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Abstract

The function of many RNAs crucially depends on their structure. Therefore, the design of
RNA molecules with specific structural properties has many potential applications, e.g., in
the context of investigating the function of biological RNAs, of creating new ribozymes, or
of designing artificial RNA nanostructures. Here, we present a new algorithm for solving
the following RNA secondary structure design problem: Given a secondary structure, find
an RNA sequence (if any) that is predicted to fold to that structure. Unlike the (pseudoknot-
free) secondary structure prediction problem, this problem appears to be computationally
hard. Our new algorithm, “RNA Secondary Structure Designer (RNA-SSD)”, is based on
stochastic local search, a prominent general approach for solving hard combinatorial prob-
lems. A thorough empirical evaluation on computationally predicted structures of biologi-
cal sequences and artificially generated RNA structures as well as on empirically modelled
structures from the biological literature shows that RNA-SSD substantially outperforms
the best known algorithm for this problem, RNAinverse from the Vienna RNA Package. In
particular, the new algorithm is consistently able to solve structures for which RNAinverse
is unable to find solutions. The RNA-SSD software is publicly available under the name of
RNA Designer at www.rnasoft.ca [1].
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1 Introduction

RNA molecules play many roles in the cell that go far beyond acting as interme-
diaries in the translation of genomic DNA into proteins. For example, ribosomal
and transfer RNAs are crucial components of the translation machinery, and var-
ious types of small RNAs have important functions in gene expression. Catalytic
RNA molecules, called ribozymes, can cleave other RNA molecules; these and
other RNAs may have played a role in early evolution before the more complex
proteins were evolved. The structure of RNA molecules is crucial to their function
in these and many other cellular processes, and indeed computational approaches
for predicting RNA secondary and tertiary structure are widely used by biologists.

In this paper, we focus on the inverse problem to that of predicting RNA secondary
structure, namely design of RNA molecules with a desired secondary structure.
One motivation for this work is that novel ribozymes may provide new paths to
the design of drugs [2], or have industrial uses [3]. Another motivation stems from
the use of carefully designed DNA structures (which are in many ways analogous
to RNA structures) in DNA self-assembly computation [4]. Finally, the ability to
design RNA molecules with specific structural features can play a crucial role in
research on the function of natural RNAs.

Before describing our problem and approach in more detail, we note briefly that
a secondary structure for an RNA strand is simply a set of pairing interactions
between bases in the strand. Each base can be paired with at most one other base.
Most base pairings occur between Watson-Crick complementary bases C and G or
A and U, respectively (canonical pairs). Other pairings, such as G-U can be found
occasionally.

Computational approaches for prediction of RNA secondary structure are based
on a thermodynamic model that associates a free energy value with each possible
secondary structure for a strand. The secondary structure with the lowest possi-
ble free energy value, the so-called minimum free energy (MFE) structure, is pre-
dicted to be the most stable secondary structure for the strand. (For an example of
an RNA secondary structure and the calculation of its free energy, see Figure 1.)
Although for a given RNA strand, the number of secondary structures can be ex-
ponential in the length of the strand, RNA secondary structure prediction appears
to be easier than protein secondary structure prediction, at least for the class of
so-called pseudoknot-free secondary structures (see Section 2 for the definition of
pseudoknot-free structures). There are widely used dynamic programming algo-
rithms that, given an RNA strand of length �, find in ����� time the secondary
structure with the lowest free energy, from the class of pseudoknot-free secondary
structures [5]. Throughout the paper, all references to secondary structures refer to
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pseudoknot-free secondary structures.

The RNA design problem that we consider here is as follows: given a secondary
structure, find an RNA strand (if any), that folds to that structure. This can be seen
as a discrete constraint satisfaction problem where the constraint variables are the
positions in the desired RNA strand, the values assigned to these variables corre-
spond to the bases at the respective positions, and the constraints capture the base
pairings that define the given secondary structure. Although its complexity is un-
known, this RNA secondary structure design problem appears to be computation-
ally hard, hence a heuristic approach is appropriate. We note that for evaluating a
candidate base assignment with respect to the given secondary structure constraints,
the MFE secondary structure for the respective candidate RNA strand needs to be
determined. The fact that this operation requires ����� time poses a challenge for
any heuristic search approach.

We present a new algorithm, RNA-SSD (RNA Secondary Structure Designer), that
designs RNA strands for input secondary structures. At the core of our algorithm is
a stochastic local search (SLS) procedure that iteratively modifies single unpaired
bases or base pairs of a candidate strand in order to obtain a strand that folds into
the target structure.

Since each step of the SLS algorithm requires a call to a �����-time evaluation
function, a key component of our approach is a hierarchical decomposition of the
input secondary structure into small substructures. The core SLS algorithm is only
applied to the smallest substructures, and the corresponding partial solutions are
combined into candidate solutions for larger subproblems guided by the decompo-
sition tree. Since the subproblems are not independent, this does not always result in
valid designs for the corresponding substructure. Consequently, multiple attempts
(involving additional calls to the core SLS procedure) are often required before
partial solutions can be successfully combined.

The other key component of the algorithm is a method for generating a good initial
design for the RNA strand. This initialisation procedure assigns bases probabilisti-
cally to the strand, using different probabilistic models for base positions that are
paired and unpaired in the target structure. In addition, the algorithm ensures that
complementary stretches of bases are avoided across the design, except where de-
sired along two sides of a stem.

We empirically evaluated our RNA-SSD algorithm on randomly generated struc-
tures, on computationally predicted structures (pseudoknot-free) of naturally oc-
curring sequences from the Ribosomal Database Project (RDP), and on biological
structures reported in the literature. In addition, we compared the performance of
our algorithm with RNAinverse, a previous algorithm of Hofacker et al. [6] for
RNA strand design which is part of the widely used Vienna RNA Secondary Struc-
ture Package. The results of this empirical evaluation show that RNA-SSD substan-
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tially outperforms RNAinverse on a broad range of structures. RNA-SSD found
solutions to all 24 computationally predicted structures of naturally occurring se-
quences (length: 260–1475 bases) and 8 out of 10 biological structures (length:
65–583 bases), while the Vienna algorithm, RNAinverse, solved only 12 of these
34 structures (these 12 are all of length less than 500 bases). RNA-SSD solved 419
of the 420 artificial structures, while RNAinverse solved only 378. For all but 8
out of 378 structures designed by both algorithms, RNA-SSD is substantially faster
(at least one order of magnitude in about 79% of the cases, at least two orders of
magnitude in about 48% of the cases). Furthermore, we observed that the solutions
found by RNA-SSD for the biological structures are typically more stable (in terms
of their minimum free energy and partition function calculation) than the original
biological sequences.

The rest of this paper is organised as follows. In Section 2, we give some back-
ground on RNA secondary structure prediction, define the problem of RNA strand
design formally, and describe some previous work on this problem. Our algorithm
is described in detail in Section 3. In Sections 4 and 5, we present our empirical
analysis and performance results, and provide a discussion of these, along with
some further results that refine and support our analysis, in Section 6. Conclusions
and future work are described in Section 7.

2 The RNA Secondary Structure Design Problem

An RNA strand consists of a sugar phosphate backbone to which the four bases
cytosine (C), guanine (G), adenine (A), and uracil (U) are attached. Each strand
has two chemically distinct ends, known as the �� and �� ends. Simple Watson-
Crick base pairing involves the bonding of C with G and A with U via three or
two hydrogen bonds, respectively. Additionally, so-called wobble pairs can form
between G and U. For a given RNA strand, a secondary structure describes which
bases are paired. Specifically, the secondary structure of a strand of length � is a
set of pairs ��� ��, where � and � are in the range ��� � � � � ��, and ��� �� represents a
pairing between the �th and �th bases in the strand where the bases in the strand are
indexed from 1 to � starting at the 5’ end. In a secondary structure, each base has at
most one partner. Base pairs are most often found stacked onto other base pairs in
substructures called stems or helices. Sometimes, unpaired bases are interspersed in
stems; these are known as internal loops or bulges. Loops occurring at the ends of
stems are called hairpins, and loops from which more than two stems originate are
known as multi-branched loops, or simply multiloops. Figure 1 shows a standard
display of a secondary structure for an RNA strand, in which the stems and loops
are apparent. This particular secondary structure is pseudoknot-free; that is, it does
not have any two base pairs ��� �� and ���� � �� where � � �� � � � � �.

Associated with a secondary structure for a strand is its free energy. For pseudoknot-
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Fig. 1. Left: Graphical depiction of the predicted minimum free energy secondary struc-
ture � for sequence GCCGCACGCGAGACCGCGCACUCCGCGGGAUGCCCAUAG-
GAGAAGCGGCAUUACCUGUAGCCAAGCCAGAUA. Right: The free energy for struc-
ture � is computed from contributions of the labelled stems (��–��) and loops
(hairpins ��–��, bulge �, internal loop � , external loop �, and multiloop � ) as
����� � ���H1�����S1�����B�����S2�����E�����S3�� � � �����S6�
����H3� � ���� �������� ��	� ���� ���
� ���� 	������ � ����	, which for this
strand is the predicted minimum free energy, calculated using mfold [15].

free secondary structures, this is typically calculated as the sum of the free energies
of each stacked pair and each loop [7], and estimates for these values have been ex-
perimentally determined. Let ������ denote the free energy of an RNA sequence
� when folded into the secondary structure �. Furthermore, let � denote a function
that assigns to each RNA sequence � a secondary structure �� that minimises free
energy ������ over all possible secondary structures � of � .

The RNA secondary structure prediction problem can be stated as follows:
Given an RNA sequence � , determine ����. When the energy ������ of an
RNA sequence � folded into the secondary structure � is evaluated by the nearest
neighbor thermodynamical model (not allowing for pseudoknots), the RNA sec-
ondary structure prediction problem is efficiently solvable using a dynamic pro-
gramming approach that runs in time �����, due to Lyngsø, Zuker, and Pedersen
[5], a refinement of an earlier algorithm of Zuker and Stiegler. Throughout this
paper, we refer to this as Zuker’s algorithm.

Analogously, we can state the RNA secondary structure design problem: Given
an RNA secondary structure ��, find a sequence �� s.t. ����� 	 ��. In the opti-
misation variant of this problem, we determine the quality of a candidate solution
� by comparison of the structure � 	 ���� with the desired structure ��; given a
distance metric 	, we attempt to minimise 	��� � ��. In our algorithm, the distance
metric will merely measure the number of bases that bond incorrectly, i.e., number
of bases in � whose pairing status is different between � and ��. It is also possible
to include information on the stability of folds in the distance metric.

Hofacker et al. [6] have already developed an algorithm for the RNA secondary
structure design problem, RNAinverse, which is included in the Vienna RNA Sec-
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ondary Structure Package � . The algorithm performs an “adaptive” walk search on
so-called compatible sequences, i.e., sequences that can possibly form a base-pair
at the required positions in the desired structure. These sequences are candidates
only; there is no guarantee that they will fold into the target structure. Starting from
a randomly chosen sequence 
�, in each step the algorithm induces a mutation and
accepts it if and only if the cost function decreases. These search steps are iterated
until either a solution is found or a certain number of mutations has been carried
out.

A drawback of this approach is that calculating the distance for each mutation in-
volves running a folding algorithm on the sequence under observation, for which
generally Zuker’s ����� algorithm is used, where � is the length of the sequence to
be folded. To counter this, the RNAinverse algorithm of Hofacker et al. applies the
previously described basic RNA design procedure iteratively to substructures, and
then produces a full sequence by concatenating the subsequences obtained from
solving these smaller secondary structure design problems. The rationale is that it
is likely (but not assured) that the substructures which are optimal for subsequences
will also occur for the full sequence (see [6] for a more detailed explanation). This
same idea is also underlying our new algorithm, described in the following; how-
ever, RNA-SSD differs from RNAinverse in many important aspects, including se-
quence initialisation, structure decomposition and sequence assembly, as well as
substructure search.

3 The RNA-SSD Algorithm

Our new algorithm for the RNA secondary structure design problem is based on
a stochastic local search approach that uses a probabilistic sequence initialisation
heuristic, hierarchical decomposition of the given structure, and a randomised it-
erative improvement method for finding sequences for the resulting substructures.
The space searched by our algorithm consists of RNA sequences that correspond to
complete assignments of bases 
� � �A,C,G,U� to all positions � of the given RNA
secondary structure. We restrict this space to sequences in which positions that are
paired in the desired structure are assigned complementary bases, such as C-G or
A-U.

Different from many other constraint satisfaction problems, evaluating the quality
of candidate solutions for the RNA Secondary Structure Design Problem is com-
putationally quite expensive, having time complexity �����, where � is the length
of the given sequence [5] (see Section 2). We use the fold function from the Vi-
enna Package, the most efficient implementation of Zuker’s algorithm of which
we are aware. Unfortunately, even a single local reassignment of a base in the se-

� http://www.tbi.univie.ac.at/˜ivo/RNA/
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procedure RNA-SSD
input: target RNA secondary structure �, parameters
output: RNA sequence 	

initialise sequence 	;
hierarchically decompose � and 	;
recursively search for sequence with MFE structure �;
return 	;

end RNA-SSD.

Fig. 2. Pseudocode for the new RNA secondary structure design algorithm; details are
discussed in the text.

quence can result in a completely different MFE secondary structure. Hence, there
seems to be little hope for reducing the complexity of evaluating candidate solutions
by incremental updating. Consequently, an SLS algorithm for the RNA Secondary
Structure Design Problem should keep the number of candidate solution evalua-
tions minimal. In this respect, simple variants of straight-forward SLS algorithms,
such as the Min-Conflicts Heuristic [8], can be expected to perform poorly on this
problem, particularly when applied to larger problem instances.

Based on these considerations, our algorithm takes a different approach: After con-
structing an initial candidate sequence for the entire given RNA structure �, that
structure and the initial sequence are hierarchically decomposed into smaller com-
ponents corresponding to substructures of �. At the lowest level, these subprob-
lems are independently solved using a conventional SLS algorithm. Solutions to
these subproblems are then combined into candidate solutions for larger subprob-
lems. There is no guarantee that valid solutions to subproblems can be combined
into a valid solution of a larger subproblem; hence, at this stage, each combination
attempt has to be evaluated using Zuker’s algorithm. If at any stage the respective
combined candidate sequence does not fold into the required structure, new can-
didate solutions to the subproblems are determined using the same mechanism as
described before.

Following this approach, the expensive evaluation of candidate solution happens
primarily at the level of substructures which can be made small enough (by iterated
decomposition) to render the ����� complexity of Zuker’s algorithm manageable.
Larger candidate sequences are only evaluated after merging partial solutions, a
process that happens much more rarely. It may be noted that this approach is based
on the intuition that although there can be complicated dependencies between sub-
problems, there is a reasonable chance that solutions to subproblems can be suc-
cessfully combined into solutions of the entire problem. The empirical performance
of our algorithm on biological and artificial RNA structures supports this intuition.

An outline of the algorithm is shown in Figure 2; in the following, we will discuss
its components (and parameters) in more detail.
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Sequence Initialisation

The easiest way of initialising the RNA sequence � would be to randomly and
independently assign bases to the positions of� according to a uniform distribution
over A,C,G,U. (This is the initialisation method used in RNAinverse.) However,
given our goal of minimising the number of candidate solution evaluations, it would
be preferable to initialise the sequence in such a way that its MFE structure is as
close as possible to the target structure �. To achieve this, we exploit three insights.

Firstly, the assignment should be done in such a way that paired bases in � are
assigned complementary bases. This ensures that � can fold into the desired struc-
ture �, but there might be alternate conformations with lower free energy. Based
on the same intuition, we make sure that the unpaired sequence positions directly
following helix regions (e.g., in the loop section of a hairpin loop) are assigned
non-complementary bases; this prevents energetically favourable but undesired he-
lix extensions. �

Secondly, the fact that C-G base pairings are energetically more favourable than
A-U pairings suggests that, by preferentially assigning C-G pairs to helix regions
and other paired positions of �, sequences can be obtained whose MFE structures
tend to contain these (desired) pairings. Furthermore, by preferentially assigning A
and U bases to unpaired sequence positions in � the chances of erroneous pair-
ings should intuitively be decreased. These heuristic choices are closely related to
the conditions underlying recent theoretical work on the RNA secondary structure
design problem [9]. They are also in agreement with the observation that the aver-
age fraction of C-G pairs in helices appears to be relatively high for most types of
RNAs.

Finally, we use a tabu mechanism to further minimise the potential for undesired but
energetically favourable interactions between subsequences of � . This mechanism
is based on assigning short sequences of bases (sequence motifs) to contiguous
segments of the target structure �. A sequence motif � is only admissible if it does
not form more than 	��� consecutive base pairs with any previously used motif
or with itself. (A similar mechanism is used by Seeman in the design of DNA
structures [10].) The maximal segment size ���� (i.e., motif length) and the motif
distance threshold 	��� are parameters of our algorithm; obviously, 	��� and ����
need to be set in such a way that sufficiently large sets of admissible motifs exist.
In our experiments we somewhat arbitrarily set them as ���� 	 �
 and 	��� 	 �,
but there is likely room for improvement.

Overall, our initialisation algorithm works as follows: the target structure � is par-

� Since we are considering non-canonical G-U pairings, it is possible (for bulge loops
with one free base) that such an assignment does not exist, in which case this constraint is
ignored.
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titioned into segments of successive paired or unpaired bases of maximal size ����.
Then, the sequence of segments is traversed from the �� to the �� end of the structure.
For each segment of unpaired bases we generate a corresponding sequence motif
� of the same length by choosing bases A,C,G,U independently and randomly for
each position with probabilities �� �� �� � with � 	 � , � 	 � 	 ����� ,
respectively. If base pairing between the first or last base of this segment with the
last or first base of a previously assigned unpaired segment could lead to an un-
desired helix extension (as described above), the probabilistic base generation is
conditioned on not producing the problematic bases. If the motif � is admissi-
ble in terms of the tabu mechanism described above, it is assigned to the respec-
tive segment. Chunks of paired bases are handled analogously, only that in this
case probabilities ��� 

�
� � 

�
�� 

�
� are used for generating the bases with �� 	 �� ,

�� 	 �� 	 ������ and both the motif� as well as its complement �� are checked
for admissibility and assigned to the two segments corresponding to both sides of
the respective helix region.

The probabilities � and �� are parameters of our algorithm (the other probabil-
ities can be derived from these based on the equalities stated above). For the ex-
periments reported in Sections 4 and 5, we used � 	 
�� and �� 	 
���; these
values merely reflect the underlying biological intuition and have not been tuned to
optimise performance.

Empirical evidence suggests that especially for larger and more complex target
structures, the probabilistic base assignment as well as the tabu mechanism con-
tribute significantly towards the strong performance of our algorithm (see Sec-
tion 6).

Hierarchical Decomposition

The purpose of the hierarchical decomposition procedure is to divide the given
target structure � into small structure components; these components correspond
directly to subsequences of the candidate sequence � . Similar to Hofacker et al.
[6], we split the structure at multiloops; the split points we consider are located at
the innermost base pairs of multiloops and stems, which results in ��� split points
for a multiloop with � arms (see Figure 3). Unlike their method, however, we re-
cursively split the structure into two substructures in each decomposition step; thus
we obtain a binary decomposition tree whose root is formed by the full target struc-
ture � and whose leaves correspond to small substructures of � . Each non-leaf
node of the tree represents a substructure of � that can be obtained by merging the
two substructures corresponding to its children. More precisely, the hierarchical
decomposition is performed as follows: Starting with the entire structure, decom-
position steps are performed as long as (1) the structure to be split is not smaller
than MaxSplit bases, and (2) both resulting substructures are not smaller than Min-
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Fig. 3. An example of a structure (a) divided into two substructures (b),(c) using the de-
composition method described in the text. The actual split point is indicated by long arrows
in (a), alternative split points are indicated by short arrows; bases shown in light grey are
added to enforce boundary conditions. The five possible split points for subsequent decom-
position steps are indicated by short arrows in (b) and (c).

Split bases. In preliminary experiments, we determined that good performance is
obtained by using MaxSplit=70 and MinSplit=30, and consequently these values
were used for all experiments reported in the following.

In contrast to Hofacker et al.’s algorithm [6], our procedure attempts to construct
decomposition trees that are as balanced as possible. This is done by selecting a
multiloop and split point within that multiloop such that the two substructures ob-
tained by splitting at that point results are as close as possible in size (where the
size of a substructure corresponds to the length of the corresponding subsequence).

An example of a split as performed by our hierarchical decomposition method is
shown in Figure 3; note that there are only six split points in this structure, five of
which would lead to a less balanced decomposition into two substructures (these are
shown in Figure 3(b) and (c); using the MaxSplit and MinSplit settings mentioned
above, only three of these are admissible).

In general, such a split creates two new free ends of the underlying RNA sequence
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(in addition to its original �� and �� ends). Subsequently, we will use Zuker’s RNA
secondary structure prediction algorithm for evaluating candidate sequences as-
signed to these substructures; but this algorithm can only be applied to single RNA
strands (i.e., structures with two free ends). Therefore, we always split by separat-
ing the structure such that the split point never falls within a segment of consecutive
free or paired bases, and by connecting the two free ends created by the split, both
resulting substructures have exactly two free ends. To create structural boundary
conditions at the split points that are similar to those of the original structure, this
connection is achieved by merging the free ends of the substructure whose strand
has become disconnected as a result of the split with those of a small hairpin loop
and stem structure of size 14 (five paired, four unpaired, five paired bases); further-
more, if the other substructure contains a bulge directly after its first base pair, we
add two unpaired bases to each of its free ends. The added bases, shown in grey
in Figure 3, are generated using the same probabilistic model as in the sequence
initialisation procedure described above.

Recursive Stochastic Local Search

The final component of our algorithm is a recursive SLS procedure. Starting at the
leaves of the decomposition tree, corresponding to the smallest substructures �	

�

of the given target structure ��, this procedure iteratively modifies single bases of
the corresponding subsequences�	 that are in conflict with �	

�, i.e., that are paired
in the MFE structure �	 of �	 but not in �	

� or vice versa. This is done until either
a subsequence �	 with MFE structure �	

� is obtained, or until a maximal number
�
 of base modifications have been performed without finding such a sequence.
In our experiments, we used �
 	 �


; furthermore, as long as no solution is
found, every 1000 steps the search is restarted from the initial subsequence. Note
that Zuker’s RNA structure prediction algorithm has to be called in each iteration
of this procedure.

In its recursion step, the SLS procedure is first used to determine valid sequences��

and �� for the two substructures corresponding to the children of a given non-leaf
node � of the decomposition tree. (If no valid sequence is found for ��, the algo-
rithm still continues with the previous best candidate sequence for �� as if it were
valid, and similarly for �� .) A candidate sequence �	 for �	

�, the substructure
associated with node �, is then determined by merging �� and �� (after remov-
ing any bases newly introduced in the hierarchical decomposition process). Next,
the MFE structure �	 of �	 (determined using Zuker’s algorithm) is compared to
�	

�. If �	 and �	
� are identical, the recursive step has been successfully completed.

Otherwise, the conflicting bases in �� or �� are memorised and the SLS procedure
is recursively called on the subsequence with the higher relative fraction of con-
flicting bases, resulting in a new sequence �� or �� . This process is iterated until
either a valid sequence for �	

� has been found, or until a maximal number �� of
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attempts to merge subsequences �� and �� into a valid sequence for �	
� have been

performed. For our experiments, we used �� 	 �.

The single-base modifications at the level of smallest substructures are determined
based on a randomised first-improvement strategy: With a fixed probability ��, an
arbitrary base position � in the given subsequence is selected uniformly at random;
otherwise, this uniform random choice is restricted to base positions that are cur-
rently in conflict with the target structure. For our experiments we used �� 	 
��.
An alternate base assignment is then generated for the selected position using the
same probabilistic model for that position as in the previously described sequence
initialisation procedure. (In particular, the probabilities for generating particular
base assignments depend on whether that base position is paired or free in the tar-
get structure.) If necessary, this process of proposing alternate bases for position �
is repeated until a base 
 is found that is not identical with the present, conflicting
base assignment to position �. If base assignments for this position previously re-
sulted in a mispairing on higher levels in the recursion, 
 is also not allowed to be
the base assigned on the lowest conflicting level. Replacing the current, conflicting
base at position � with 
 leads to a new candidate sequence � �

	 for this substructure.
At this stage, the MFE structure � �

	 for � �
	 is determined (using Zuker’s algorithm);

if � �
	 is closer to �	

� than the MFE substructure �	 of the previous candidate se-
quence �	 in terms of the number of conflicting bases, the search is continued from
� �
	; if the number of conflicting bases is higher for � �

	 than for �	, the search is
still continued from � �

	 with probability ���, and from �	 in the remaining cases.
For our experiments we used ��� 	 
��.

Note that using this first-improvement strategy helps to keep the number of (ex-
pensive) candidate solution evaluations per search step small. The randomisation
helps to ensure that this search does not get stuck in local optima of the evaluation
function.

4 Experimental Results for Artificial Data

The performance of RNA-SSD was empirically evaluated and compared against
that of RNAinverse, the Vienna inverse folding algorithm [6], using artificially gen-
erated RNA structures as well as biological data. Our results clearly indicate that
RNA-SSD shows substantially improved performance over RNAinverse; further-
more, the observed differences in performance increase with problem hardness. In
this section we describe the experiments and results for artificial data, while the
results for biological data are presented in the next section.

The use of artificial data in the evaluation of RNA-SSD is motivated by several
factors. Firstly, this approach allows us to use a large number of similar RNA struc-
tures for our empirical analysis, and hence reduces the chance of drawing erroneous
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conclusions from a small set of atypical results. Secondly, it facilitates the study of
extreme cases of RNA structures which may rarely or never occur in nature, but
could, for example, have applications in the design of artificial RNA nanostruc-
tures; knowledge of an algorithm’s behaviour in such extreme cases is often also
important for understanding the limits of its applicability. Finally, artificially gen-
erated structures with controlled properties provide a means of studying the im-
pact of certain features, such as size of a given structure, or the relative prevalence
of bulges, on the performance of RNA design algorithms such as RNA-SSD or
RNAinverse.

Artificially generated structures have been previously used by Hofacker et al. [6] for
evaluating the performance of the RNAinverse algorithm. However, different from
their approach, we decided to implement a simple RNA structure generator which
allows us to directly control salient properties of the structures being generated,
including the overall size as well as the number and size of bulge, internal, and
multiloops, and the length of stems. For these and a number of other structural
properties, the generator allows the specification of a random distribution of values
(including the special case of only one fixed value); hence, for a given parameter
setting, the generator effectively samples from a parameterised random distribution
of RNA structures. The generator is described in detail in the Appendix.

Our empirical performance analysis is based on five sets of artificial RNA struc-
tures with different structural properties (see Table 1). The parameter settings for
the generator were chosen such that different classes of biologically plausible struc-
tures were obtained and a rough sense of scaling of the performance of the two al-
gorithms with the size of the input RNA structures could be obtained. (An example
structure obtained from our generator and a computationally predicted structure of
a biological RNA sequence are shown in Figures 4 and 5.)

All computational experiments were carried out on PCs with dual 1GHz Pentium III
processors (only one of which was used by the algorithms we tested), 256KB cache,
and 1GB RAM running Red Hat Linux, Version 2.4.9-6smp. Both, RNA-SSD and
RNAinverse are highly randomised; consequently, we performed multiple runs of
each algorithm on all problem instances and measured the distribution of run-times
(RTDs) over all runs on a given instance [11]. In the following, we mainly report
mean CPU times from multiple runs on each RNA structure; however, we give
more detailed insights into the underlying RTDs in the discussion section. If not
explicitly mentioned otherwise, 10 independent runs were performed for each RNA
structure. In many cases, one or both algorithms did not solve each given structure
in every run performed on it. In cases where the fraction of successful runs, ��, was
higher than 
 but lower than �, we estimated the expected time required for finding
a solution as

�� � ����� � �� � �� (1)
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(a)

Name # Insts Size Bulges # Multiloops # Branches # Internal

per Multiloop loops

�� 100 178–447 No 2–5 3–5 2–5

�� 100 164–465 Yes 2–5 3–5 2–5

�� 100 172–409 Yes 1–3 4–6 4–7

�� 100 203–402 Yes 4–7 2–4 2–4

�� 20 329–775 Yes 4–10 3–5 4–10

(b)

Stem Hairpin Internal Multiloop Bulge Fr. bulges

length size loop size size size per stem

(sets A2-A5 only)

5–10 3–10 3–10 5–10 1–3 0.1–0.2

Table 1
Characteristics of five sets of artificial RNA structures. (a) For each set, successive columns
give the set name, number of instances, size, whether there are bulges or not, and ranges
for the number of multiloops, number of branches per multiloop, and number of internal
loops. (b) Additional parameters common to all five sets of structures give ranges for the
stem length, hairpin size, internal loop size, multiloop size, fraction of bulges per stem, and
bulge size (the last two do not apply to set 
� but do apply to the remaining sets). Exactly
how these parameters are used to generate random instances is described in the Appendix.

Name SR(RNA-SSD)=1 (0) SR(RNAinv)=1 (0) t(RNA-SSD) t(RNA-SSD)

� t(RNAinv) � t(RNAinv)/10

�� 100/100 (0/100) 63/100 (0/100) 100/100 57/100

�� 85/100 (1/100) 5/100 (13/100) 83/86 73/86

�� 88/100 (0/100) 3/100 (8/100) 90/92 81/92

�� 88/100 (0/100) 2/100 (16/100) 81/84 72/84

�� 19/20 (0/20) 0/20 (5/20) 15/15 14/15

Table 2
Performance results for RNA-SSD and RNAinverse on sets of artificial RNA structures
(test-sets 
�–
	). The columns SR(�)=1 (0) show the fraction of structures for which the
respective algorithm found solutions in all (none) of the runs (SR stands for success rate);
the columns t(RNA-SSD) � t(RNAinverse) and t(RNA-SSD) � t(RNAinverse)/10 show
the fraction of structures which RNA-SSD solves faster and at least 10 times faster, respec-
tively (t stands for run-time).

where �� and �� denote the average time for successful and unsuccessful runs,
respectively. (Note that �� � ����� � �� � �� is the expected time of a successful
run, ��, plus the expected number of unsuccessful runs prior to the first successful
run times the expected time of an unsuccessful run, ��; unsuccessful runs of both
algorithms, RNA-SSD and RNAinverse, can vary substantially w.r.t. their run time.)
In the following, for each test-set we indicate the number of RNA structures that
were not always or never solved by either algorithm.

Table 2 summarises the performance results for RNA-SSD and RNAinverse on
the sets �� through �� described in Table 1. Each algorithm performed 10 runs
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Fig. 4. Example of an artificially created RNA structure from test-set 
	, length 490 bases.

per structure; unsuccessful runs were terminated after 3600 CPU seconds. Over-
all, RNA-SSD performed substantially better than RNAinverse. Remarkably, RNA-
SSD solved all but one of the instances, while RNAinverse failed to find any solu-
tions for 42 of the given 420 structures within the given time limits. On the remain-
ing instances, RNA-SSD found solutions up to �
 


 times faster than RNAin-
verse, and substantially more consistently throughout multiple runs and across each
test-set (see also Figure 6). RNAinverse was found to be slightly faster on only 8
of 420 tested structures. The performance differences in favour of RNA-SSD were
found to be particularly pronounced for more complex and biologically plausible
structures with bulges. Generally, these structures appear to be more challenging
for both RNA secondary structure design algorithms. There is also limited evidence
that with increasing size of the structures, the performance advantage of RNA-SSD
over RNAinverse becomes more pronounced (further, more substantial evidence to
that effect will be presented in the next section).
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Fig. 5. The predicted structure of the 16S rRNA (small subunit ribosomal RNA) from an
unidentified eubacterium, GenBank accession number U81771 (No 11 in Table 3), length
491 bases.
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Fig. 6. Performance of RNA-SSD vs. RNAinverse across two test-sets of artificially gen-
erated structures. Left: Set 
� (structures without bulges), right: Set 
� (structures with
bulges). Each test-set is comprised of 100 structures, each of which is represented by one
data point in the respective correlation plot, with the exception of instances that were never
solved by either of the two algorithms. The reported run-times are mean values (in CPU
seconds) determined based on 10 runs per structure.
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5 Experimental Results for Biological Data

In order to test whether and to which extent the excellent performance results for
RNA-SSD would carry over to biological structures, we created a set of ribosomal
RNA sequences (rRNAs) obtained from the Ribosomal Database Project � . The
sequences were chosen in an arbitrary and unbiased way; we note that some are
partial sequences, according to their corresponding GenBank entries. For each of
these, an MFE structure was computed using the same RNA structure prediction
algorithm as the one used within RNA-SSD and RNAinverse for evaluating can-
didate sequences; this ensures that at least one solution exists for each structure.
These structures, although typically not identical to the experimentally determined
secondary structures of the respective RNAs, share many important features with
these and can hence be considered as biologically realistic test cases for RNA de-
sign algorithms such as RNA-SSD or RNAinverse. Our test set is comprised of
24 structures of size 260–1475 bases; we refer to this as test set � (for biological
data).

Computational experiments on this test-set were performed analogously to those
for the artificial test-sets described above. For each structure, between 10 and 50
independent runs of both algorithms were performed; runs were terminated un-
successfully if after 3600 CPU seconds on our reference machine no solution had
been found. For some input structures, while all runs of RNAinverse on a given
input structure were unsuccessful, in some runs, a sequence was found whose MFE
structure was close to the desired structure. In these cases we measured the minimal
distance between the structures found and the desired structure (where the distance
is defined as the number of incorrectly paired or unpaired bases) as well as the time
required for finding this best approximate solution.

As can be seen in Table 3, RNA-SSD performed dramatically better than RNAin-
verse on this test set. While RNA-SSD found solutions for all 24 structures, RNAin-
verse failed to solve 17 structures. In particular, RNAinverse did not find a correct
solution for any structure larger than 500 bases, and for the 7 structures it did solve
correctly, its performance in terms of success rate and run-time is substantially in-
ferior to that of RNA-SSD. These results confirm the earlier observation from our
experiments with artificial structures that RNA-SSD performs substantially better
than RNAinverse, especially on large and biologically realistic structures, which
are in many cases beyond the reach of RNAinverse.

It is worth noting that, as can be seen from the table, although larger structures
tend to be harder to solve for RNA-SSD, the correlation between size and hardness
(i.e., run-time) is not very strong. In particular, there are several cases of small and
medium size structures that appear to be atypically hard to design. Based on the

� http://rdp.cme.msu.edu/download/SSU rRNA/unaligned/SSU Unal.gb
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source name size RNA-SSD RNAinverse

no organism (GenBank accession no.) (bases) succ rate exp time succ rate exp time

1 Rhizobiaceae group bacterium NR64
(Z83250)

260 50/50 4.15 2/50 4639.38

2 Bacterial sp. from marine plankton
(L11935)

264 47/50 2.91 6/50 1195.98

3 Leptospira interrogans strain 94-7997013
(LIU92530)

289 6/50 2517.57 (2/50) (2) (15129.52)

4 Unidentified marine eubacterium (U84629) 299 8/50 189.12 (2/50) (2) (15993.48)

5 Anabaena uncultured bacterium SY2-21
(AF107506)

337 39/50 23.96 3/50 13330.04

6 Ochrobactrum sp. BL200-8 (AF106618) 350 47/50 10.19 6/50 5446.07

7 uncultured eubacterium 3-25 (AJ011149) 376 41/50 70.84 (2/50) (2) (24975.68)

8 Prevotella ruminicola M384 (S70838) 389 49/50 16.23 1/50 46591.08

9 Unidentified crenarchaeote (U63350) 418 21/25 7.44 1/25 25117.46

10 Uncultured eubacterium clone CRE-FL72
(AF141485)

473 4/25 441.59 (3/25) (6) (21106.95)

11 Unidentified eubacterium clone vadinIA59
(U81771)

491 25/25 81.43 1/25 46118.47

12 Stenotrophomonas isolate P-26-14
(AJ130779)

506 25/25 18.66 (2/25) (2) (14728.98)

13 Nitrobacter sp. Nb4 (AF096836) 646 21/25 65.85 (4/25) (4) (17403.46)

14 Wolbachia pipientis (X61771) 659 18/25 342.45 (2/25) (8) (41877.73)

15 Uncultured archaeon ST1-4 (AJ236455) 751 23/25 1483.60 0/25 (-) (-)

16 Bradyrhizobium isolate 283A (AJ132572) 780 19/25 92.36 0/25 (-) (-)

17 Spirochaeta sp. clone Hs33 (AB015827) 856 10/10 95.54 0/10 (-) (-)

18 Sulfolobus acidocaldarius (D38777) 858 3/10 376.31 0/10 (-) (-)

19 Pseudomonas sp. Y1000 (X99676) 950 10/10 168.45 0/10 (-) (-)

20 Unidentified methanogen ARC21
(AF029195)

1053 10/10 37.06 0/10 (-) (-)

21 Planctomyces brasiliensis DSM 5305
(X81949)

1150 10/10 382.79 0/10 (-) (-)

22 Uncultured archaeon KTK 9A (AJ133622) 1296 10/10 152.89 0/10 (-) (-)

23 Methanococcus fervens (AF056938) 1398 6/10 313.40 0/10 (-) (-)

24 Methanococcus jannaschii (L77117 bases
157084-159459)

1475 10/10 151.76 0/10 (-) (-)

Table 3
Performance results for RNA-SSD and RNAinverse on computationally predicted struc-
tures for a set of rRNA sequences obtained from the RDP database (test-set �). For each
of RNA-SSD and RNAinverse, for structures where correct solutions were found, the succ
rate column gives, for each structure, the number of runs performed in which a correct so-
lution was found, divided by the total number of runs performed, and the exp time column
gives the expected time for finding the correct solution, estimated by formula (1). For struc-
tures where only approximate solutions were found by RNAinverse, the succ rate column
gives the fraction of runs in which the best approximate (rather than correct) solution was
found and the distance to the desired structure is given in parentheses, and the exp time
column gives the expected time for finding this approximate solution, also in parentheses.
in 2 of 50 runs, Dashes (–) indicate cases where RNAinverse did not return any solution
within the cutoff time.
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RNA-SSD RNAinverse

no size SeqInit-a SeqInit-b SeqInit

succ rate exp time succ rate exp time succ rate exp time succ rate exp time

2 264 46/50 5.99 47/50 5.42 47/50 2.91 6/50 1195.98

5 337 17/50 133.28 15/50 153.76 39/50 23.96 3/50 13330.04

8 389 48/50 35.41 47/50 28.73 49/50 16.23 1/50 46591.08

12 506 23/25 56.57 24/25 55.90 25/25 18.66 2/25 (2) (14728.98)

13 646 13/25 255.70 12/25 271.48 21/25 65.85 4/25 (4) (17403.46)

Table 4
Comparison of the performance of RNA-SSD with different type of sequence initialization
procedures. The leftmost column gives the numbers of the sequences used, consistent with
Table 3. SeqInit is the default procedure of RNA-SSD. SeqInit-a uses probabilistically bi-
ased base assignment but does not use the tabu mechanism. SeqInit-b uses unbiased base
assignment but does use the tabu mechanism. For each algorithm variant, the succ rate and
exp time column entries are defined as in Table 3.

common characteristics of these structures, we believe that the difficulty is caused
by short and unstable stems or other small substructures attached to multi-loops.
In general, such substructures would severly restrict the number of sequences that
can fold into the desired structure, i.e., reduce solution density, which is known
to correlate with the hardness of the RNA design problem and other combinato-
rial problems for local search search algorithms [12–14]. Differences in solution
density are also very likely responsible for the extreme variations in hardness of
artificial structures observed in Section 4.

6 Discussion

While the results presented in the previous two sections clearly illustrate the sub-
stantial performance advantage of RNA-SSD over the earlier RNAinverse algo-
rithm, a number of questions about the characteristics of the algorithm and the
solutions to the design problems provided by it remain to be answered.

One such question concerns the reasons for the performance differences between
the two algorithms, and particularly, the role of the sequence initialisation proce-
dure. Recall that our method of sequence initialisation introduces a probabilistic
bias for more stable GC-rich paired (stem) regions and GC-poor unpaired (loop)
regions. Furthermore, it uses a tabu mechanism for preventing incorrect pairing be-
tween short sequence motifs. To find out to which extent the performance of RNA-
SSD depends on these two initialisation mechanisms, we performed computational
experiments on selected structures from our biological test-set �. In addition to
RNA-SSD with the standard sequence initialisation procedure, which uses both
mechanisms (here referred to as SeqInit), we studied two variants of RNA-SSD
that use SeqInit-a, a modified initialisation routine that uses the probabilistically
biased base assignment but not the tabu mechanism, and SeqInit-b, a modified ini-
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Fig. 7. Empirical run-time distributions (RTDs) for RNA-SSD and RNAinverse for a small
randomly generated structure from test-set 
� without bulges (left, length 119) and a small
rRNA fragment (right, length 118). The RTDs are based on 100 runs of each algorithm in
all of which a solution was found. CPU time is measured in seconds.

tialisation routine that does not use probabilistically biased base assignment, but
does use the tabu mechanism. The performance of these variants was measured as
described in Section 5, and compared to RNA-SSD with the standard initialisation
and RNAinverse, which initialises the sequence completely at random, choosing
each of the bases A,C,G,U with uniform probability for each sequence position.

As can be seen from Table 4, both initialisation mechanisms, biased base assign-
ment and the tabu mechanism, contribute to RNA-SSD’s excellent performance.
At the same time, even with only one of these mechanisms, RNA-SSD performs
substantially better than RNAinverse. In particular, this is the case for the variant
that does not use probabilistically biased base assignment. Thus, simple variants
of RNA-SSD are preferable even in applications where probabilistic biases in base
composition need to be avoided.

Another interesting difference between RNA-SSD and RNAinverse is the use of
artificial capping structures for sealing the open ends that arise when splitting a
given RNA structure. Our preliminary experiments showed that using no capping
at all (and just connecting the two bases at the split point to seal the open end)
often leads to undesired secondary structures when merging the partial sequences
for two substructures. This was mainly due to the fact that the free bases that were
concatenated after splitting formed pairs at merging. Thus, the insertion of an arti-
ficial branch, short and easy to design, intuitively made sense. For this purpose, we
chose the structure described in Section 3, i.e. five paired, four unpaired, five paired
bases). However, in our empirical performance we have seen some evidence sug-
gesting that using this capping structure can sometimes provide more stabilisation
to a multiloop than the original stem, and thus be detrimental to the performance
of RNA-SSD, as in such a case what appears to be a stable substructure may desta-
bilise after a merging step. Thus, we believe that by using better capping structures,
especially ones that are chosen dynamically dependent on the stem they replace,
the performance of RNA-SSD may be further improved.

Both RNA-SSD and RNAinverse are highly stochastic algorithms: When applied to
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the same structure multiple times, the time for finding a solution may vary substan-
tially. (Note, however, that by using the same random seed, any run of RNA-SSD
can be perfectly reproduced.) This has been taken into account in our performance
evaluation by generally performing sufficiently many runs on each problem in-
stance that reasonably stable statistics (such as mean run-times) were obtained. A
more detailed analysis of the full empirical run-time distributions of both algo-
rithms on particular problem instances indicates that the time required for reach-
ing any given success probability is substantially shorter for RNA-SSD than for
RNAinverse for both, artificial and biological RNA structures (see Figure 7). The
high degree of variability in the time required for finding a solution is typical of
many SLS algorithms for other combinatorial problems [14].

We now turn our attention from RNA-SSD’s performance to the quality of the re-
sults it produces. One important aspect in this context is the stability of the designed
structures. Note that RNA-SSD does not explicitly evaluate or optimise the thermo-
dynamic stability of the desired secondary structure that is achieved by the designed
sequence. Thus, a priori it is not clear whether the sequences designed by RNA-
SSD will be reasonably stable under current models of RNA secondary structure
prediction.

To investigate this issue, we selected three of the biological sequences underly-
ing our test-set � and compared the stability of their MFE fold against that of the
sequences we designed for the same (predicted) structures. (The structures were se-
lected by choosing a small, medium, and long sequence from set� in an otherwised
unbiased way.) In a first experiment, we used the partition function option of Vi-
enna folder to predict for each of a number of sequences we designed for the three
selected test structures, as well as for the respective biological sequence the follow-
ing measures: (i) the probability, Prob[struc�seq], of the structure in the ensemble of
all possible structures for that sequence, (ii) the minimum and median probability
of correct base-pairings over the given sequence, and (iii) the maximum and me-
dian probability of incorrect base-pairings over the given sequence. We sorted the
sequences for each structure according to the first of these measures, and report the
stability results for the best and median sequences from the respective distribution
of solutions along with those for the biological sequence.

As can be seen in Table 5, the sequences obtained by RNA-SSD are substantially
more stable than the biological sequences according to these measures of stabil-
ity. This is particularly striking when comparing the respective probabilities of the
structures; the effect seems to increase with the size of the given structure. The
differences between the best and median results obtained by RNA-SSD highlight
the fact that by running RNA-SSD multiple times on the same structure, a set of
substantially different solutions can be obtained. This property of the algorithm can
be very useful in applications where more than one solution to a given design prob-
lem is needed, e.g., in the context of screening a set of solutions for sequences with
certain properties, such as stability of the respective structure.

21



Prob[correct bps] Prob[incorrect bps] GC content

no sequence size Prob[struc�seq] minimum median maximum median paired / free

1 maximises
Prob[struc�seq]

260 0.00372 0.38644 0.98775 0.00004 0.00002 0.67 / 0.44

1 25-th best seq
Prob[struc�seq]

260 0.00044 0.17285 0.97163 0.00004 0.00002 0.70 / 0.44

1 biological seq. 260 0.00023 0.31180 0.86195 0.47472 0.00015 0.66 / 0.37

12 maximises
Prob[struc�seq]

506 2.07 ����� 0.11606 0.96491 0.00009 0.00003 0.74 / 0.46

12 13-th best seq
Prob[struc�seq]

506 4.97 ����� 0.06745 0.90128 0.00079 0.00006 0.65 / 0.48

12 biological seq. 506 4.03 ����� 0.03700 0.73800 0.69722 0.00010 0.62 / 0.42

17 maximises
Prob[struc�seq]

856 2.54 ������ 0.11985 0.88559 0.01065 0.00011 0.68 / 0.44

17 median over 10
Prob[struc�seq]

856 1.46 ������ 0.00958 0.83251 0.10798 0.00011 0.74 / 0.43

17 biological seq. 856 1.00 ������ 0.06099 0.89210 0.77055 0.00011 0.63 / 0.41

Table 5
Stability measurements for sequences that fold to structures 1, 12, and 17 from test-
set � (see Table 3). For a given sequence and structure, Prob[struc�seq] refers to the
probability of the given structure for the given sequence in the ensemble of all possible
pseudoknot-free structures for that sequence. For each structure, column sequence gives
three sequences that fold to that structure, namely the sequence among the runs for Table
3 for which Prob[struc�seq] is maximised, the sequence among the runs for Table 3 whose
Prob[struc�seq] value is closest to the median over all solutions found by RNA-SSD for
that structure, and the biological sequence. The fifth and sixth columns give the minimum
and the median base pair probabilities, taken over all of the (correct) base pairs in the re-
spective structure. The seventh and eighth columns give the maximum and the median base
pair probabilities, taken over all of the (incorrect) base pairs that are not contained in the
target structure. The final column lists the fraction of bases G and C in the paired and un-
paired regions of the respective RNA. The measurements were obtained using the partition
function option of Vienna package.

It is interesting to note that, as a result of the probabilistic bias in RNA-SSD’s
sequence initialisation and recursive stochastic local procedure, the GC content of
the designed sequences in both, paired and unpaired regions is similar to that of the
original biological sequences (see Table 5). The fact that the GC content in paired
regions of the designed sequences tends to be slightly higher than in the biological
sequence provides a partial explanation for the observed differences in stability;
however, given the magnitude of these differences, we strongly suspect that the
main cause lies in other factors, particularly in the exact composition of stacked
pairs of bases.

In a second experiment, we used Zuker’s mfold algorithm [15] to evaluate the sta-
bility of the MFE structures of the same sequences. More specifically, for each
sequence we determined the number of suboptimal structures found by mfold, the
predicted energy of the MFE structure, and the energy gap between the MFE struc-
ture and the best suboptimal structure (using mfold’s default parameters). As can
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no sequence size Prob[struc�seq] no of MFE MFE-next gap

structures (kcal/mol) (kcal/mol)

1 maximises
Prob[struc�seq]

260 0.00372 3 -105.50 2.5

1 10-th best seq
Prob[struc�seq]

260 0.00169 3 -99.9 2.1

1 25-th best seq
Prob[struc�seq]

260 0.00044 4 -109.3 3

1 biological sequence 260 0.00023 7 -102.3 1.4

12 maximises
Prob[struc�seq]

506 2.07 ����� 6 -219.6 0.7

12 5-th best seq
Prob[struc�seq]

506 3.78 ����� 6 -182.4 3.6

12 12-th best seq
Prob[struc�seq]

506 5.05 ����� 6 -199.7 0.7

12 biological sequence 506 4.03 ����� 23 -184.7 1.8

17 maximises
Prob[struc�seq]

856 2.54 ������ 6 -350.6 2.3

17 2nd best seq
Prob[struc�seq]

856 2.84 ������ 2 -367.9 2.1

17 5-th best seq
Prob[struc�seq]

856 1.46 ������ 9 -387.1 4.5

17 biological sequence 856 1.00 ������ 13 -336.2 2.2

Table 6
Additional stability measurements for sequences that fold to structures 1, 12, and 17 from
test-set � (see Table 3). For each structure, column sequence gives four sequences that fold
to that structure. For structure 1, these are the sequence among the runs for Table 3 for
which Prob[struc�seq] is maximised, the sequence among the runs for Table 3 with the 10th
and 25th highest Prob[struc�seq] values, and the biological sequence. For structure 12, these
are the sequence among the runs for Table 3 for which Prob[struc�seq] is maximised, the
sequence among the runs for Table 3 with the 5th and 12th highest Prob[struc�seq] values,
and the biological sequence. For structure 17, these are the sequence among the runs for
Table 3 for which Prob[struc�seq] is maximised, the sequence among the runs for Table
3 with the 2nd and 5th highest Prob[struc�seq] values, and the biological sequence. The
fourth column shows for each structure and sequence, the probability of the structure for
the sequence in the ensemble of all possible pseudoknot-free structures for that sequence.
The fifth column shows for each sequence the number of structures, including the MFE
structure and all suboptimal structures, as predicted by mfold on that sequence. The sixth
column shows the MFE in kcal/mol, and the seventh column shows the gap between the
MFE and the lowest energy of a suboptimal structure. The measurements were obtained
using Zuker’s mfold algorithm.

be seen from the results of this experiment, shown in Table 6, RNA-SSD can design
sequences that have significantly lower (predicted) free energy than the biological
sequences, and significantly fewer suboptimal structures within the same free en-
ergy range. Furthermore, the MFE gaps between the two structures with lowest free
energy tends to be similar between the biological sequences and those designed by
RNA-SSD. Further analysis shows that for the designed sequences the differences
between the optimal and the lowest energy suboptimal structures tend to be smaller
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than for the biological sequences (10-15% vs 16-33% of the positions are paired
differently).

Overall, both computational experiments indicate that the sequences obtained from
RNA-SSD are predicted to be significantly more stable than the biological se-
quences, even though RNA-SSD does not explicitly optimise its solutions for sta-
bility of the respective secondary structure. Of course, this result is not as surprising
as it may seem at the first glance when considering that the function of biological
RNAs typically does not only depend on the secondary structure of the molecule.
Given such additional constraints, e.g., on the bases occurring at certain positions or
on GC content, the space of solutions to the respective more complex RNA design
problems can be expected to be substantially smaller, and may no longer contain
solutions of the stability that can be quite easily achieved when no additional con-
straints are considered.

Finally, we address the question to which extent RNA-SSD is able to design the
true secondary structures of biological RNAs, as opposed to predicted structures
of biological sequences, as used in our test-set � in this study. Since RNA-SSD,
like RNAinverse, uses Zuker’s secondary structure prediction algorithm, as imple-
mented in the Vienna package’s ‘fold’ function, for evaluating its solution candi-
dates and for guiding its search process, it inherits some of the fundamental limi-
tations of that algorithm. In particular, Zuker’s algorithm is limited to pseudoknot-
free structures, and it is also known to be somewhat imprecise for large RNAs [15].
Notice, however, that in RNA-SSD, Zuker’s algorithm is used as a subroutine that
can in principle be replaced by any secondary structure prediction algorithm (such
as the algorithms by Rivas and Eddy [16] or Gultaev et al. [17]).

Clearly, the choice of this subroutine has a significant impact on the performance of
RNA-SSD as well as on the quality of its results; however, the overall search pro-
cess is not in any way geared towards or tuned for the particular secondary structure
prediction algorithm used in this study. (Note that while the structure decomposi-
tion relies on the pseudoknot-freeness, it can still work for pseudoknots with minor
modifications.) Our use of the Vienna fold function was mainly motivated by the
fact that the underlying algorithm and energy model are close to the state-of-the-art
in energy-based secondary structure prediction, and that the code is publicly avail-
able. Running some of the RNA sequences designed by RNA-SSD through mfold,
we found that in most cases, the desired structure is predicted; only in some cases,
small differences between the predictions of Vienna fold function and mfold are
observed, which reflect the fact that mfold uses a slightly different energy model.

A priori, it is not clear whether RNA-SSD has a realistic chance to solve design
problems for real RNA secondary structures; in particular, it may be expected that
due to limitations of Zuker’s algorithm, there is no sequence for such real struc-
tures that would be predicted to fold correctly by either mfold or the Vienna fold
function. (Think, for example, of RNA structures that are substantially stabilised by
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size RNA-SSD RNAinverse

no description (source) (bases) succ rate exp time succ rate exp time

1 Minimal catalytic domains of
the hairpin ribozyme satelite
RNA of the Tobacco ringspot
virus ([18] Fig. 1a)

65 100/100 0.35 57/100 1.50

2 U3 snoRNA 5’ domain from
Chlamydomonas reinhardtii, in
vivo probing ([19] Fig. 6B)

79 100/100 0.05 100/100 0.12

3 H.marismortui 5S rRNA ([20]) 122 (100/100) (2) (168.88) (29/100) (2) (44.51)

4 VS Ribozyme from Neu-
rospora mitochondria ([21]
Fig. 1A)

167 80/100 1.50 49/100 58.53

5 R180 ribozyme ([22] Fig. 2) 178 6/100 13429.36 (1/100) (5) (16502.23)

�6 XS1 Ribozyme, Bacillus sub-
tilis P RNA based ribozyme
([23] Fig. 2A)

314 13/100 903.29 1/100 94986.38

�7 Homo Sapiens RiboNuclease P
RNA ([24], Fig. 4)

342 4/100 1427.57 1/100 97809.30

8 S20 mRNA from E. coli ([25]
Fig. 2)

372 40/100 1222.75 (1/100) (8) (98435.55)

9 Halobacterium cutirubrum
RNAse P RNA ([26] Fig. 2F)

375 (1/100) (6) (82439.65) 0/100 (–) –

10 Group II intron ribozyme
D135 from Saccharomyces
cerevisiae mitochondria ([27]
Fig. 5)

583 99/100 26.85 0/100 (–) –

Table 7
Performance results for RNA-SSD and RNAinverse on structures from the biological lit-
erature (test-set �). Structures marked with an asterisk (�) were obtained from original,
pseudoknotted structures by disregarding 8bp in each case in order to remove the pseudo-
knot. In all other cases, the original structures were pseudoknot-free. For each of RNA-SSD
and RNAinverse, for structures where correct solutions were found, the succ rate column
gives, for each structure, the number of runs performed in which a correct solution was
found, divided by the total number of runs performed, and the exp time column gives the
expected time for finding the correct solution, estimated by formula (1). For structures
where only approximate solutions were found by RNAinverse, the succ rate column gives
the fraction of runs in which the best approximate (rather than correct) solution was found
as well as the distance to the desired structure, and the exp time column gives the expected
time for finding this approximate solution. in 2 of 50 runs, Dashes (–) indicate cases where
RNAinverse did not return any solution within the cutoff time of 1000 CPU seconds.

tertiary interactions or pseudoknots.) Therefore, we performed a final experiment
to see how close RNA-SSD solutions can get to such real RNA structures. For this
experiment, ten structures comprised of between 60 and 600 bases, consistent with
experimental evidence and empirical data, were selected from the biological litera-
ture. Of these, only two contained pseudoknots, which we removed by disregarding
eight base pairs in each case. For each of the 10 structures in our test-set �, we per-
formed 100 independent runs with RNA-SSD and RNAinverse, respectively, using
the same experimental protocol as described above, except that unsuccessful runs
were terminated after a cutoff time of 1000 CPU seconds.
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As can be seen from the results reported in Table 7, RNA-SSD performs well and
substantially better than RNAinverse in all cases, particularly for the larger struc-
tures with more than 300 bases. It should be noted that none of the ten biological
sequences is predicted to fold into the correct structure by the Vienna fold function
used in RNA-SSD and RNAinverse. We hypothesise that the reason why RNA-SSD
finds sequences that are predicted to fold correctly is because RNA-SSD is able to
design sequences that fold much more stably into a desired structure than does the
biological sequence for that structure. Zuker’s algorithm is based on a number of
simplifying assumptions (such as pseudoknot-freeness) and uses an energy model
(including numerous, empirically determined parameters) that provides only an ap-
proximation of the real thermodynamic energy (for example, because it ignores the
role of RNA tertiary structure in secondary structure formation and stabilisation).
However, this model does capture the major energy contributions and is likely to
provide a reasonable approximation of the true free energy of a given sequence and
structure. For the biological sequences, this approximation clearly is not accurate
enough to obtain the correct prediction. RNA-SSD, however, can find much more
stable solutions, for which the inaccuracies of the energy model used for structure
prediction are no longer as critical. As a consequence of this hypothesis, the limita-
tions of current energy models for RNA structure are less problematic for structure
design than for prediction; however, this issue clearly needs further investigation.

In a similar experiment with three larger RNA structures (1500–2000 bases) that
were obtained from comparative sequence analysis and are believed to be very
close to the true biological structures, we found that RNA-SSD, while unable to
precisely design the target structure, constructed sequences whose predicted MFE
structure is substantially closer to the target than that of the respective biological
sequences. (RNAinverse failed to return any result within 200 hours of CPU time
on our reference machines.) These results confirm the explanation given above and
additionally suggest that the effect of the previously mentioned inaccurracies in
the energy model underlying Zuker’s algorithm are cumulative in the length of the
given sequence and the complexity of the respective secondary structure. This latter
assumption is consistent with the observation that for large biological RNAs with
complex structures, Zuker’s algorithm and related energy-based RNA secondary
structure prediction methods perform rather poorly. However, as previously dis-
cussed, RNA-SSD (as well as RNAinverse) uses Zuker’s algorithm merely as a
subroutine, and we expect that by replacing this subroutine with an implementation
of a substantially better structure prediction algorithm (if and when one becomes
available) would lead to even better performance of RNA-SSD.

7 Conclusions and Future Work

We have introduced a new algorithm for the RNA secondary structure design prob-
lem, an interesting and complex constraint satisfaction problem from computational
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biology. Our algorithm is based on a stochastic local search technique that uses a
carefully designed probabilistic initialisation procedure and a hierarchical structure
decomposition technique to keep the high cost of evaluating candidate solutions
manageable. The empirical performance of our new algorithm on a broad range
of biological and artificially generated RNA structures is substantially better than
the state-of-the-art method for this problem, the RNAinverse algorithm from the
Vienna RNA Package, both in terms of speed as well as with respect to the struc-
tures that can be solved. We attribute this success to a powerful combination of
modern constraint-solving methods (particularly, advanced SLS techniques) and
problem-specific biological knowledge, as for example embodied in the heuristic
initialisation method. The RNA-SSD software is publicly available under the name
of RNA Designer at www.rnasoft.ca [1].

This work can be extended in various directions. Firstly, we are convinced that
further substantial improvement of our algorithm can be achieved. By using a
customised implementation of Zuker’s RNA secondary structure prediction algo-
rithm, it should be possible to significantly speed up the evaluation of candidate
sequences. This modified evaluation procedure would not apply the full dynamic
programming algorithm underlying Zuker’s method for each evaluation, but start
from a previous dynamic programming matrix and update only those elements that
have been affected by one or more local sequence changes. Another area for further
improvements is the SLS algorithm used for the smallest substructure; we expect
that more advanced SLS methods for constraint satisfaction problems, such as tabu-
search techniques (see, e.g., [28]), will lead to improved performance of the overall
algorithm. Also, we are currently studying recursive SLS procedures that incorpo-
rate a dynamic stochastic decomposition into even smaller substructures (which are
conceptually related to the segments currently used during sequence initialisation);
preliminary results suggest that this extension leads to substantial performance im-
provements, especially for large RNA structures with more than 1000 bases.

Also, further empirical analysis of our algorithm as well as RNAinverse could help
to better understand the strengths and limitations of both approaches. We plan to
study both algorithms’ behaviour on a wider range of biologically plausible ran-
domly generated sequences with controlled properties to determine, for example,
which factors make instances of the RNA secondary structure design problem hard
or easy to solve. This type of investigation is facilitated by our random RNA struc-
ture generator, whose underlying probabilistic model can be easily extended to
yield structures based on important structural and statistical properties (such as
helix length, number and location of bulges, etc.) of various classes of biological
RNAs.

Finally, the functionality of our algorithm and its software implementation can be
extended in several useful ways, and indeed this will be necessary in order to ap-
ply RNA-SSD to many biological applications. We welcome input from the bio-
logical and biomolecular computation communities on which additional functions
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would be particularly useful. We have already extended the algorithm to support
additional sequence constraints that limit certain positions to contain certain bases
and to bias the GC content of the designed sequence [1]. Sequence constraints are
needed, for example, in the designs of nanostructures with “sticky ends” [29,4].
Other extensions that we are considering are design of pseudoknotted secondary
structures, RNA strands that form desired joint secondary structure with one or
more other RNA or DNA strands, or both. Such extensions could be useful in de-
sign of DNA and RNA enzymes, DNA and RNA nanostructures [29,4] or molecular
motors [30]. Since adding such functionality to RNA-SSD will likely increase the
time needed for secondary structure design, we conjecture that the algorithmic ad-
vances reported here will be very important in obtaining efficient algorithms for
extensions to the basic secondary design problem.

References

[1] M. Andronescu, R. Aguirre-Hernández, A. Condon, H. H. Hoos, RNAsoft: a suite of
RNA secondary structure prediction and design software tools, Nucl. Acids. Res. 31
(2003) 3416–3422.

[2] N. Usman, J. McSwiggen, Catalytic RNA (ribozymes) as drugs, Annual Reports in
Medicinal Chemistry 30 (1995) 285–294.

[3] T. Cech, Ribozyme engineering, Current Opinions in Structural Biology 2 (1992) 605–
609.

[4] E. Winfree, F. Liu, L. Wenzler, N. Seeman, Design and self-assembly of 2D DNA
crystals, Nature 394 (1998) 539–544.

[5] R. Lyngsø, M. Zuker, C. Pedersen, Fast evaluation of internal loops in RNA secondary
structure prediction, Bioinformatics 15 (1999) 440–445.

[6] I. Hofacker, W. Fontana, P. Stadler, L. Bonhoeffer, M. Tacker, P. Schuster, Fast folding
and comparison of RNA secondary structures, Chemical Monthly 125 (1994) 167–
188.

[7] D. H. Mathews, J. Sabina, M. Zuker, D. H. Turner, Expanded sequence dependence
of thermodynamic parameters improves prediction of RNA secondary structure,
J. Mol. Biol. 288 (1999) 911–940.

[8] A. Zuker, B. Mathews, C. Turner, Algorithms and thermodynamics for RNA secondary
structure prediction: A practical guide, in: J. Barszewski, B. Clark (Eds.), RNA
Biochem & Biotech, Kluwer Academic Publishers, 1999.

[9] S. Minton, M. Johnston, A. Philips, P. Laird, Minimizing conflicts: A heuristic repair
method for constraint satisfaction and scheduling problems, Artificial Intelligence 52
(1992) 161–205.

28



[10] C. Heitsch, A. Condon, H. H. Hoos, From RNA secondary structure to coding theory:
A combinatorial approach, in: Proceedings of the Eighth International Workshop on
DNA Based Computers, LNCS 2568, Springer Verlag, 2003, pp. 215–228.

[11] N. Seeman, De novo design of sequences for nucleic acid structural engineering,
Journal of Biomolecular Structure and Dynamics 8 (3) (1990) 573–581.

[12] H. Hoos, T. Stützle, Evaluating Las Vegas algorithms – pitfalls and remedies, in:
Proceedings of the 14th Conference on Uncertainty in Artificial Intelligence, Morgan
Kaufman, 1998, pp. 238–245.

[13] P. Schuster, W. Fontana, P. Stadler, I. Hofacker, From sequences to shapes and back: A
case study in RNA secondary structures, in: Proceedings of the Royal Society London
B 255, 1994, pp. 279–284.

[14] D. Clark, J. Frank, I. Gent, E. MacIntyre, N. Tomov, T. Walsh, Local search and the
number of solutions, in: Proceedings of the 2nd International Conference on Principles
and Practice of Constraint Programming, LNCS 1118, Springer Verlag, 1996, pp. 119–
133.

[15] H. Hoos, Stochastic local search – methods, models, applications, Ph.D. thesis,
Darmstadt University of Technology, Department of Computer Science (1998).

[16] E. Rivas, S. Eddy, A dynamic programming algorithm for RNA structure prediction
including pseduoknots, J. Mol. Biol. 285 (1999) 2053–2068.

[17] A. Gultaev, F. van Batenberg, C. Pleij, The computer simulation of RNA folding
pathways using a genetic algorithm, J. Mol. Biol. 250 (1995) 37–51.

[18] M. J. Fedor, Structure and function of the hairpin ribozyme, J. Mol. Biol. 297 (2)
(2000) 269–291.

[19] M. Antal, A. Mougin, M. Kis, E. Boros, G. Steger, G. Jakab, F. Solymosy, C. Branlant,
Molecular characterization at the RNA and gene levels of U3 snoRNA from a
unicellular green alga, chlamydomonas reinhardtii, Nucl. Acids. Res. 28 (2000) 2959–
2968.

[20] M. Szymanski, M. Barciszewska, V. Erdmann, J. Barciszewski, 5S ribosomal RNA
database, Nucl. Acids. Res. 30 (2002) 176–178.

[21] D. Lafontaine, D. Norman, D. Lilley, Structure, folding, and activity of the vs
ribozyme: importance of the 2-3-6 helical junction, The EMBO Journal 20 (6) (2001)
1415–1424.

[22] Z. C. L. Sun, R. Gottlieb, B. Zhang, A selected ribozyme catalyzing diverse dipeptide
synthesis, Chemistry & Biology 9 (2002) 619–628.

[23] E. Mobley, T. Pan, Design and isolation of ribozyme-substrate pairs using RNase P-
based ribozymes containing altered substrate binding sites, Nucl. Acids. Res. 27 (21)
(1999) 4298–4304.

[24] C. Pitulle, M. Garcia-Paris, K. R. Zamudio, N. R. Pace, Comparative structure analysis
of vertebrate ribonuclease P RNA, Nucl. Acids. Res. 26 (14) (1998) 3333–3339.

29



[25] G. Mackie, Secondary structure of the mRNA for ribosomal protein S20. Implications
for cleavage by ribonuclease E, J. Biol. Chem. 267 (1992) 1054–1061.

[26] E. Haas, D. Armbruster, B. Vucson, C. Daniels, J. Brown, Comparative analysis of
ribonuclease P RNA structure in Archaea, Nucl. Acids. Res. 24 (7) (1996) 1252–1259.

[27] J. Swisher, C. Duartel, L. Sul, A. Pyle, Visualizing the solvent-inaccessible core of a
group ii intron ribozyme, The EMBO Journal 20 (8) (2001) 2051–2061.
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Appendix:
A Generator for Artificial RNA Structures with Controlled Properties

In order to allow us to evaluate our RNA-Design algorithm on larger sets of RNA
structures with controlled properties, we designed and implemented a simple ran-
dom generator for pseudoknot-free RNA secondary structures. Parameter ranges
set by the user control the number and size of each type of loop in the randomly
generated structures. The parameter ranges are summarised in Table 8. Through-
out, we use the term “2-branch loop” to refer to a loop that is either an interior loop
with two branches but is not a bulge or stacked pair, or to an external loop with two
branches, and the term “multiloop” to refer either to an interior loop or external
loop with more than two branches.

To generate a structure � given these parameters, the generator chooses numbers
� and � uniformly at random from the ranges ���� ��� and �������, respectively.
Then the structure is built up in rounds, from the outside in (where the outside
corresponds to the free ends), with either a 2-branch loop or a multiloop and as-
sociated stems (that include bulges) inserted per round, until the structure has �
2-branch loops and � multiloops. The hairpins are added at the end, closing the
stems. To describe a round of the generator in detail, the following notation is use-
ful: If the structure � is represented as a string ���� � � � �	 over the alphabet � ‘(’,
‘)’, ‘.’ �, then the insertion of a loop or stem structure � at position � results in the
structure ���� � � � ������� � � � �	. Initially, � 	 ‘..’, that is, � is a structure with
two unpaired bases.

In a round, the type of loop to be inserted is determined as follows. In the first round,
in which the type of the external loop is determined, with probability 1/2, the loop
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Hairpins Stems 2-Branch Loops Multiloops Bulges

Size ���� ��	 ���� ��	 ���� ��	 ������	 ���� ��	

Number � � ���� ��	 ������	 ���� ��	

Branches � � � ��������	 �

Table 8
Parameters for structure generator, specified by the user. For each type of loop, the Size
range is a pair of non-negative integers. For example, the stem size range �� �� deter-
mines that each stem generated in the structure has a number of base pairs in the range
�� ��, with the number chosen uniformly at random from that range. For loops with two
branches and for multiloops, the Number range is a pair of non-negative integers, and the
total number of 2-branch loops and multiloops in the structure is chosen uniformly at ran-
dom from that range. For bulges, the number range ��� ��� is contained in �� ���� and the
ratio of bulges to base pairs in the stem is chosen uniformly at random from this range.
The number of stems and hairpins are determined by the other parameters, and so are not
specified. The number of branches is specified for multiloops only.

has one branch, with probability ������ ���� it has two branches (in which case
it is counted as a 2-branch loop), and with probability ������ ���� it has more
than two branches (in which it is counted as a multiloop). In all rounds other than
the first, the probability of a multiloop is ������ � ��� and the probability of a
2-branch loop is ������ ����, where �� is � less the number of rounds prior to
round � in which multiloops were added, and �� is � less the number of rounds prior
to � in which 2-branch loops were added. If the type of loop is a multiloop, the
number of branches is chosen uniformly at random from the range ���� ���.

Then, the size � (number of unpaired bases) of the loop is determined. If the loop
has one branch (which can only occur in the first round), � is chosen uniformly
at random from the range ���� ���; if it has two branches, � is chosen uniformly at
random from the range ���� ���, and if it has more than two branches, � is chosen
uniformly at random from the range ���� ���.

Next, positions of the loop branches, or base pairs, other than the closing, or ex-
terior, base pair, are determined. (Note that the external loop has no closing base
pair, but all other loops have exactly one closing base pair.) Let � be the number
of branches whose positions need to be determined. Thus, � is equal to the number
of branches if the loop is the external loop, and is equal to the number of branches
less 1 if the loop is not the external loop. Then, a string (structure) with � ‘.’s
and � ‘()’s is chosen uniformly at random from the set of all such strings. If � is
the resulting structure, e.g. ‘..()....()..’ for � 	 � and � 	 �, then the po-
sitions of the ‘()’ substrings indicate the positions of the branches among the �
unpaired bases. In general, we say that position � of a string is open if the symbols
at positions � and � � � are � and � respectively.

Next, � stems are inserted into �, at the � open positions in the string �. For each
stem, its length � (number of base pairs) is chosen uniformly at random from the
range ���� ���. Also, a number � is chosen in the range ���� ���, and � times �
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(rounded down to an integer) bulge loops are inserted in the stem. Since structures
that contain isolated, single base pairs between stretches of unpaired bases tend to
be highly unstable, the generator ensures that at least one stacked pair lies between
any two bulges. The result is that the structure � contains both a loop and stems
associated with all of the branches of the loop, other than the closing branch.

Finally, the structure � (representing a loop and associated stems, other than the
closing stem), is inserted into the overall structure �. If � 	 ‘..’, then � is inserted
at position 2 of �, so that � is updated to be ‘.�.’. Otherwise, an open position of �
is chosen uniformly at random from the set of all such positions, and the structure
� is inserted into � at position �. This completes the description of a round of the
generator, which adds a loop and associated stems to �.

Once the structure has � multiloops and � internal loops, a hairpin loop is inserted
at each remaining open position of �. That is, for each open position � of �, the size
� (number of unpaired bases) of the hairpin loop is chosen randomly and uniformly
from the range ���� ��� and the string consisting of � ‘.’s is inserted at position �
of �.

This construction method yields structures that share many of the features of RNA
secondary structures found in nature (e.g., rRNA). Salient properties of the gener-
ated structures can be controlled by the parameters of the probabilistic process.
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