An Efficient Approach for Assessing Parameter Importance in Bayesian Optimization

Frank Hutter

Holger Hoos and Kevin Leyton-Brown

Freiburg University fh@informatik.uni-freiburg.de University of British Columbia {hoos, kevinlb}@cs.ubc.ca

... in 20 sec

- **Bayesian Optimization** is a powerful technique for finding the global optimizer of blackbox functions.
- Users want to know more: which inputs are important, the effects of which ones are correlated?
- We use functional ANOVA to provide such information, based on efficient operations in random forests.

Efficient Marginal Performance Predictions in Random Forests

Basic Definitions (only for reference)

Let A be an algorithm having n parameters with domains $\Theta_1, \ldots, \Theta_n$. We use integers to denote the parameters, and N to refer to the set $\{1, \ldots, n\}$ of all parameters of A.

Definition 1 (Configuration space Θ). *A's* configuration space is $\Theta = \Theta_1 \times \cdots \times \Theta_n$.

Definition 2 (Parameter Instantiation). A complete instantiation of an algorithm's n parameters is a vector $\boldsymbol{\theta}$ = $\langle \theta_1, \ldots, \theta_n \rangle$ with $\theta_i \in \Theta_i$. We also refer to complete parameter instantiations as parameter configurations. A partial instantiation of a subset $U = \{u_1, \ldots, u_m\} \subseteq N$ of A's parameters is a vector $\boldsymbol{\theta}_U = \langle \theta_{u_1}, \ldots, \theta_{u_m} \rangle$ with $\theta_{u_i} \in \Theta_{u_i}.$

Definition 3 (Extension Set). Let $\theta_U = \langle \theta_{u_1}, \ldots, \theta_{u_m} \rangle$ be a partial instantiation of the parameters U = $\{u_1,\ldots,u_m\} \subseteq N$. The extension set $X(\boldsymbol{\theta}_U)$ of $\boldsymbol{\theta}_U$ is then the set of parameter configurations $\theta_{N|U} =$ $\langle \theta'_1, \ldots, \theta'_n \rangle$ such that $\forall j (j = u_k \Rightarrow \theta'_j = \theta_{u_k}).$

Definition 4 (Range size). *The* range size ||S|| of an empty set S is $||\emptyset|| = 1$; for other finite S, the range size equals the cardinality: ||S|| = |S|; and for closed intervals S = $[l, u] \subset \mathbb{R}, ||S|| = u - l$. For cross-products $S = S_1 \times$ $\cdots \times S_k, ||S|| = \prod_{i=1}^k ||S_i||.$

Main Definition and Results

Definition 5 (Marginal performance). Let A's (true) performance be $y : \Theta \mapsto \mathbb{R}, U \subseteq N$, and $T = N \setminus U$. A's marginal performance $a_U(\boldsymbol{\theta}_U)$ is then defined as

$$a_U(\boldsymbol{\theta}_U) = \mathbb{E}[y(\boldsymbol{\theta}_{N|U}) \mid \boldsymbol{\theta}_{N|U} \in X(\boldsymbol{\theta}_U)]$$

= $\frac{1}{||\boldsymbol{\Theta}_T||} \int y(\boldsymbol{\theta}_{N|U}) d\boldsymbol{\theta}_T.$

Similarly, A's marginal predicted performance $\hat{a}_U(\boldsymbol{\theta}_U)$ un*der a model* $\hat{y} : \Theta \to \mathbb{R}$ *is*

$$\hat{a}_U(\boldsymbol{\theta}_U) = \frac{1}{||\boldsymbol{\Theta}_T||} \int \hat{y}(\boldsymbol{\theta}_{N|U}) d\boldsymbol{\theta}_T.$$
 (1)

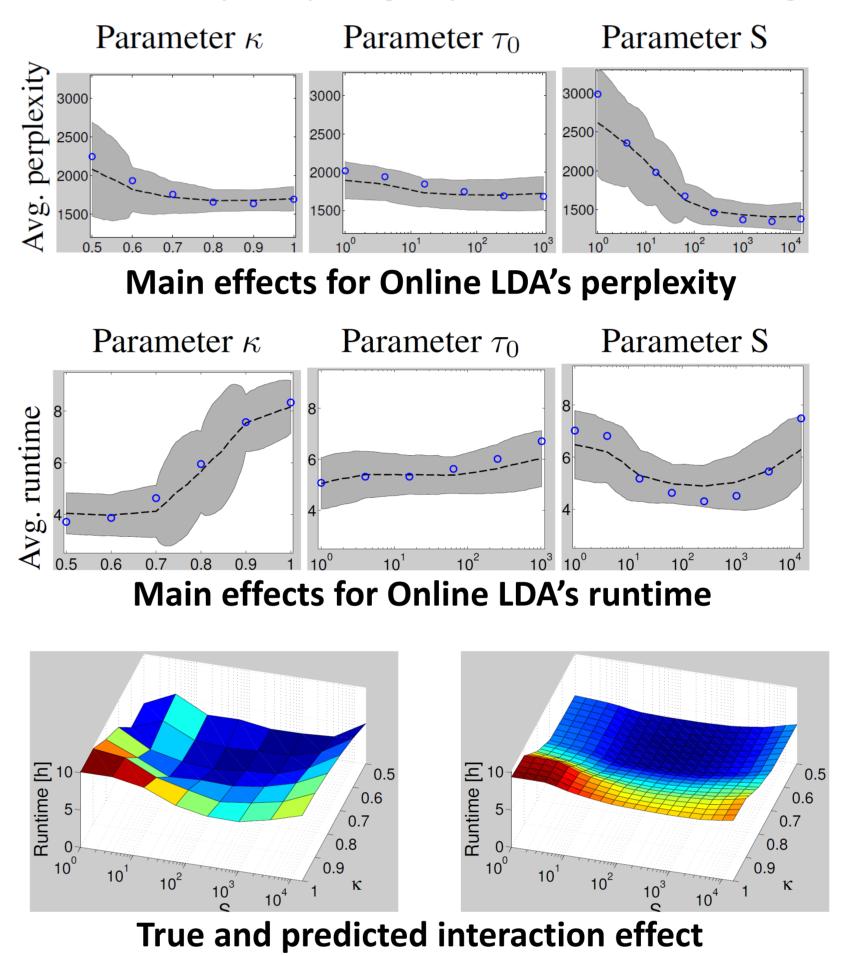
Theorem 6. Given the partitioning \mathcal{P} of a regression tree \mathcal{T} that defines a predictor $\hat{y} : \Theta \mapsto \mathbb{R}$, and a partial instantiation θ_U of Θ 's parameters N, \mathcal{T} 's marginal prediction $\hat{a}_U(\boldsymbol{\theta}_U)$ can be computed as

$$\hat{a}_U(\boldsymbol{\theta}_U) = \sum_{P_i \in \mathcal{P}} \frac{||\boldsymbol{\Theta}_{N \setminus U}^{(i)}||}{||\boldsymbol{\Theta}_{N \setminus U}||} \, \mathbb{I}(\boldsymbol{\theta}_U \in \boldsymbol{\Theta}_U^{(i)}) \cdot c_i.$$

Corollary 8. *Given a random forest F with B trees of up to L* leaves that defines a predictor $\hat{y} : \Theta \to \mathbb{R}$ for a configuration space with n parameters and maximal categorical domain size D, the time and space complexity of computing a single marginal prediction of F is $O(B \cdot L \cdot \max\{D + D\})$ $n, n \log D$). Additional marginal predictions cost additional space O(1) and time $O(B \cdot L \cdot n \log D)$.

Experiment (on ground truth data)

Online LDA [Hoffman et al, '10] with 3 parameters. Performance known for 288-point grid; 100 randomly sampled grid points used for training



Efficient Decomposition of Variance

Functional ANOVA (not new)

Functional ANOVA decomposes a function $\hat{y}: \Theta_1 \times \cdots \times$ $\Theta_n \to \mathbb{R}$ into additive components that only depend on subsets of its parameters N:

 $\hat{y}(\boldsymbol{\theta}) = \sum_{U \subseteq N} f_U(\boldsymbol{\theta}_U).$

The components $f_U(\boldsymbol{\theta}_U)$ are defined as follows:

 $f_U(\boldsymbol{\theta}_U) = \begin{cases} \frac{1}{||\boldsymbol{\Theta}||} \int \hat{y}(\boldsymbol{\theta}) d\boldsymbol{\theta} & \text{if } U = \emptyset. \\ a_U(\boldsymbol{\theta}_U) - \sum_{W \subset U} f_W(\boldsymbol{\theta}_W) & \text{otherwise.} \end{cases}$

The constant f_{\emptyset} is the function's mean across its domain. The unary functions $f_{\{i\}}(\boldsymbol{\theta}_i)$ are called *main effects* and capture the effect of varying parameter j, averaging across all instantiations of all other parameters.

By definition, the variance of \hat{y} across its domain Θ is

$$\mathbb{V} = \frac{1}{||\boldsymbol{\Theta}||} \int (\hat{y}(\boldsymbol{\theta}) - f_{\emptyset})^2 d\boldsymbol{\theta}, \tag{5}$$

and functional ANOVA decomposes this variance into contributions by all subsets of variables (see, e.g., Hooker, 2007, for a derivation):

$$\mathbb{V} = \sum \mathbb{V}_U$$
, where $\mathbb{V}_U = \frac{1}{||\Theta_U||} \int f_U(\theta_U)^2 d\theta_U$.

Complexity with Random Forests

We can use our efficient marginal computations to compute these importance indices efficiently:

Theorem 9. Given a configuration space Θ consisting of n categorical² parameters of maximal domain size D and aregression tree \mathcal{T} with L leaves that defines a predictor \hat{y} : $\Theta \to \mathbb{R}$, we can exactly compute the fractions of variance explained by all subsets U of Θ 's parameters N of arity up to K, with space complexity $O(L \cdot D + L \cdot n)$ and time complexity $O\left(L \cdot D + \sum_{k=1}^{K} \binom{n}{k} \cdot D^k (L \cdot n \log d + 2^k)\right).$

To compute parameter importance in random forests, we simply apply Algorithm 2 for each tree, and compute means and standard deviations across the results.

How to Use This in Practice

- Collect performance data by running the algorithm with different parameter settings (e.g., run Bayesian Optimization)
- Fit a random forest model on that data (can e.g., be the model already used in BayesOpt)
- Determine important (pairs of) variables

Application to Auto-WEKA [Thornton et al, 2013]

768 (!) parameters

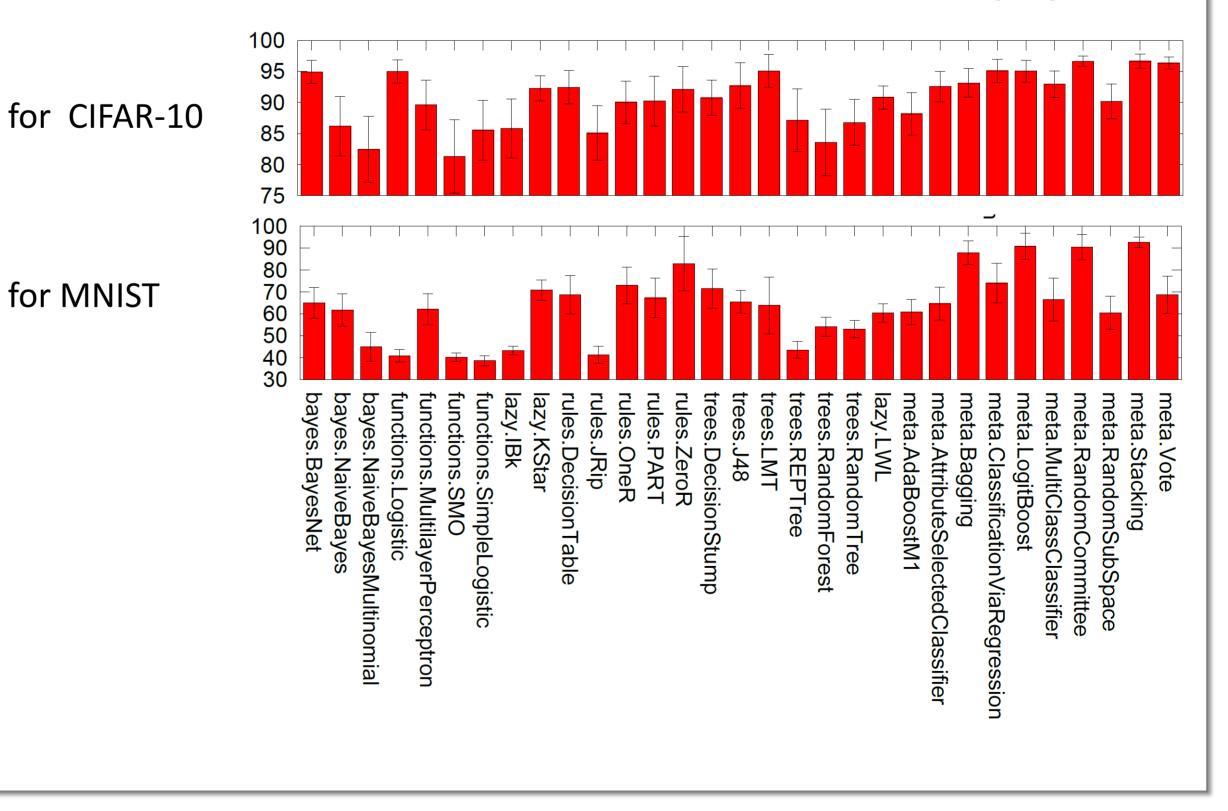
Four parameters consistently turned out to be important:

- Machine learning algorithm (out of 31 choices)
- Base algorithm to use in an ensemble

marginal

Predicted

- Feature selection: scoring mechanism for feature subsets
- Feature search: search mechanism through feature subsets



Main effect of the choice of machine learning algorithm

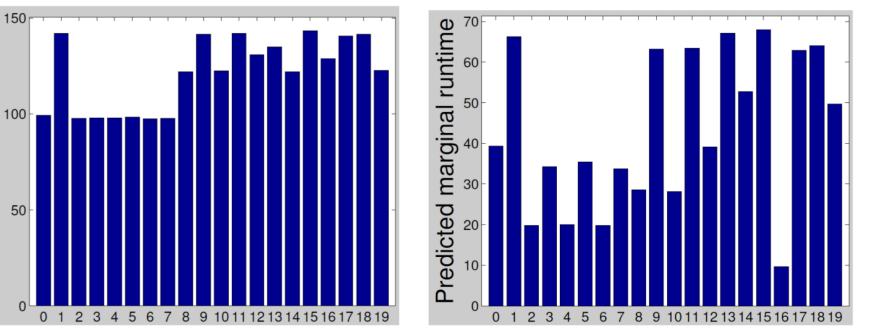
$\ \Theta_U\ \int J^{O(OV)} dV dV = \ \Theta_U\ \int J^{O(OV)} dV dV$	•	Inspect important main and interaction effects	
The importance of all main and interaction effects f_U can thus be quantified by the fraction of variance they explain: $\mathbb{F}_U = \mathbb{V}_U / \mathbb{V}$.	•	Future work: use within Bayesian optimization to iteratively focus on important parameters	

Application to solvers for hard combinatorial problems (SAT, MIP, TSP)

- State-of-the-art solvers for NP-hard problems SAT, MIP, and TSP
- Between 4 and 76 parameters (choices of heuristics, etc)
- Performance highly dependent on these parameters
- Ran SMAC [Hutter et al, '11] ten times for each benchmark
 - achived speedups between 1.02x and 857x over default
 - fitted random forests on the union of the performance data
 - ran functional ANOVA on the random forest

Main effects explained a large fraction of variance: see table

Scenario	Raw Pe Main	erformance Pairwise	Impr. ove Main	er 25% quant Pairwise	Impr. Main	over def Pairwise
SPEAR-BMC	88% (2s)	4% (112s)	50% (1s)	15% (36s)	26% (0s)	20% (23s)
SPEAR-SWV	76% (6s)	8% (348s)	19% (1s)	21% (80s)	74% (4s)	11% (250s)
CRYPTOMINISAT-BMC	28% (1s)	18% (62s)	31% (1s)	20% (39s)	6% (0s)	11% (5s)
CRYPTOMINISAT-SWV		33% (182s)	9% (1s)	19% (44s)	24% (2s)	35% (70s)
Sparrow-3SAT1k	78% (0s)	15% (Os)	53% (0s)	31% (0s)	31% (0s)	34% (0s)
Sparrow-5SAT500	65% (0s)	28% (0s)		34% (0s)	66% (0s)	
CAPTAINJACK-3SAT1k		9% (1321s)		9% (599s)		9% (832s)
CAPTAINJACK-5SAT500		11% (917s)		12% (308s)		12% (726s)
SATENSTEIN-3SAT1k	45% (6s)	37% (845s)				29% (334s)
SATENSTEIN-5SAT500	33% (9s)	45% (1155s)				49% (648s)
CPLEX-RCW	58% (5s)	6% (713s)	16% (1s)	33% (199s)	6% (1s)	15% (127s)
CPLEX-CORLAT	31% (29s)	7% (4361s)		22% (1427s)		
CPLEX-Regions200		19% (10416s				
CPLEX-CLS		5% (21 502s)				
CLASP-WeightedSeq	46% (13s)	13% (2368s)	27% (5s)	20% (858s)	30% (6s)	20% (1047s)
CLASP-Riposte		8% (18 518s)				· · · · · · · · · · · · · · · · · · ·



Main effect of Spear's most important parameter (its variable selection heuristic) on instances from hardware verification (left) and software verification (right)