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Abstract: Fault diagnosis is a critical task for autonomous operation of systems
such as spacecraft and planetary rovers, and must often be performed on-board.
Unfortunately, these systems frequently also have relatively little computational
power to devote to diagnosis. For this reason, algorithms for these applications
must be extremely efficient, and preferably anytime. In this paper we introduce
the Gaussian particle filter (GPF), an efficient variant on the particle filtering
algorithm for non-linear hybrid systems. Each particle samples a discrete mode
and approximates the continuous variables by a multivariate Gaussian that is
updated at each time-step using an unscented Kalman filter. The algorithm is
closely related to Rao-Blackwellized Particle Filtering and equally efficient, but
is more broadly applicable. We show that GPF performs diagnosis faster than
traditional particle filters, and with a much lower rate of incorrect diagnoses.

1. INTRODUCTION

Fault diagnosis is a critical task for autonomous
operation of systems such as spacecraft and plane-
tary rovers. The diagnosis problem is to determine
the state of a system over time given a stream of
observations of that system. A common approach
to this problem is model-based diagnosis (de Kleer
and Williams, 1987; de Kleer and Williams, 1989),
in which the overall system state is represented as
an assignment of a mode (a discrete state) to each
component of the system. Such an assignment
is a possible description of the current state of
the system if the set of models associated with
the modes is consistent with the observed sensor
values. One example of such a system is Living-
stone (Williams and Nayak, 1996), which flew on
the Deep Space One spacecraft as part of the
Remote Agent Experiment in May 1999. In Liv-
ingstone, diagnosis is performed by maintaining a
candidate hypotheses (in other systems more than
one hypothesis is kept) about the current state
of each system component, and comparing the
candidate’s predicted behaviour with the system
sensors. Traditional model-based diagnosis oper-

ates on discrete models only, and uses monitors
to discretize continuous sensor readings.

For many applications, e.g. planetary rovers, the
complex dynamics of the system make reasoning
with a discrete model inadequate. This is because
too fine a discretization is required to accurately
model the system; because the monitors would
need global sensor information to discretize a sin-
gle sensor correctly; and because transient events
must be diagnosed. To overcome this we need
to reason directly with the continuous values we
receive from sensors: Our model needs to be a
hybrid system.

A hybrid system consists of a set of discrete modes,
which represent fault states or operational modes
of the system, and a set of continuous variables
which model the continuous quantities that affect
system behaviour. We will use the term state to
refer to the combination of these, that is, a state is
a mode plus a value for each continuous variable,
while the mode of a system refers only to the dis-
crete part of the state. In many cases, not all of the
hybrid system will be observable. Therefore, we
also have an observation function that defines the



likelihood of an observation given the mode and
the values of the continuous variables. All these
processes are inherently noisy, and the represen-
tation reflects this by explicitly including noise in
the continuous values, and stochastic transitions
between system modes. We describe our hybrid
model in more detail in Section 2.

There are several challenges to overcome to pro-
duce an effective diagnosis algorithm for these
types of hybrid models. The algorithm we present
here attempts to make progress on all these prob-
lems, although primarily on the first four:

Very low prior fault probabilities: Diagnosis
problems are particularly difficult for approxi-
mation algorithms based on sampling because
of the low probabilities of transitions to fault
states. This can lead to incorrect diagnoses be-
cause there are no samples in a fault state.

Restricted computational resources: For
space applications, computation time is fre-
quently at a premium, and on-board real-time
diagnosis is often necessary. For this reason,
diagnosis must be as efficient as possible.

Non-linear stochastic transitions and ob-
servations: Many algorithms are restricted to
linear models with Gaussian noise. Our domains
frequently behave non-linearly, so we would pre-
fer an algorithm without this restriction.

Multimodal system behaviour: Even in a
single discrete mode, the observations are often
consistent with several values for the continuous
variables, and so multi-modal distributions ap-
pear. For example, when a rover is commanded
to accelerate, we are often uncertain about ex-
actly when the command is executed. Different
start times lead to different estimates of current
speed, and hence a multi-modal distribution.
Again, this is a problem for a number of al-
gorithms, particularly for Kalman filters.

High dimensional state spaces: As the di-
mensionality of a problem grows, the number
of samples required to accurately approximate
the posterior distribution grows exponentially.

Computing exact diagnoses for a model such as
the one we describe above is computationally
intractible. To overcome this, a number of au-
thors have proposed approximate inference algo-
rithms (Verma et al., 2001; Washington, 2000).
The most general approach proposed is the par-
ticle filter (Isard and Blake, 1998; Doucet, 1998)
which sequentially computes an approximation to
the posterior probability distribution of the states
of the system given the observations. The poste-
rior distribution is approximated by a set of point
samples or particles. We discuss particle filters
in Section 2.2, for a much more extensive review
see (Doucet et al., 2001).

An increasingly commonly used variant on parti-
cle filters is the Rao-Blackwellized particle filter
(RBPF) (de Freitas, 2002), which we describe in
Section 2.3. RBPF is a much more computation-

ally efficient variant of PF, but is only applicable
to a restricted set of models. In this paper we
present the Gaussian particle filter, an algorithm
which maintains the considerable computational
gains of RBPF, but can be used to diagnose the
state of any hybrid system. We describe the Gaus-
sian particle filter in Section 3, and demonstrate
its effectiveness in Section 4.

2. HYBRID STATE ESTIMATION

Following a number of authors, we model the
system to be diagnosed as a discrete-time prob-
abilistic hybrid automaton (PHA). We refer the
reader to (Hofbaur and Williams, 2002) for details
of PHAs, but will use the following notation here:

• Z = z1, . . . , zn is the set of discrete modes
the system can be in.

• X = x1, . . . , xm is the set of continuous state
variables which capture the dynamic evolu-
tion of the automaton. We write P(Z0, X0)
for the prior distribution over Z and X.

• Y is the set of observable variables. We write
P(Yt|zt, xt) for the distribution of observa-
tions in state (zt, xt).

• There is a transition function that specifies
P(Zt|zt−1, xt−1), the conditional probability
distribution over modes at time t given that
the system is in state (z, x) at t− 1. In some
systems, this is independent of the continu-
ous variables: P(Zt|zt−1, xt−1) = P(Zt|zt−1).

• We write P(Xt|zt−1, xt−1) for the distribu-
tion over X at time t given that the system
is in state (z, x) at t− 1.

We denote a hybrid state of the system by s =
(z, x), which consists of a discrete mode z, and an
assignment to the state variables x.

Diagnosis of a hybrid system of this kind is
determining, at each time-step, the belief state
P(St|y1:t), a distribution that, for each state s,
gives the probability that s is the true state of the
system, given the observations so far. In principle,
belief state tracking is an easy task, which can be
performed using the forward pass equation:

P(st|y1:t) = αP(yt|st)
∫

P(st|st−1)P(st−1|y1:t−1)dst−1

= αP(yt|zt, xt)∫
P(xt|zt, xt−1)P(zt|zt−1, xt−1)P(st−1|y1:t−1)dst−1

where α is a normalizing constant. Unfortunately,
computing the integral exactly is intractable in
all but the smallest of problems, or in certain
special cases. The most important special case is a
unimodal linear model with Gaussian noise. This
is solved optimally and efficiently by the Kalman
filter (KF). We describe the KF below; then, we
weaken the model restrictions and describe algo-
rithms for more general models, such as Particle
Filters and Rao-Blackwellized Particle Filters. We



(1) For N particles p(i), i = 1, . . . , N , sample

discrete modes z
(i)
0 , from the prior P(Z0).

(2) For each particle p(i), sample x
(i)
0 from the

prior P(X0|z(i)
0 ).

(3) for each time-step t do

(a) For each particle p(i) = (z
(i)
t−1, x(i)t−1) do

(i) Sample a new mode:

ẑ
(i)
t ∼ P(Zt|z(i)

t−1).

(ii) Sample new continuous parameters:

x̂
(i)
t ∼ P(Xt|ẑ(i)

t , x
(i)
t−1).

(iii) Compute the weight of particle p̂(i):

w
(i)
t ← P(yt|ẑ(i)

t , x̂
(i)
t ).

(b) Resample N new samples p(i) where:

P(p(i) = p̂(k)) ∝ w(k)
t

Fig. 1. The particle filtering algorithm.

end with the most general problem for which we
propose the Gaussian Particle Filter.

2.1 Kalman Filters

When the system we want to diagnose has only
one discrete mode, linear transition and observa-
tion functions for the continuous parameters and
Gaussian noise there exists a closed form solution
to the tracking problem. In this case, the belief
state is a multivariate Gaussian and can be com-
puted incrementally using a Kalman filter (KF).
At each time-step t the Kalman filtering algo-
rithm updates sufficient statistics (µt−1,Σt−1),
prior mean and covariance of the continuous dis-
tribution, with the new observation yt. We omit
details and the Kalman equations here, and refer
interested readers to (Grewal and Andrews, 1993).

The Kalman filter is an extremely efficient algo-
rithm. However, in the case of non-linear transfor-
mations it does not apply; good approximations
are achieved by the extended Kalman filter (EKF)
and the unscented Kalman filter (UKF) with the
UKF generally dominating the EKF (Wan and
van der Merwe, 2000). Rather than using the stan-
dard Kalman filter update to compute the poste-
rior distribution, the UKF performs the following:
Given an m-dimensional continuous space, 2m+1
sigma points are chosen based on the a-priori co-
variance (see (Wan and van der Merwe, 2000) for
details). The non-linear system equation is then
applied to each of the sigma points, and the a-
posteriori distribution is approximated by a Gaus-
sian whose mean and covariance are computed
from the sigma points. This unscented Kalman
filter update yields an approximation of the pos-
terior whose error depends on how different the
true posterior is from a Gaussian. For linear and
quadratic transformations, the error is zero.

2.2 Particle Filters

While the success of the above approaches depend
on how strongly the belief state resembles a mul-
tivariate Gaussian, the particle filter (PF) (Isard
and Blake, 1998) is applicable regardless of the

underlying model. A particle filter is a Markov
chain Monte Carlo algorithm that approximates
the belief state using a set of samples (parti-
cles), and keeps the distribution updated as new
observations are made over time. The basic PF
algorithm is shown in Figure 1. To update the
belief distribution given a new observation, the
algorithm operates in three steps as follows:

The Monte Carlo step: This step considers
the evolution of the system over time. It uses
the stochastic model of the system to generate
a possible future state for each sample. In our
hybrid model (and Figure 1), this is performed
by sampling a discrete mode, and then the
continuous state given the new mode.

The reweighting step: This corresponds to
conditioning on the observations. Each sample
is weighted by the likelihood of seeing the ob-
servations in the (updated) state represented by
the sample. This step leads samples that predict
the observations well to have high weight, and
samples that are unlikely to generate the obser-
vations to have low weight.

The resampling step: To produce a uniformly
weighted posterior, we then resample a set of
uniformly weighted samples from the distri-
bution represented by the weighted samples.
In this resampling the probability that a new
sample is a copy of a particular sample s is
proportional to the weight of s, so high-weight
samples may be replaced by several samples,
and low-weight samples may disappear.

At any time t, the PF algorithm approximates the
true posterior belief state given observations y1:t

by a set of samples (or particles):

P(Zt, Xt|y1:t)≈ P̂(Zt, Xt|y1:t)

=
1

N

N∑

i=1

w
(i)
t δ(Zt,Xt)((z

(i)
t , x

(i)
t ))

where w
(i)
t , z

(i)
t and x

(i)
t are weight, discrete mode

and continuous parameters of particle p(i) at time
t, N is the number of samples, and δx(y) denotes
the Dirac delta function.

Particle filters have a number of properties that
make them a desirable approximation algorithm
for diagnosis. As we said above, unlike the Kalman
filter, they can be applied to non-linear models
with arbitrary prior belief distributions. They are
also contract anytime algorithms, meaning that
if you specify in advance how much computation
time is available, a PF algorithm can estimate
a belief distribution in the available time—by
changing the number of samples, you trade off
computation time for the quality of the approx-
imation. In fact, the computational requirements
of a particle filter depend only on the number of
samples, not on the complexity of the model.

Unfortunately, as we said in the introduction, di-
agnosis problems have some characteristics that



make standard particle filtering approaches less
than ideal. In particular, on-board diagnosis for
applications such as spacecraft and planetary
rovers must be performed using very limited
computational resources, and transitions to fault
modes typically have very low probability of oc-
curring. This second problem leads to a form of
sample impoverishment, in which modes with a
non-zero probability of being the actual state of
the system contain no samples, and are therefore
treated by the particle filter as having zero proba-
bility. This is particularly a problem for diagnosis,
because these are exactly the states for which we
are most interested in estimating the likelihood.
There have been a few approaches to tackling this
issue, most notably (Dearden and Clancy, 2002)
and (Thrun et al., 2001).

Another traditional problem of particle filters is
that the number of samples needed to cope with
high dimensional continuous state spaces is enor-
mous. Especially in the case of high noise levels
and widespread distributions, approximations via
sampling do not yield good results. If it is possible
to represent the continuous variables in a compact
way, e.g. in the form of sufficient statistics, this
generally helps by greatly reducing the number
of particles needed. In the next section, we in-
troduce one instance of this, the highly efficient
Rao-Blackwellized Particle Filter which only sam-
ples the discrete modes and propagates sufficient
statistics for the continuous variables.

2.3 Rao-Blackwellized Particle Filters

Recent work on Rao-Blackwellized Particle Filter-
ing (RBPF) (de Freitas, 2002; Morales-Menendez
et al., 2002) has focused on combining PFs and
KFs for tracking linear multimodal systems with
Gaussian noise. In this kind of model, the belief
state is a mixture of Gaussians. Rather than sam-
pling a complete system state, in RBPF for hybrid
systems, one combines a Particle Filter that sam-
ples the discrete modes zt, and a Kalman Filter
for each discrete mode zt ∈ Z that propagates

sufficient statistics (µ
(i)
t ,Σ

(i)
t ) for the continuous

parameters xt. The algorithm is shown in Figure
2. At each time-step t, first, the discrete mode is
sampled according to the transition prior. Then,
for each particle p(i) a Kalman filter is called

to compute the prior mean ŷ
(i)
t|t−1 and covariance

Ŝ
(i)
t of the observation and update the mean µ

(i)
t

and covariance Σ
(i)
t for the continuous parameters.

The variable θ(z
(i)
t ) denotes the parameters of the

Kalman Filter belonging to mode z
(i)
t . Finally,

the particle weight is computed as the observation

probability P (yt|ŷ(i)
t|t−1, Ŝ

(i)
t ) of yt given the prior

observation mean and covariance. As in regular
Particle Filtering, a resampling step is necessary
to prevent particle impoverishment.

As shown in (Morales-Menendez et al., 2002), it
is possible in Rao-Blackwellized Particle Filtering

(1) For N particles p(i), i = 1, . . . , N , sample

discrete modes z
(i)
0 , from the prior P(Z0).

(2) For each particle p(i), set µ
(i)
0 and Σ

(i)
0 to the

prior mean and covariance in state z
(i)
0 .

(3) For each time-step t do

(a) For each p(i) = (z
(i)
t−1, µ

(i)
t−1,Σ

(i)
t−1) do

(i) Sample a new mode:

ẑ
(i)
t ∼ P(Zt|z(i)

t−1).

(ii) Perform Kalman update using pa-

rameters from mode ẑ
(i)
t :

(ŷ
(i)

t|t−1
, Ŝ

(i)
t , µ̂

(i)
t , Σ̂

(i)
t )

← KF (µ
(i)
t−1,Σ

(i)
t−1, yt, θ(z

(i)
t )).

(iii) Compute the weight of particle p̂(i):

w
(i)
t ← P(yt|ŷ(i)

t|t−1
, Ŝ(i)) = N(yt; ŷ

(i)

t|t−1
, Ŝ(i)).

(b) Resample as in step 3.(b) of the PF algo-
rithm (see Figure 1).

Fig. 2. The RBPF algorithm.

to sample the discrete modes directly from the
posterior. It is also possible to resample before
the transition according to the expected poste-
rior weight distribution such that those particles
get multiplied which are likely to transition to
states of high confidence. These improvements
result in an even more efficient algorithm called
RBPF2 (Morales-Menendez et al., 2002).

3. NON-LINEAR ESTIMATION

Since RBPF uses a KF for its continuous state
estimation, it is restricted to linear problems with
Gaussian noise. Many of the problems we are
interested in do not have these properties. To
overcome this, we propose the Gaussian particle
filter (GPF). In general hybrid systems, there is
no tractable closed-form solution for the contin-
uous variables, so we cannot maintain sufficient
statistics with every sample. It is however possible
to propagate an approximation of the continuous
variables. We sample the mode as usual and for
every particle update a Gaussian approximation
of the continuous parameters using an unscented
Kalman filter. Since the unscented Kalman fil-
ter only approximates the true posterior distribu-
tion, the GPF is a biased estimator in non-linear
models; however, by not sampling the continuous
state, we greatly reduce the estimator’s variance.

The GPF algorithm is very similar to the RBPF
algorithm presented in Figure 2. In both of
these algorithms particle p(i) represents the con-
tinuous variables with a multivariate Gaussian
N(µ

(i)
t ,Σ

(i)
t ). In the case of linear models and

RBPF, this Gaussian is a sufficient statistic, in
the case of non-linear models and GPF, it is an
approximation. In the algorithm, the only change



is in line 3.(a)ii of Figure 2, which is replaced by:

3.a(ii) Perform an unscented Kalman update

using parameters from mode ẑ
(i)
t :

(ŷ
(i)
t|t−1, Ŝ

(i)
t , µ̂

(i)
t , Σ̂

(i)
t )

← UKF (µ
(i)
t ,Σ

(i)
t , yt, θ(z

(i)
t ))

This change is due to the non-linearity of transi-
tion and/or observation function. A Kalman up-
date is simply not possible, but a good approxima-
tion is achieved with an unscented Kalman filter.
The approximation of continuous variables in the
GPF is a mixture of Gaussians rather than the
set of samples as in a PF. Since the expressive
power of every particle is higher, fewer particles
are needed to achieve the same approximation ac-
curacy. This more than offsets the small additional
computational cost per sample. Furthermore, this
compact approximation is likely to scale smoothly
with an increase in dimensionality.

Like RBPF, the GPF can be improved by sam-
pling directly from the posterior distribution and
resampling before the transition. We call the re-
sulting algorithm GPF2 and detail it in Figure 3.
For each particle, before actually sampling a dis-
crete mode, we look at each possible mode m,
update our approximations of the continuous pa-
rameters assuming we had sampled m, and com-
pute the observation likelihood for those approx-
imations. This and the transition prior give the
posterior probability of transitioning to m. Then
for each particle we sample a new discrete mode
from the posterior we computed for it.

At each time-step t, for every particle p(i), first
we enumerate each possible successor mode m, i.e.

each mode m ∈ Z such that P (m|z(i)
t−1) > 0. For

each m, we perform an unscented Kalman update,
and compute analytically the observation likeli-

hood P (yt|m,µ(i)
t−1,Σ

(i)
t−1) = P (yt|y(i,m)

t|t−1, S
(i,m)
t ).

Then, we compute the unnormalized posterior
probability Post(i,m) of transitioning to mode m
with particle p(i); this is given simply by the prod-
uct of the transition prior to m and the observa-
tion likelihood in m. Next we compute the weight
of each particle p̂(i) as the sum of the posterior
probabilities of it’s successor modes and resample
N particles according to this weight distribution.

Note, that Post(i,m), µ
(i,m)
t and Σ

(i,m)
t also need

to be resampled, i.e. when particle p(i) is sampled

to be particle p̂(k), then Post(i,m)← P̂ ost(k,m),

µ
(i,m)
t ← µ̂

(k,m)
t and Σ

(i,m)
t ← Σ̂

(k,m)
t for all m.

Finally, for every particle p(i), a successor mode m
is sampled according to the posterior probability;

this mode is used as z
(i)
t ; µ

(i)
t and Σ

(i)
t are set to

the already computed value µ
(i,m)
t and Σ

(i,m)
t .

GPF2 only differs from the RBPF2 algorithm
in that it is calling an unscented Kalman filter
update instead of a Kalman update due to the

(1) For N particles p(i), i = 1, . . . , N , sample

discrete modes z
(i)
0 , from the prior P(Z0).

(2) For each particle p(i), set µ
(i)
0 and Σ

(i)
0 to the

prior mean and covariance in state z
(i)
0 .

(3) For each time-step t do

(a) For each p(i) = (z
(i)
t−1, µ

(i)
t−1,Σ

(i)
t−1) do

(i) For each possible successor mode

m ∈ succ(z(i)
t−1) do

(A) Perform unscented Kalman
update using parameters from

mode m:

(ŷ
(i,m)

t|t−1
, Ŝ

(i,m)
t , µ̂

(i,m)
t , Σ̂

(i,m)
t )

← UKF (µ
(i)
t−1,Σ

(i)
t−1, yt, θ(m)).

(B) Compute posterior probability

of mode m as:

P̂ ost(i,m) ← P(m|z(i)
t−1, yt)

= P(m|z(i)
t−1)N(yt; y

(i,m)

t|t−1
, S

(i,m)

t|t−1
).

(ii) Compute the weight of particle p̂(i):

w
(i)
t ←

∑
m∈succ(z(i)

t−1
)
P̂ ost(i,m)

(b) Resample as in step 2.(b) of the PF algo-
rithm (see Figure 1) (also resample Post,

µt and Σt).
(c) For each particle p(i) do

(i) Sample a new mode:

m ∼ P(Zt|z(i)
t−1, yt).

(ii) Set z
(i)
t ← m, µ

(i)
t ← µ

(i,m)
t and

Σ
(i)
t ← Σ

(i,m)
t .

Fig. 3. The GPF2 algorithm.

non-linear character of the transformations. It is
a very efficient algorithm for state estimation on
non-linear models with transition and observation
functions that transform a Gaussian distribution
to a distribution that’s close to a Gaussian. Very
low fault priors are handled especially gracefully
by GPF2 since it samples the discrete modes from
their true posterior distribution. When there is
strong enough evidence the fault will be detected
regardless of how low the prior is.

4. EXPERIMENTS

We performed experiments on a simple model of
the suspension system of the K-9 rover at NASA
Ames Research Center. The model has six discrete
modes and six continuous variables, two of which
are observable. The continuous parameters follow
non-linear trajectories in three of the modes. More
details of the model can be found in the full
version of the paper. Figure 4 shows the rate of
state estimation errors for the GPF, GPF2 and
traditional particle filters, as well as the unscented
particle filter, discussed below.

The diagnosis of every filter is taken to be
the maximum a posteriori (MAP) estimate for
the discrete modes; we define a discrepancy be-
tween this MAP estimate and the real discrete
mode as an error. Figure 4 shows the error
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rates (#diagnosis errors
#time steps ) achieved by the algo-

rithms with different numbers of samples; the x-
axis is the CPU time the algorithms needed for
the computation. The graph shows that GPF is
a better approximation than PF given the same
computing resources, particularly as the number
of samples increases and the discrete states be-
come adequately populated with samples. GPF2
is considerably slower per sample but its approx-
imation is superior to PF or GPF.

We also compare our results with the unscented
particle filter (UPF) of (van der Merwe et al.,
2001). The GPF and UPF have a number of
similarities. Both use a set of particles each of
which performs an unscented Kalman update at
every time step. In UPF, the Kalman update
approximation N(mut,Σt) of the posterior is used
as a proposal for the particle filter, in GPF this
approximation is used as the filter result.

In our experiments there is little difference be-
tween the results of GPF and UPF. GPF is gen-
erally faster by a constant factor since it does
not need to sample the continuous state, and the
weight computation is faster. We would expect
the UPF to yield better results when the shape of
the posterior distribution is very different from a
Gaussian and would expect the GPF to do better
when there is a big posterior covariance Σt such
that the sampling introduces high variance on the
estimate. In this case, the UPF will need more
particles to yield the same results. Since neither
of these conditions applies in our domain, both
algorithms show similar performance, with GPF
being slightly faster.

We are currently testing these algorithms on
larger problems, which should better show the
performance gain from GPF over the standard
particle filter. We anticipate that GPF will be
very useful for on-board diagnosis on the K-9 rover
where models can’t be easily linearised. GPF2 is
less clearly useful due to its large computational
demands, but may be applicable where extra time
can be made available for a critical diagnosis, or

where the space of modes to sample from can be
reduced using other techniques such as traditional
diagnosis algorithms.
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