
3. Closure print(int i) {
4. return new closure

5. {cout << i << endl;}
6. }
7. }

8. DemoClosure demo();

9. Closure c1 = demo.print(9);

10. Closure c2 = demo.print(5);

11. call(c2);

12. call(c1);

13. call(c2);

Method print receives an integer i and returns a closure which, when executed,
prints i on the standard output. The following snippet shows how to use closures
in Comet: the snippet displays 5, 9, and 5 on the standard output. Observe that
closures are first-class citizens: They can be stored in data structures, passed as
parameters, and returned as results. The two closures created in the example
above share the same code (i.e., cout << i << endl), but their environments
differ. Both contain only one entry (variable i), but they associate the value 9
(closure c1) and the value 5 (closure c2) to this entry. When a closure is created,
its environment is saved and, when a closure is executed, the environment is
restored before, and popped after, execution of its code. Closures can be rather
complex and have environments containing many parameters and local variables,
as will become clear later on.

4 Events for Modularity, Compositionality, and Reuse

One of the fundamental benefits of Comet is its ability to separate problem
modeling from search. This separation of concerns is made possible by incremen-
tal variables, invariants, and differential objects. However, practical applications
typically involve other components which would also benefit from such modu-
larity. One such component is algorithm animation, which is valuable early in
the development process to visualize the local search behavior. Another compo-
nent is the meta-heuristic which is often orthogonal and independent from the
search heuristic. This section introduces the concept of publish/subscribe events
in Comet, which make this separation of concerns possible. Informally speaking,
classes can publish events, which can be subscribed by event-handlers elsewhere
in the code. Methods in the classes can then notify these events, which triggers
the event-handler behaviour. We first focus on how to use events for animation
and meta-heuristic. We then show how to publish and notify events.

Events for Animation Consider a graphical animation for the n-queens prob-
lem and assume the existence of an Animation class handling the graphics and
providing a method updatePosition(int q,int p) to display the queen on
column q on row r. Such an animation is obtained by inserting the snippet

forall(q in Size)

whenever queen[q]@changes(int or,int nr)

animation.updateQueen(q,nr);

just before the search component (between lines 12 and 13). The core of the
snippet is an event-handler that specifies that, whenever the value of queen[q]
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changes from or to nr, the code animation.updateQueen(q,nr) must be exe-
cuted. This event-handler is installed for all queens.

There are a few important points to highlight here. First, the animation
code is completely separated from both the modeling and the search compo-
nents. The glue between the components is the event changes on incremental
variables which is notified whenever a variable is assigned a new value. The snip-
pet achieves the same effect as calling animation.updateQueen(q,nr) after the
assignment of queens, while clearly separating the two aspects and avoiding to
clutter the heuristic with animation code. This makes the code more readable and
easier to modify and extend. Second, observe that the event-handler behaviour
animation.updateQueen(q,nr) is a closure which depends on the value of q in
the environment and is created when the event is subscribed to. Closures make
the animation code more natural, avoid the definition of intermediary classes,
and feature a textual proximity between the event-handler condition (e.g., the
queen is assigned a new value) and its behavior (e.g., update the display of the
queen). In traditional object-oriented languages, event conditions and behaviors
are separated, which complicates reading and requires new class definitions to
store the information necessary to execute the behavior. Finally, observe that
events are statically and strongly typed: they enable information to be trans-
mitted from the notifier (e.g., the incremental variable) to the event-handler in
a safe fashion with no downcasting.

Events are also compositional. Consider, for instance, adding the functional-
ity of coloring the queens differently according to their number of violations. It
is sufficient to add the instructions

inc{int} violation[q in Size](m) <- S.violations(queen[q]);

forall(q in Size)

whenever violation[q]@changes(int ov,int nv)

animation.updateColor(q,nv);

This snippet declares an array of incremental variables maintaining the number
of violations of each queen, and updates the color of a queen each time its
number of violations is updated. Note that the number of violations of a queen
may change even when the queen is not moved. Hence, it is not possible to insert
the behaviour elsewhere in the program, while remaining incremental, i.e., only
considering the queens whose number of violations was modified. This example
shows the strengths of events in Comet: they enable elegant animation codes,
which would require complex control flows, the creation of intermediary classes,
and/or less incrementality in other languages.

Events for Meta-Heuristics Events are also beneficial to separate the search
heuristic and the meta-heuristic (e.g., tabu-search). They make it possible to
divide the statement into modeling, search, and meta-heuristic components. For
illustration purposes, consider upgrading the queen algorithm with a tabu-search
strategy, which would make a queen tabu for a number of iterations, each time
a queen is moved. The tabu-list management can be almost entirely separated
from the search heuristic. For instance, the snippet
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1. set{int} tabu();

2. forall(q in Size)

3. whenever queen[q]@changes(int o,int n) {
4. tabu.insert(q);

5. when it@reaches[it+tLen]()

6. tabu.remove(q);

7. }

shows a simple management of the tabu list, which we now explain in detail. The
code declares a set tabu to store the tabu queens and features two nested event-
handlers. The outermost event-handler is notified each time a queen is moved.
It inserts the queen in the tabu set and install the second event-handler (lines
5-6) whose goal is to remove q from the tabu set after tLen iterations, where
tLen is the length of the tabu list. This second handler is interesting in several
ways. First, it features a key-event, i.e., an event which is parametrized by a
specific key which is in between brackets in the code. In this example, the key
is an iteration number, i.e., the handler is notified when the counter it reaches
the value it+tLen, i.e., the value of the counter when the handler is installed
(subscription time) plus the length of the tabu-list. Second, the handler uses the
when construct, which means that it will be notified only once.

Once this code is in place, the only modification in the search heuristic con-
sists in selecting the queen with the largest number of violations among the
non-tabu queens (instead of among all queens). As a consequence, the “glue”
between the components (i.e., the counter and the tabu-set) is minimal and
the proper behavior is achieved without interleaving the heuristic and the meta
heuristic in the source code. Note that, in complex applications, this glue can be
anticipated in the first place by assuming that moves are always selected from a
restricted set specified by the modeling and/or meta-heuristic components.

Event Specification and Notification The examples above focused on the event-
handler (the subscription part) and showed how the when and whenever are used
to register a behaviour. Since they only used primitive objects, no explicit spec-
ification and notification of events (the publish part) was necessary. Of course,
Comet makes it possible to define new events. Each class may publish some
events or key-events by declaring them. Its methods are then responsible to no-
tify these events appropriately. To illustrate event specification and notification,
consider a possible implementation of the class Counter in Comet:

class Counter {
inc{int} cnt;

Event changes(int ov,int nv);

KeyEvent reaches();

Counter();

int ++();

}

Counter::Counter(){ cnt=new inc{int}(0);}
int Counter::++() {
int old = cnt++;

notify changes(old, cnt);

notify reaches[ cnt]();

return cnt;

}

The class declares an incremental variable cnt, an event changes with two
parameters, a key-event reaches with no parameter, the constructor and the
operator. The implementation of the operation (on the right part of the snippet)
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notifies the changes events, passing the old and new values of the incremental
variable. It also notifies all the key-events reaches, whose keys are smaller or
equal to the value of cnt. These notifications triggers all the event-handlers
associated with these events, i.e., it executes the closures which were regis-
tered at subscription time by the when and whenever instructions. In aspect-
oriented terms, the notify instructions are joint-points and when and whenever

statements are dynamic aspects, i.e., aspects associated with instances, not with
classes as is typical in aspect-oriented languages.

Implementation of Events Conceptually, the implementation of events is close
to the observer design pattern. An event is compiled into virtual machine
instructions which explicitly use closures as shown below:

when x@changes(int o,int n)

cout << n << endl; =⇒
aload x

newClosure "cout << n << endl;"

subscribeEvent changes,<o,n>

The virtual machine is a JVM-like stack machine and x and the closure are
retrieved from the stack in subscribeEvent. At the instance level, each event
corresponds to a data structure which collects all the subscribers. Upon notifica-
tion, the appropriate subscribers are executed, i.e., their parameters are properly
initialized and their closures are executed.

5 Union of Heterogeneous Neighborhoods

Many complex applications in areas such as scheduling and routing use com-
plex neighborhoods consisting of several heterogeneous moves. For instance, the
elegant tabu-search of Dell’Amico and Trubian [5] consists of the union of the
subneighborhoods, each of which consisting of several types of moves. Similarly,
many advanced vehicle routing algorithms [10, 4, 2] use a variety of moves (e.g.,
swapping visit orders and relocating customers on other routes), each of which
may involve a different number of customers and trucks.

The difficulty in expressing these algorithms come from the temporal dis-
connection between the move selection and execution. In general, a tabu-search
or a greedy local search algorithm first scans the neighborhood to determine
the best move, before executing the selected move. However, in these complex
applications, the exploration cannot be expressed using a (multidimensional)
selector, since the moves are heterogeneous and obtained by iterating over dif-
ferent sets. As a consequence, an implementation would typically create classes
to store the information necessary to characterize the different types of moves.
Each of these classes would inherit from a common abstract class (or would im-
plement the same interface). During the scanning phase, the algorithm creates
instances of these classes to represent selected moves and stores them in a selec-
tor whenever appropriate. During the execution phase, the algorithm extracts
the selected move and applies its execute operation. The drawbacks of this ap-
proach are twofold. On the one hand, it requires the definition of a several classes
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to represent the moves. On the other hand, it fragments the code, separating
the evaluation of a move from its execution in the program source. As a result,
the program is less readable and more verbose.

The neighbor Construct Comet supports a neighbor construct, which relies
heavily on closures and eliminates these drawbacks. It makes it possible to specify
the move evaluation and execution in one place and avoids unnecessary class
definitions. More important, it significantly enhances compositionality and reuse,
since the various subneighborhoods do not have to agree on a common interface
or abstract class. neighbor constructs are of the form

neighbor(δ,N) M

where M is a move, δ is its evaluation, and N is a neighbor selector, i.e., a container
object to store one or several moves and their evaluations. Comet supports a
variety of such selectors and users can define their own, since they all have
to implement a common interface. For instance, a typical neighbor selector for
tabu-search maintains the best move and its evaluation. The execution of the
neighbor instruction queries selector N to find out whether it accepts a move of
quality δ, in which case the closure of M is submitted to N.

Jobshop Scheduling We now illustrate how the neighbor construct significantly
simplifies the implementation of the tabu-search algorithm of Dell’Amico and
Trubian (DT) for jobshop scheduling. We first review the basic ideas behind the
DT algorithm and then sketch how the neighborhood exploration is expressed in
Comet. Algorithm DT uses neighborhood NC = RNA ∪ NB , where RNA is a
neighborhood swapping vertices on a critical path (critical vertices) and NB is a
neighborhood where a critical vertex is moved toward the beginning or the end of
its critical block. More precisely, RNA considers sequences of the form 〈p, v, s〉,
where v is a critical vertex and p, v, s represent successive tasks on the same
machine, and explores all permutations of these three vertices. Neighborhood
NB considers a maximal sequence 〈v1, . . . , vi, . . . , vn〉 of critical vertices on the
same machine. For each such subsequence and each vertex vi, it explores the
schedule obtained by placing vi at the beginning or at the end of the block, i.e.,

〈vi, v1, . . . , vi−1, vi+1, . . . , vn〉 ∨ 〈v1, . . . , vi−1, vi+1, . . . , vn, vi〉

Since these schedules are not necessarily feasible, NB actually considers the left-
most and rightmost feasible positions for vi (instead of the first and last position).
NB is connected which is an important theoretical property of neighborhoods.

We now show excerpts of the neighborhood implementation in Comet. The
top-level methods are as follows:

void executeMove() {
MinNeighborSelector N();

exploreN(N);

if (N.hasMove())call(N.getMove());

}

void exploreN(NeighborSelector N)

{
exploreRNA(N);

exploreNB(N);

}
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Method executeMove creates a selector, explores the neighborhood, and exe-
cutes the best move (if any). Method exploreN explores the neighborhood and
illustrates the compositionality of the approach: It is easy to add new neigh-
borhoods without modifying existing code, since the subneighborhoods do not
have to agree on a common interface or abstract class. The implementation of
exploreRNA and exploreNB is of course where the neighbor construct is used.

1. void exploreNB(NeighborSelector N) {
2. forall(v in jobshop.getCriticalVertices()) {
3. int lm = jobshop.leftMostFeasible(v);

4. if (lm > 0) {
5. int delta = jobshop.moveBackwardDelta(v,lm);

6. if (acceptNBLeft(delta,v))

7. neighbor(delta,N) jobshop.moveBackward(v,lm);

8. }
9. int rm = jobshop.rightMostFeasible(v);

10. if (rm > 0) {
11. int delta = jobshop.moveForwardDelta(v,rm);

12. if (acceptNBRight(delta,v))

13. neighbor(delta,N) jobshop.moveForward(v,rm);

14. }
15. }
16.}

Fig. 2. Exploration of Neighborhood NB in Comet.

Figure 2 gives the implementation of exploreNB: method exploreRNA is simi-
lar in spirit, but somewhat more complex, since it involves 5 different moves,
as well as additional conditions to ensure feasibility. Method exploreNB uses
the instance variable jobshop, which is a differentiable object representing the
disjunctive graph, a fundamental concept in jobshop scheduling [20]. This dif-
ferential object maintains the release and tail dates of all vertices, as well as the
critical paths, under various operations on the disjunctive graph. The exploreNB
method iterates over all critical vertices. For each of them it finds the leftmost
feasible insertion point in its critical block (line 3). If such a feasible insertion
point exists, it evaluates the move (line 5) and then tests if the move is accept-
able (line 6). In the DT algorithm, this involves testing the tabu status, a cycling
condition, and the aspiration criterion. If the move is acceptable, the neighbor

instruction is executed. The move itself consists of moving vertex v by lm po-
sitions backwards. Note that, although the move is specified in the neighbor

instruction, it is not executed. Only the best move is executed and this takes
place in method executeMove once the entire neighborhood has been explored.
The remaining of method exploreNB handles the symmetric forward move.

The neighborhood exploration is particularly elegant (in our opinion). Al-
though a move evaluation and its execution take place at different execution
times, the neighbor construct makes it possible to specify them together, sig-
nificantly enhancing clarity and programming ease. The move evaluation and ex-
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ecution are textually adjacent and the logic underlying the neighborhood is not
made obscure by introducing intermediary classes and methods. Composition-
ality is another fundamental advantage of the code organization. As mentioned
earlier, new moves can be added easily, without affecting existing code. Equally
or more important perhaps, the approach separates the neighborhood definition
(method exploreN) from its use (method executeMove in the DT algorithm).
This makes it possible to use the neighborhood exploration in many different
ways without any modification to its code. For instance, a semi-greedy strategy,
which selects one of the k-best moves, only requires to use a semi-greedy selector.
Similarly, method exploreN can be used to collect all neighbors which is useful
in intensification strategies based on elite solutions [18].

Implementation of Neighbor The neighbor construct is only syntactic sugar once
closures are available. Indeed, the syntactic form is rewritten as shown below:

forall(v in Size)

neighbor(∆(v),N)
M(v);

=⇒
forall(v in Size)

δ ← ∆(v)
if (N.accept(δ))

N.insert(δ,new closure {M(v); });

The rewriting uses method accept on the selector to determine whether to
accept a move. It also ensures that closures are constructed lazily.

6 Sequential Composition of Neighborhoods

This section discusses the use of checkpoint to express the sequential composi-
tion concisely. Sequential composition is often fundamental in very large neigh-
borhood search, which explores sequences or trees of (possibly heterogeneous)
moves and selects the best encountered neighbor (e.g., [8, 1]). This section illus-
trates these concepts using variable-depth neighborhood search (VDNS) [8], a
very large neighborhood search shown very effective on graph-partitioning and
traveling salesman problems.

Fig. 3. A Sequence of Moves

Variable-Depth Neighborhood Search VDNS
consists of exploring a sequences of k dis-
tinct moves and moving to the state with
best evaluation in the sequence. By exploring
sequences which include degrading moves,
VDNS may avoid being trapped in local op-
tima of poor quality.

Consider Figure 3 which plots the quality
of a sequence of moves. Each node in the graph corresponds to a computation
state and two successive nodes are neighbors in the transition graph of the
local search. VDNS explores the whole sequence and then returns to the best
computation state, i.e., the before-last node.
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function boolean selectBest(LocalSolver ls,int l,inc{int} f,Closure Move) {
boolean found = false;

with checkpoint(ls) {
Checkpoint chp(ls); int best = f;

forall(i in 1..l) {
call(Move);

if (f < best) {
found = true; best = f; chp = new Checkpoint(ls);

}
}
chp.restore();

}
return found;

}

Fig. 4. The implementation of VDNS in Comet.

Checkpoints Checkpoints are a simple conceptual abstraction to express VLNS
algorithms. A checkpoint is simply a data structure that implicitly represents the
computation state of a local solver, i.e., the state of all incremental variables and
data structures of the solver. Whenever a local solver is in checkpointing mode,
checkpoints can be saved and, later, restored in order to reset all incremental
variables, constraints, and data structures to their earlier states. Checkpoints
are first-class citizens in Comet. They also encapsulate incremental algorithms
to avoid saving entire computation states.

Variable-Depth Neighborhood Search in Comet We now illustrate how to express
VDNS in Comet for graph partitioning [8], where moves consists of swapping
two vertices, one from each set in the partition. The snippet

selectBest(ls,nb/2,cost)

select(s in BestSwaps) {
x[s.o] :=: x[s.d]; mark[s.o] := true; mark[s.d] := true;

}

shows the core of the search procedure in Comet. In the snippet, ls is the local
solver, nb is the number of vertices, cost is the cost of the partition, bestSwaps
is an incremental set of tuples which maintains the best swaps, x is an array
of incremental variables specifying which set of the partition a vertex belongs
to, and mark is an array of incremental Boolean variables, indicating whether a
vertex have been selected in the VDNS sequence already. The selectBest func-
tion is the cornerstone of the VDNS implementation. It receives four arguments:
the local solver, the length of the sequence, the function to minimize (an incre-
mental variable), and a closure representing the move. Here the move consists
of selecting a tuple s in BestSwaps and to swap the vertices s.o and s.d. Both
vertices are then marked in order to avoid selecting them again in the sequence.

Figure 4 depicts the implementation of function selectBest. It uses the
with checkpoint(ls) statement to indicate the use of checkpointing inside
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the enclosed block. It saves the current state in variable chp using instruc-
tion Checkpoint chp(ls). The forall loop explores a sequence of l moves,
storing the best computation state in variable chp. After this exploration, in-
struction chp.restore() restores the best computation state encountered (pos-
sibly the initial state). Note that Comet supports the syntactic rewriting from
f(a1,...,an) S to f(a1,...,an,new closure { S }) when the last argument
of function f is a closure. The VDNS implementation has a number of interest-
ing features. First, it is entirely generic and reusable: It can be applied to an
arbitrary move and separates search heuristic and the meta-heuristic. Second,
checkpoints specify what to maintain, i.e., the “best” computation states, but
not how to save or restore it. The implementation uses incremental algorithms
to do so, but this is abstracted from programmers. Finally, observe the role of
closures for the genericity of the VLNS implementation.

Implementation of Checkpoints We now discuss the checkpoint implementation.
The key to an incremental implementation lies in a representation of computa-
tion states as sequences of primitive moves from an initial state (i.e., the state
when the checkpoint statement is executed). In other words, a state s is a se-
quence 〈m0, . . . , mk〉 where mi is a primitive move. A primitive move in Comet

is a function f : State → State from computation states to computation states
which is invertible, i.e., there exists a function f−1 such that f(f−1(s)) = s.
For instance, a move x[i]:=j corresponds to a function f(s) = s{x[i]/j} where
s{y/v} represents the state s where y is assigned the value v. The inverse move
is of course f−1(s) = s{x[i]/lookup(s0, x[i])} where s0 is the computation state
before executing the move, and lookup reads the value of a variable in a compu-
tation state. Consider now how to restore a state sr from a state sc where

sc = 〈m0, . . . , mn, m′

n+1, . . . , m
′

k
〉

sr = 〈m0, . . . , mn, m′′

n+1, . . . , m
′′

l
〉.

The Comet implementation exploits the common prefix of the two states. It
undoes the suffix 〈m′

n+1, . . . , m
′

k
〉 by using the inverse moves, and then executes

the moves 〈m′′

n+1, . . . , m
′′

l
〉. This implementation has several properties. First, its

memory requirements are independent of the size of the computation states. Only
moves are memorized and the size of a checkpoint c only depends on the length
of the sequence from the initial state to c. Second, the runtime requirements are
also minimal, since they either reexecute a subsequence executed before or they
execute the inverse of such a subsequence. For VDNS, for instance, restoring
the best state does not change the asymptotic complexity: in the worst case,
restoring the checkpoint involves as much work as exploring the sequence.

The checkpoint implementation is related to techniques underlying generic
search strategies (e.g., [19, 15, 22]). However, it does not use backtracking and/or
trailing. Rather, it makes heavy use of inverse moves, which is efficient because
the invariant propagation algorithm never updates the same incremental vari-
able twice [14] (which is not the case in constraint satisfaction algorithms in
general). Our implementation thus combines low memory requirements with in-
crementality, which is critical for many local search applications.



14 Pascal Van Hentenryck and Laurent Michel

7 Experimental Results

This section describes some preliminary experimental results to demonstrate
the practical viability of the abstractions and of closures. It compares various
implementations of the tabu-search algorithm DT (the goal, of course, is not to
compare various scheduling algorithms). In particular, it compares the original
results [5], a C++ implementation [21], and the Comet implementation. Table
1 presents the results corresponding to Table 3 in [5]. Since DT is actually faster
on the LA benchmarks (Table 4 in [5]), these results are representative. In the
table, DT is the original implementation on a 33mhz PC, DT* is the scaled
times on a 745mhz PC, KS is the C++ implementation on a 440 MHz Sun
Ultra, KS* are the scaled times on a 745mhz PC, and CO are the Comet times
on a 745mhz PC. Scaling was based on the clock frequency, which is favorable to
slower machines (especially for the Sun). The times corresponds to the average
over multiple runs (5 for DT, 20 for KS, and 50 for CO). Results for Comet are
for the JIT compiler but include garbage collection. The results clearly indicate
that Comet can be implemented to be competitive with specialized programs.
Note also that the C++ implementation is more than 4,000 lines long, while the
Comet program has about 400 lines.

ABZ5 ABZ6 ABZ7 ABZ8 ABZ9 MT10 MT20 ORB1 ORB2 ORB3 ORB4 ORB5

DT 139.5 86.8 320.1 336.1 320.8 155.8 160.1 157.6 136.4 157.3 156.8 140.1
DT* 6.2 3.8 14.2 15.1 14.2 6.9 7.1 7.0 6.0 7.0 6.9 6.2

KS 7.8 8.2 20.7 23.1 20.3 8.7 16.4 9.2 7.8 9.3 8.5 8.1
KS* 4.6 4.8 12.2 13.6 11.9 5.1 9.6 5.4 4.6 5.5 5.0 4.8

CO 5.9 5.7 11.7 9.9 9.0 6.7 9.8 5.6 4.8 5.6 6.3 6.5

Table 1. Computational Results on the Tabu-Search Algorithm (DT)

8 Conclusion

This paper presented three novel control abstractions for Comet, which signif-
icantly enhance the compositionality, modularity, and reuse of Comet. These
abstractions may significantly improve conciseness, extensibility, and clarity of
the local search implementations. They all rely on first-class closures as the
enabling technology and can be implemented efficiently.

One of the most appealing features of Comet is its small number of funda-
mental concepts, as well as their generality. First-class closures simplify many
applications beyond local search (e.g., [12]) and are ubiquitous in functional
programming. Events are related to many constructs in the logic and functional
communities (e.g., delay mechanisms and reactive functional programming). In-
variants (one-way constraints) and constraints are widely recognized as natural
vehicles for many applications. These concepts provide significant support for
local search, and may significantly reduce the distance between high-level de-
scriptions of the algorithms and their actual implementations. Yet they are non-
intrusive and impose minimal “constraints” on programmers, who keeps control
of their algorithms and their code organization. An interesting topic for future
research is to study how to unify the Comet architecture with the tree-search
models proposed in [23, 11], since both approaches have orthogonal strengths.
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20. B. Roy and B. Sussmann. Les problèmes d’ordonnancement avec contraintes dis-

jonctives. Note DS No. 9 bis, SEMA, Paris, France, 1964.
21. K. Schmidt. Using Tabu-search to Solve the Job-Shop Scheduling Problem with

Sequence Dependent Setup Times. ScM Thesis, Brown University, 2001.
22. C. Schulte. Comparing trailing and copying for constraint programming. In

ICLP’99.
23. P. Shaw, B. De Backer, and V. Furnon. Improved local search for CP toolkits.

Annals of Operations Research, 115:31–50, 2002.
24. C. Turner, A. Fuggetta, L. Lavazza, and A. Wolf. A conceptual basis for feature

engineering. Journal of Systems and Software, 49(1):3–15, 1999.
25. S. Voss and D. Woodruff. Optimization Software Class Libraries. Kluwer, 2002.
26. J. Walser. Integer Optimization by Local Search. Springer Verlag, 1998.


