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Abstract
The identification of performance-optimizing parameter settings is an important part of the de-

velopment and application of parameterized algorithms. We propose an automatic algorithm con-
figuration framework in which the settings of discrete parameters are optimized to yield maximal
performance of a target algorithm for a given class of problem instances. We begin with a thorough
experimental analysis of this algorithm configuration problem, using a simple random search pro-
cedure to explore the parameter configuration spaces of high-performance algorithms for SAT and
mixed integer programming. Next, we present a family of local-search-based algorithm configura-
tion procedures, along with adaptive capping techniques for accelerating them. Finally, we describe
the results of a comprehensive experimental evaluation of our methods, based on the configuration
of prominent complete and incomplete algorithms for SAT, and the commercial software CPLEX
for mixed integer programming. In all cases, these algorithms’ default parameter settings had
previously been manually optimized with considerable effort; nevertheless, using our automated
algorithm configuration procedures, we achieved substantial performance improvements.

1. Introduction

Many high-performance algorithms have parameters whose settings control important aspects of
their behaviour. This is particularly the case for the heuristic procedures used for solving com-
putationally hard problems, for example in AI, where the problem of setting an algorithm’s free
parameters in order to optimize its performance on a class of problem instances is ubiquitous. As an
example, consider CPLEX, a commercial solver for mixed integer programming problems.1 CPLEX

version 10.1.1 has 159 user-specifiable parameters, about 80 of which affect the solver’s search
mechanism and can be configured to improve performance. Anecdotal evidence suggests that many
man-years have been devoted to establishing default settings of these parameters that allow CPLEX

to robustly achieve high performance on a wide range of mixed integer programming problems.
It is widely acknowledged that finding performance-optimizing parameter configurations of

heuristic algorithms often requires considerable effort (see, e.g., Gratch and Chien, 1996; John-
son, 2002; Diao et al., 2003; Birattari, 2005; Adenso-Diaz and Laguna, 2006), and in many cases,
this tedious task is performed manually in an ad-hoc way. Automating this important task is of high
practical relevance in several contexts:

1. http://www.ilog.com/products/cplex/
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• Development of complex algorithms: Setting the parameters of a heuristic algorithm is a
highly labour-intensive task, and indeed can consume a large fraction of overall development
time. The use of automated algorithm configuration methods can lead to significant time
savings and potentially achieve better results than manual, ad-hoc methods.

• Empirical studies, evaluations, and comparisons of algorithms: A central question in
comparing heuristic algorithms is whether one algorithm outperforms another because it is
fundamentally superior, or because its developers more successfully optimized its parame-
ters (Johnson, 2002). Automatic algorithm configuration methods can mitigate this problem
of unfair tuning and thus facilitate more meaningful comparative studies.

• Practical use of algorithms. The ability of complex heuristic algorithms to solve large and
hard problem instances often depends critically on the use of suitable parameter settings. End
users often have little or no knowledge about an algorithm’s parameter configuration space
and thus simply use the default settings. Even if it has been carefully optimized on a standard
benchmark set, such a default configuration may not perform well on the particular problem
instances encountered by a user. Automatic algorithm configuration methods can be used to
improve performance in a principled and convenient way.

Various research communities have developed strategies for automatic algorithm configura-
tion. Briefly, these include exhaustive enumeration, hill-climbing (Gratch and Dejong, 1992), beam
search (Minton, 1993), genetic programming (Oltean, 2005), experimental design approaches (Coy
et al., 2001), sequential parameter optimization (Bartz-Beielstein, 2006), optimization of param-
eters one at a time (den Besten et al., 2001), racing algorithms (Birattari et al., 2002; Birattari,
2004, 2005; Balaprakash et al., 2007), and combinations of fractional experimental design and local
search (Adenso-Diaz and Laguna, 2006).

We discuss this and other related work more extensively in Section 10. Here, we note that while
some other authors refer to the optimization of an algorithm’s performance by setting its (typically
few and numerical) parameters as parameter tuning, we use the term algorithm configuration (or
simply, configuration). This is motivated by the fact that we are interested in methods that can deal
with a potentially large number of parameters, each of which can be numerical, ordinal (e.g., low,
medium, or high) or categorical (e.g., choice of heuristic). Categorical parameters can be used to
select and combine discrete building blocks of an algorithm (e.g., preprocessing and variable order-
ing heuristics); consequently, our general view of algorithm configuration includes the automated
construction of a heuristic algorithm from such building blocks.

To avoid potential confusion between algorithms whose performance is optimized and algo-
rithms used for carrying out this optimization task, we refer to the former as target algorithms and
the latter as configuration procedures (or simply configurators). This setup is illustrated in Figure 1.
Different algorithm configuration problems have been considered in the literature, including setting
parameters on a per-instance basis and adapting the parameters while the algorithm is running; we
defer a discussion of these approaches to Section 10.

In recent work, we introduced ParamILS, a versatile iterated local search (ILS) approach for
automated algorithm configuration, and two instantiations of the framework, BasicILS and Fo-
cusedILS (Hutter et al., 2007b). We showed that these configuration procedures efficiently op-
timized the performance of several high-performance heuristic tree search and local search algo-
rithms for the propositional satisfiability (SAT) and most probable explanation (MPE) problems.
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Figure 1: A configuration scenario includes an algorithm to be configured and a collection of in-
stances. A configuration procedure executes the target algorithm with specified parameter
settings on some or all of the instances, receives information about the performance of
these runs, and uses this information to decide about what subsequent parameter config-
urations to evaluate.

In a subsequent application study, we gave further evidence of ParamILS’s effectiveness by con-
figuring a highly optimized SAT solver for industrially relevant software and hardware verification
instances, resulting in performance improvements of several orders of magnitude and a significant
enhancement in the state of the art in solving these problems (Hutter et al., 2007a).

Here, we extend and expand upon our earlier work in several important ways.

1. After introducing in more detail the algorithm configuration problem we are interested in,
we provide additional insights into its properties. In particular, in Section 4, we study a
number of application scenarios in a manner that is independent of the particular configuration
procedure being used. Specifically, we investigate performance variation across parameter
configurations, hardness variation across instances, configurator “overconfidence” (inability
to generalize from observed to unobserved problem instances), and the impact of varying the
amount of benchmark data and the per-run cutoff time on the performance of the configuration
procedure.

2. After an expanded discussion of the ParamILS framework and its two instantiations, BasicILS
and FocusedILS, we present additional evidence for the efficacy of these automatic algorithm
configuration methods. In particular, in Section 5, we demonstrate that the iterated local
search approach underlying ParamILS achieves better results than either random search or a
simple local search procedure.

3. We introduce adaptive capping, a new technique that can be used to enhance search-based al-
gorithm configuration procedures independently of the underlying search strategy (Section 7).
Adaptive capping is based on the idea of avoiding unnecessary runs of the algorithm to be
configured by developing bounds on the performance measure to be optimized. We present
two instantiations of this technique and demonstrate that by using these, the performance of
ParamILS can be substantially improved.
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4. We present extensive evidence that ParamILS can find parameter configurations of complex
and highly optimized algorithms that substantially outperform the algorithms’ default settings
(Section 8). In particular, we apply our automatic algorithm configuration procedures to the
aforementioned commercial optimization tool CPLEX, one of the most powerful, widely used
and complex optimization algorithms we are aware of. As stated in the CPLEX user manual
(version 10.0, page 247),

“A great deal of algorithmic development effort has been devoted to establishing
default ILOG CPLEX parameter settings that achieve good performance on a wide
variety of MIP models.”

We demonstrate consistent improvements over this default parameter configuration for a wide
range of practically relevant instance distributions; in some cases, we were able to speed up
CPLEX by over an order of magnitude on average on previously unseen test instances. We
also report experiments with new, challenging configuration scenarios for the SAT algorithms
SAPS and SPEAR and demonstrate that we can achieve speedup factors in average-case per-
formance of up to 3 000 (SAPS, graph colouring) and 80 (SPEAR, software verification).

5. In Section 9, we present evidence that ParamILS can be used to configure its own parameters—
after all, it is itself a parameterized, heuristic search algorithm.

2. Problem Statement and Notation

The algorithm configuration problem we consider in this work can be informally stated as follows:
given an algorithm, a set of parameters for the algorithm and a set of input data, find parameter
values under which the algorithm achieves the best possible performance on the input data.

Now we define this problem more formally, and introduce notation that we will use throughout
the paper. LetA denote an algorithm, and let p1, . . . , pk be parameters ofA. We denote the domain
of possible values for each parameter pi as Θi; these domains can be infinite (as for continuous and
integer numerical parameters), finite and ordered (ordinal), or finite and unordered (categorical).
Throughout this work, we assume that all parameter domains are finite. This assumption can be met
by discretizing all numerical parameters to a finite number of options; furthermore, we do not exploit
the canonical ordering relation for numerical parameters. In our experience, these limitations are
not overly restrictive; they can, in principle, be overcome by extending our algorithm configuration
procedures.

Our problem formulation allows us to express conditional parameter dependencies; for example,
one algorithm parameter might be used to select among search heuristics, with each heuristic’s
behaviour controlled by further parameters. In this case, the values of these further parameters
are irrelevant if the heuristic is not selected. ParamILS exploits this and effectively searches the
space of equivalence classes in parameter configuration space. In addition, our formulation supports
constraints on feasible combinations of parameter values. We use Θ ⊆ Θ1 × . . . × Θk to denote
the space of all feasible parameter configurations, and A(θ) to refer to algorithm A with parameter
configuration θ ∈ Θ.

Let D denote a probability distribution over a space Π of problem instances, and let us denote
an element of Π as π. Sometimes, D may be given in form of a random instance generator, or as a
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distribution over instances from different generators. More commonly, Π consists of a finite sample
of instances to which we have access. In that case, we define D as the uniform distribution over Π.

There are many ways of measuring an algorithm’s performance. For example, we might be
interested in minimizing computational resources consumed by the given algorithm (e.g., runtime,
memory or communication bandwidth), or in maximizing the quality of the results produced. Since
high-performance algorithms for computationally-challenging problems are often randomized, their
behaviour can vary significantly between multiple runs. Thus, an algorithm will not always achieve
the same performance, even when run repeatedly with fixed parameters on a single problem in-
stance. Our overall goal must therefore be to choose parameter settings that minimize some cost
statistic of the algorithm’s performance across the input data. We denote this statistic as c(θ). For
example, we might aim to minimize mean runtime or median solution cost.

With this intuition in mind, we now define the algorithm configuration problem formally.

Definition 1 (Algorithm Configuration Problem). An instance of the algorithm configuration prob-
lem is a 7-tuple 〈A,Θ,D,S, κ, o,m〉, where:

• A is a parameterised algorithm;

• Θ is the parameter configuration space of A;

• D is a distribution over problem instances with domain Π;

• S is a distribution over allowed random number seeds (for deterministic algorithms A the
domain of this distribution has cardinality one);

• κ is a cutoff time (or captime), after which each run of A will be terminated;

• o : Θ,S,Π,R → R is a function that measures the cost of running A(θ) with seed s ∈ S
on an instance π ∈ Π with captime κ ∈ R (examples are runtime for solving the instance, or
cost of the solution found within captime κ; in the former case, o must also define a cost for
runs that do not complete within the captime); and

• m is a statistical population parameter. (Examples are expectation, median, and variance.)

Any parameter configuration θ ∈ Θ is a candidate solution of the algorithm configuration problem.
The cost of a candidate solution is

c(θ) = mπ∼D,s∼S [o(θ, s, π, κ)] , (1)

the statistical population parameter to be optimized across instances from distribution D and seeds
from distribution S . An optimal solution, θ∗, minimises c(θ):

θ∗ ∈ arg min
θ

c(θ). (2)

An algorithm configuration procedure, abbreviated as configuration procedure or configurator,
is a procedure for tackling the algorithm configuration problem. Unfortunately, at least for the
algorithm configuration problems considered in this article, we cannot optimize c directly, since
this function cannot be written analytically. Instead, we must execute a sequence of runs R of
the target algorithm A with different parameter configurations, derive empirical estimates of c’s
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values at particular points in configuration space, and use them to identify a configuration with low
expected cost.

We denote the sequence of runs executed by a configurator as R = ((θ1, π1, s1, κ1, o1), . . . ,
(θn, πn, sn, κn, on)). The ith run is described by five values. First, θi ∈ Θ denotes the parameter
configuration being evaluated. Second, πi ∈ Π denotes the instance on which the algorithm is run.
Third, si ∈ S denotes the random number seed used in the run. Fourth, κi denotes the run’s captime;
when optimizing solution quality reached within a fixed time κ, we would always use κi = κ, but
when optimizing functions of runtime, we are free to choose κi ≤ κ. Finally, oi = o(θi, si, πi, κi)
denotes the outcome of the run. This is the statistic of the run upon which c depends. Note that each
of θ, π, s, κ, and o can vary from one element of R to the next, regardless of whether or not the other
elements are held constant. Note also that R is not determined all at once, but is typically chosen in
an online manner. We denote the ith run of R as R[i] and the subsequence of runs using parameter
configuration θ (i.e., those runs with θi = θ) as Rθ. The configuration procedures considered in
this article compute empirical estimates of c(θ) based solely on Rθ, but in principle other methods
could be used.

In our algorithm configuration problems, the cost c(θ) of a parameter configuration θ is an
unobservable quantity, and we need to estimate this quantity both during runtime of a configurator,
and offline for evaluation purposes. For this purpose, we introduce the notion of a cost estimate.

Definition 2 (Cost Estimate). Given an algorithm configuration problem 〈A,Θ,D,S, κ, o,m〉, a
cost estimate ĉ(θ,R) of a cost c(θ) = mπ∼D,s∼S [o(θ, s, π, κ)] based on a sequence of runs R =
((θ1, π1, s1, κ1, o1), . . . , (θn, πn, sn, κn, on)) is m′({oi | θi = θ}), where m′ is the sample statistic
analogue to the statistical population parameter m.

For example, when c(θ) is mean runtime over a distribution of instances and random number seeds,
ĉ(θ,R) is the sample mean runtime of runs Rθ.

All configuration procedures in this paper are anytime algorithms in the sense that at all times
they keep track of the configuration currently believed to have the lowest cost; we refer to this con-
figuration as the incumbent configuration, or short the incumbent, θ̂∗. We evaluate a configurator’s
performance at time t by means of its incumbent’s training and test performance, defined as follows.

Definition 3 (Training performance). When at some time t a configurator has performed a se-
quence of runs R = ((θ1, π1, s1, κ1, o1), . . . , (θn, πn, sn, κn, on)) to solve an algorithm configu-
ration problem 〈A,Θ,D,S, κ, o,m〉, and has thereby found incumbent configuration θ̂∗, then its
training performance at time t is defined as the cost estimate ĉ(θ̂∗,R).

The set of instances {π1, . . . , πn} discussed above is called the training set. While the true
cost of a parameter configuration cannot be computed exactly, it can be estimated using training
performance. However, as we shall see later (in Section 4.3), training performance of a configurator
is a biased estimator of its incumbent’s true cost. In order to achieve unbiased estimates at least
during offline evaluation, we set aside a fixed set of instances {π′1, . . . , π′T } (called the test set) and
random seeds {s′1, . . . , s′T }, both unknown to the configurator, and use these for evaluation.

Definition 4 (Test performance). At some time t, let a configurator’s incumbent for an algorithm
configuration problem 〈A,Θ,D,S, κ, o,m〉 be θ̂∗ (this is found by means of executing a sequence
of runs on the training set). Furthermore, let R′ = ((θ∗, π′1, s

′
1, κ, o1), . . . , (θ∗, π′T , s

′
T , κ, oT )) be

a sequence of runs on the T instances and random number seeds in the test set (which is performed
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offline for evaluation purposes), then the configurator’s test performance at time t is defined as the
cost estimate ĉ(θ̂∗,R′).

Throughout this article, we aim to minimize mean runtime. (See Section 3.1.1 for discussion of that
choice.) Thus, a configurator’s training performance is the mean runtime of the runs it performed
with the incumbent. Its test performance is the mean runtime of the incumbent on the test set.

It is not obvious how an automatic algorithm configurator should choose runs in order to best
minimize c(θ) within a given time budget. In effect, this issue is the topic of the rest of the paper.
We note that it can be subdivided into the following three questions:

1. Which parameter configurations Θ′ ⊆ Θ should be evaluated?

2. Which problem instances Πθ′ ⊆ Π should be used for evaluating each θ′ ∈ Θ′, and how many
runs should be performed on each instance?

3. Which cutoff time κ should be used for each run?

We will demonstrate in Section 4 that each of these decisions plays an important role in con-
structing a high-performance procedure for solving the automatic algorithm configuration problem
we consider in this work, and that the choices made on each of these issues can interact in interesting
ways. Sections 5–7 deal with each of these questions in turn.

3. Experimental Preliminaries

In this section we give background information about the computational experiments presented
in the following sections. First, we describe the design of our experiments. Second, we present
the configuration scenarios (algorithm/benchmark data combinations) used throughout the paper.
Finally, we describe the low-level details of our experimental setup.

3.1 Experimental Design

Here we describe our choice of objective function and the methods we used for selecting instances
and seeds.

3.1.1 CONFIGURATION OBJECTIVE: MINIMUM MEAN RUNTIME

In Section 2 we mentioned that the algorithm configuration problem can be stated in terms of various
different cost statistics. Indeed, in our past work we explored several of them: maximizing solution
quality achieved in a given time, minimizing the runtime required to reach a given solution quality,
and minimizing the runtime required to solve a single problem instance (Hutter et al., 2007b).

In this work we concentrate on only one objective: minimizing the mean runtime over instances
from distribution D. This optimization objective naturally occurs in many practical applications. It
is also interesting theoretically, since it means that there is a strong correlation between c(θ) and
the amount of time required to obtain a good empirical estimate of c(θ). In Section 7 we exploit
this relationship to significantly speed up our configuration procedures. One might wonder whether
mean is the right way to aggregate runtimes. In some preliminary experiments, we found that
minimizing mean runtime led to parameter configurations with overall good runtime performance,
including rather competitive median runtimes, while minimizing median runtime yielded less robust
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parameter configurations that timed out on a large (but< 50%) fraction of the benchmark instances.
However, even when using the mean, we encounter runs that do not terminate within the given cutoff
time; throughout this study, such unsuccessful runs are scored as if they terminated in ten times the
cutoff.

3.1.2 SELECTING INSTANCES AND SEEDS

As mentioned above, often only a finite set Π of instances is available upon which to evaluate our al-
gorithm. This is the case in the experiments we report here. Throughout the paper, all configuration
experiments are performed on a training set containing half of the given benchmark instances, while
the remaining instances are solely used as a test set for the purpose of evaluating the resulting pa-
rameter configuration. Since testing is an offline process, we always evaluate a parameter setting by
running the target algorithm on every benchmark instance in the test set. However, during the con-
figuration process (using the training set) efficiency matters, and hence we do not always evaluate
a parameter setting on every benchmark instance. Thus, we are faced with the question: which in-
stances should we use? Specifically, when we wish to estimate cost statistics c(θ) based on N runs,
how should the instances for these N runs be chosen in order to obtain the most reliable estimates,
particularly in order to support accurate comparisons of different parameter configurations?

Following common practice (see, e.g., Ridge and Kudenko, 2006), we blocked on instances;
that is, we ensured that whenever two parameter configurations were compared, exactly the same
instances were used to evaluate them. This avoided noise effects due to differences between in-
stances (intuitively, we did not make the mistake of considering a configuration that happened to be
tested on easier instances to be better than it really is). Similarly, for randomized algorithms, we
blocked on random seeds.

Furthermore, when dealing with randomized target algorithms, there is a tradeoff between the
number of problem instances used and the number of independent runs performed on each instance.
In the extreme case, for a given sample size N , one could perform N runs on a single instance or
a single run on each of N different instances. This latter strategy is known to result in minimal
variance of the estimator for common optimization objectives such as minimization of mean run-
time (which we consider in this study) or maximization of mean solution quality (Birattari, 2005).
Consequently, we only performed multiple runs per instance if we wished to acquire more samples
of the cost distribution than there were instances in the training set.

Based on these considerations, the configuration procedures we study in this article have been
implemented to take a list of 〈instance, random number seed〉 pairs as one of their inputs. Empirical
estimates ĉN (θ) of the cost statistic c(θ) to be optimized were determined from the firstN 〈instance,
seed〉 pairs in that list. Each list of 〈instance, seed〉 pairs was constructed as follows. Given a training
set consisting of M problem instances, for N ≤M , we drew a sample of N instances uniformly at
random and without replacement and added them to the list. If we wished to evaluate an algorithm
on more samples than we had training instances, which could happen in the case of randomized
algorithms, we repeatedly drew random samples of size M as described before, where each such
batch corresponded to a random permutation of the N training instances, and added a final sample
of size N mod M < M as in the case N ≤ M . As each sample was drawn, it was paired with
a random number seed that was chosen uniformly at random from the set of all possible seeds and
added to the list of 〈instance, seed〉 pairs.
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Configuration scenario Type of benchmark instances & citation
SAPS-SWGCP Graph colouring (Gent et al., 1999)
SPEAR-SWGCP Graph colouring (Gent et al., 1999)
SAPS-QCP Quasigroup completion (Gomes and Selman, 1997)
SPEAR-QCP Quasigroup completion (Gomes and Selman, 1997)

CPLEX-REGIONS100 Combinatorial Auctions (CATS) (Leyton-Brown et al., 2000)

Table 1: Overview of our five INDEPTH configuration scenarios.

3.1.3 COMPARISON OF CONFIGURATION PROCEDURES

Since the choice of instances (and to some degree of seeds) is very important for the final outcome
of the optimization, in our experimental evaluations we always performed a number of independent
repetitions of each configuration procedure (typically 25), and report the mean and standard devi-
ation over those. We created a separate list of instances and seeds for each repetition as explained
above, where the kth repetition of each configuration procedure uses the same kth list of instances
and seeds. (Note, however, that the disjoint test set used to measure performance of parameter
configurations is identical for all repetitions.)

When we performed a statistical test to compare two configuration procedures, we carried out
25 repetitions of each procedure, collecting their final results. Since the kth repetition of both
procedures shared the same kth list of instances and seeds, we performed a paired statistical test in
order to compare the two. In particular, we performed a two-sided paired Max-Wilcoxon test with
the Null hypothesis that there was no difference in the performances; we consider p-values below
0.05 to be statistically significant. The p-values reported in all tables were derived using this test;
p-values shown in parentheses refer to cases where the procedure we expected to perform better
actually performed worse.

3.2 Configuration Scenarios

The problems studied experimentally in this paper can be divided into two classes. First, in most
of the paper (Sections 4–7 and 9), we perform an in-depth analysis of five combinations of high-
performance algorithms with widely-studied benchmark data. Table 1 gives an overview of these
five scenarios, which we dub the INDEPTH scenarios. The algorithms and benchmark instance sets
used in these scenarios are described in detail in Sections 3.2.1 and 3.2.2, respectively.

Second, in Section 8, we use the same target algorithms to tackle nine additional complex con-
figuration scenarios, which we refer to as BROAD scenarios. These are described in detail in Sec-
tion 8; an overview is shown in Table 12 on page 39.

3.2.1 TARGET ALGORITHMS

Our three target algorithms are listed in Table 2 along with their configurable parameters.

SAPS The first algorithm in our experiments is SAPS, a high-performance dynamic local search
algorithm for SAT solving (Hutter et al., 2002); we use the UBCSAT implementation (Tompkins
and Hoos, 2004). When introduced in 2002, SAPS was a state-of-the-art solver, and it still offers
competitive performance on many instances. We chose to study this algorithm because it is well-
known, it has relatively few parameters, and we are intimately familiar with it. The original defaults
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Algorithm Parameter type # parameters of that type # values considered for each
SAPS Continuous 4 7

Categorical 10 2–20
SPEAR Integer 4 5–8

Continuous 12 3–6
Categorical 50 2–7

CPLEX Integer 8 5–7
Continuous 5 3–5

Table 2: Parameter overview for the algorithms we consider. More information on the pa-
rameters for each algorithm is given in the text. A detailed list of all pa-
rameters and the values we considered can be found in an online appendix at
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/algorithms.html.

for SAPS’ four continuous parameters were set through manual configuration based on experiments
with prominent benchmark instances. These four continuous parameters control the scaling and
smoothing of clause weights, as well as the percentage of random steps. Having subsequently gained
more experience with SAPS’ parameters in previous work on parameter configuration (Hutter et al.,
2006) for more general problem classes, we chose promising intervals for each parameter, including
but not centered at the original default. We then picked seven possible values for each parameter
spread uniformly across its respective interval, resulting in 2401 possible parameter configurations
(these are exactly the same values as used in (Hutter et al., 2007b)). As the starting configuration
for ParamILS, we used the center of each parameter’s interval.

SPEAR The second algorithm we consider is SPEAR, a recent tree search algorithm for solving
SAT problems. SPEAR is a state-of-the-art SAT solver for industrial instances, and with appropriate
parameter settings it is the best available solver for certain types of hardware and software verifica-
tion instances (Hutter et al., 2007a). (Indeed, the parameter configuration procedures we describe in
this work played a crucial role in SPEAR’s development (Hutter et al., 2007a); SPEAR subsequently
won the quantifier-free bit-vector arithmetic category of the 2007 Satisfiability Modulo Theories
Competition.) SPEAR has 26 parameters including ten categorical, four integer, and twelve con-
tinuous parameters, and their default values were hand-tuned by its developer. The categorical
parameters mainly control heuristics for variable and value selection, clause sorting, resolution or-
dering, and enable or disable optimizations, such as the pure literal rule. The continuous and integer
parameters mainly deal with activity, decay, and elimination of variables and clauses, as well as with
the interval of randomized restarts and percentage of random choices. We discretized the integer
and continuous parameters by choosing lower and upper bounds at reasonable values and allowing
between three and eight discrete values spread relatively uniformly across the resulting interval, in-
cluding the default. As the starting configuration for ParamILS, we used the default. The number of
discrete values was chosen according to our intuition about the importance of the parameter. After
this discretization, there were 3.7 × 1018 possible parameter configurations. However, exploiting
the fact that nine of the parameters are conditional (i.e., only relevant when other parameters take
certain values) we reduced the total to 8.34× 1017 configurations.
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CPLEX The third algorithm is the commercial optimization tool CPLEX 10.1.1, a massively pa-
rameterized algorithm for solving mixed integer programming (MIP) problems. Out of its 159 user-
specifiable parameters, we identified 81 parameters that affect CPLEX’s search trajectory. A large
number of parameters deal with MIP strategy heuristics (such as variable and branching heuris-
tics, probing, dive type, and subalgorithms) and amount and type of preprocessing to be performed.
There are also nine parameters each governing how frequently a different type of cut should be
used (there are four magnitude values and the value “choose automatically”; note that this last value
prevents the parameters from being ordinal). A considerable number of other parameters deal with
simplex and barrier optimization and various other algorithm components. Many of the parameters
have automatic settings, and in the case of numerical parameters we chose these automatic settings
instead of hypothesizing values that might work well. We also identified a number of numerical
parameters that dealt primarily with numerical issues, and fixed those to their default values. For
other numerical parameters, we chose up to five possible values that seemed sensible, including the
default. For the many categorical parameters with an automatic option, we included the automatic
option as a choice for the parameter, but also included all the manual options. Finally, we ended
up with 63 configurable parameters, leading to 1.78× 1038 possible configurations. Exploiting the
fact that seven of the CPLEX parameters were only relevant conditional on other parameters taking
certain values, we reduced this to 1.38× 1037 distinct configurations. As the starting configuration
for our configuration procedures, we used the default settings, which were reportedly obtained by
careful manual configuration on a broad range of MIP instances.

3.2.2 BENCHMARK INSTANCES

In our INDEPTH configuration scenarios, we applied our target algorithms to three sets of benchmark
instances: SAT-encoded quasi-group completion problems, SAT-encoded graph-colouring problems
based on small world graphs, and MIP-encoded winner determination problems for combinatorial
auctions. (In our BROAD configuration scenarios, we employ a number of additional benchmark in-
stances. These are described in detail in Section 8.1.) In our INDEPTH scenarios, each set consisted
of 2000 instances, divided randomly into training and test sets of 1,000 instances each.

QCP Our first benchmark set contained 23 000 instances of the quasi-group completion prob-
lem (QCP), which has been widely studied by AI researchers. We generated these QCP instances
around the solubility phase transition, using the parameters given by Gomes and Selman (1997).
Specifically, the order n was drawn uniformly from the interval [26, 43], and the number of holes
H (open entries in the Latin square) was drawn uniformly from [1.75, 2.3] × n1.55; finally, these
QCP instances were converted into SAT CNF format. For use with the complete solver, SPEAR,
we sampled 2000 of these SAT instances uniformly at random; these had on average 1497 variables
(standard deviation: 1094) and 13 331 clauses (standard deviation: 12 473), and 1182 of them were
satisfiable. For use with the incomplete solver, SAPS, we randomly sampled 2000 instances from the
subset of satisfiable instances (determined using a complete algorithm); their number of variables
and clauses were very similar to those used with SPEAR.

SW-GCP Our second benchmark set contained 20 000 instances of the graph colouring problem
(GCP) based on the small world (SW) graphs of Gent et al. (1999). Of these, we sampled 2000
instances uniformly at random for use with SPEAR; these had on average 1813 variables (standard
deviation: 703) and 13 902 clauses (standard deviation: 5393), and 1109 of them were satisfiable.
For use with SAPS, we randomly sampled 2000 satisfiable instances (again, determined using a
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complete SAT algorithm), whose number of variables and clauses were very similar to those used
with SPEAR.

Regions100 For our third benchmark set we generated 2,000 combinatorial winner determination
instances, encoded as mixed-integer linear programs (MILPs). We used the generator provided with
the Combinatorial Auction Test Suite (Leyton-Brown et al., 2000), based on the regions option
with the goods parameter set to 100 and the bids parameter set to 500. The resulting MILP instances
contained 501 variables and 193 inequalities on average, with a standard deviation of 1.7 variables
and 2.5 inequalities.

3.3 Experimental Setup

All of our experiments were carried out on a cluster of 55 dual 3.2GHz Intel Xeon PCs with 2MB
cache and 2GB RAM, running OpenSuSE Linux 10.1. We measured runtimes as CPU time on these
reference machines. In our five INDEPTH configuration scenarios, we set fairly aggressive cutoff
times of five seconds per run of the target algorithm and allowed each configuration procedure to ex-
ecute the target algorithm for an aggregate runtime of five CPU hours. All our configuration proce-
dures are implemented as Ruby scripts, and we do not include the runtime of these scripts in the con-
figuration time. In “easy” configuration scenarios, where algorithm runs finish in milliseconds, the
overhead of our scripts can be substantial, and one configuration run indeed took 24 hours in order to
execute five hours worth of target algorithm runtime. In contrast, for the harder BROAD scenarios we
found virtually no overhead. For the self-configuration experiments in Section 9 overhead on “easy”
configuration scenarios was problematic. As a consequence, for the experiments in that Section we
optimized our scripts, producing a new version that was significantly faster. (Both versions of the
scripts are available online at http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/.)

For the nine BROAD configuration scenarios in Section 8, we terminated unsuccessful runs after
300 CPU seconds and allowed each configuration procedure to execute the target algorithm for
an aggregate runtime of two CPU days. Overall, we spent about 3.4 CPU years gathering the
data analyzed in this paper: about 170 CPU days for the results in Section 4, 210 CPU days for
Sections 5–7, 360 CPU days for Section 8 and 500 CPU days for Section 9.

4. Study of Problem Characteristics Based on Random Sampling

In this section, we study our five INDEPTH configuration scenarios independently of our ParamILS
framework. Specifically, we describe a simple uniform random search procedure, and use it to
explore both the variations in performance across parameter configurations and the variations in
(algorithm-specific) hardness across the instances in the training set.

4.1 The RandomSearch procedure

A very simple way to build an automatic configurator is to iteratively determine a configuration
by sampling uniformly at random, to evaluate it on N instances from the training set, and to keep
track of the best configuration thus encountered. We call this procedure RandomSearch and give
pseudo-code for it in Algorithm 1.

In the remainder of this section, we use the RandomSearch procedure to gain initial understand-
ing of our configuration scenarios and to understand the sensitivity of our target algorithms to their
parameters.
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Algorithm 1: RandomSearch(N, θ0)
Outline of random search in parameter configuration space; θinc denotes the incumbent parameter
configuration, betterN compares two configurations based on the first N instances from the training
set.

Input : Number of runs to use for evaluating parameter configurations, N ; initial configuration
θ0 ∈ Θ.

Output : Best parameter configuration θ∗ found.
θinc ← θ0;1
while not TerminationCriterion() do2

θ ← random θ ∈ Θ;3
if betterN (θ, θinc) then4

θinc ← θ;5

return θinc6

4.2 Performance Variation across Parameter Configurations and Instances

Figure 2 shows the performance variation across all configurations considered by RandomSearch
for each configuration scenario, as well as the respective default parameter configurations. Note
that in all configuration scenarios a significant number of parameter configurations beat the default,
in some cases by a large margin. For example, in the case of SAPS-SWGCP, the default configuration
yields an average runtime of around 20 seconds, while the sampled configuration with the best
performance takes an average of 0.1 seconds per instance. Recall that we count the runtime for
unsuccessful runs as ten times the cutoff time; thus, a mean runtime of 20 seconds for the default
implies that a fair percentage (between 30% and 40%) of the runs were unsuccessful in the first
five seconds and therefore counted at 5 × 10 = 50 seconds each when computing mean runtime.
Also note that for the highly optimized CPLEX algorithm the performance of the default parameter
configuration is closer to the best of the sampled configurations, but that there are still a number of
better-performing randomly sampled parameter configurations.

Figure 3 sheds light on how these differences in mean runtime come about. For each configura-
tion scenario and for six parameter configurations each, the figure gives a cumulative distribution of
benchmark instances solved as a function of time. The six configurations shown are the default, the
best sampled configuration, the worst sampled configuration, and the configurations representing
the q0.25, q0.50, and q0.75 quantiles. All of these evaluations of configuration quality (best, worst,
etc.) are calculated with respect to the training benchmark set of 1,000 instances. (In cases where
the worst parameter configuration does not solve any of the 1,000 instances, we do not show it in
the figure.)

We notice substantial differences across the five INDEPTH configuration scenarios, especially in
the variation of (algorithm-specific) instance hardness. The QCP distribution contains a substantial
portion of trivially solvable instances, both for the local search algorithm SAPS and the tree search
algorithm SPEAR. We also observe that the SWGCP distribution seems quite easy for SAPS with
an appropriate parameter configuration, and that for all configuration scenarios the variability in
instance hardness depends substantially on the parameter configuration used. Instance distribution
Regions100 shows the lowest variability, in that the difference in hardness between the easiest
and the hardest instance is “only” about an order of magnitude for the best parameter configuration.
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Figure 2: Variation of performance (mean runtime over 1,000 training instances) across parameter
configurations in different configuration scenarios. Performance of the default parameter
configuration and a number of randomly sampled configurations; the number of sampled
configurations for each scenario is the number of configurations that could be evaluated
within 500 CPU hours, up to a maximum of 1,000; note the log-log scale.

In using the mean runtime as our configuration objective, we are implicitly looking for parameter
configurations with robust performance across instances. This is not the case if we, for example,
choose to optimize the median runtime or some other runtime quantile: for example, in Figure 3(c),
we would prefer configuration q0.5 over the default configuration when minimizing median runtime
(this is even clearer for the 40% quantile), but prefer the default configuration when minimizing
mean runtime.

4.3 Overconfidence of Training Performance

So far, we have seen that random search in the space of feasible parameter configurations can iden-
tify configurations that are much better than the default configuration when given enough time to
evaluate a large number of parameter configurations using a large number of N = 1, 000 runs to
evaluate each configuration. Next, we studied RandomSearch as an actual configuration proce-
dure, measuring the performance of its incumbent throughout its trajectory. Training performance
is measured as mean runtime (in CPU seconds) across the chosen training instances (different in
each repetition of the configurator), while test performance is measured as mean runtime across the
1,000 fixed test instances.

Figure 4 shows the training performance of RandomSearch(100) compared to the performance
of the default parameter configuration. In particular, we employed 100 repetitions of Random-
Search(100) that all used the same randomly sampled configurations as above, but in a different
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Figure 3: Hardness variation across instances in different configuration scenarios. For each sce-
nario, the plot shows the percentage of benchmark instances solved by a number of pa-
rameter configurations within a given time. We plot the curves for the default parameter
configuration, and five of the randomly sampled parameter configurations, in particular
the best, the worst, and the q0.25, q0.50, and q0.75 quantiles, all with respect to the training
benchmark set of 1,000 instances.

order; each repetition also used a different set of N = 100 randomly sampled training instances
(out of the full training set of 1,000 instances). For each time point, we then collected the mean
runtime on the training instances for the incumbent of each of the 100 repetitions, and plotted mean
± standard deviation. Note that in each of our configuration scenarios, this simple method found
parameter configurations that performed better than the default on the training benchmark set, some-
times substantially so.

To be practical, however, a configuration procedure must yield parameter configurations that
not only do well on instances used for training, but also on previously unseen test instances. In
some cases, a configurator may have identified parameter settings that are adapted specifically to
the instances in the training set and thus not achieve good performance on previously unseen test
instances. We call this phenomenon overconfidence of the training performance. This effect is very
well known in machine learning where training set results are well-known to be unreliable (and
usually optimistic) estimators of test set performance (Hastie et al., 2001). In some scenarios, test
set performance actually degrades when the number of considered parameter settings (in machine
learning the hypothesis space) is increased beyond a certain point; this effect is called over-fitting
in machine learning and over-tuning in optimization (Birattari et al., 2002; Birattari, 2005; Hutter
et al., 2007b).
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Figure 4: Training performance (mean runtime over N = 100 training instances) of Random-
Search(100) for our INDEPTH scenarios. We performed 25 repetitions of RandomSearch
and plot mean ± stddev (denoted by the grey region) of training performance over these
repetitions; for reference, we plot training performance of the default parameter configu-
ration.

Figure 5 shows test performance for the exact same parameter configurations selected in Figure
4. For reference, the plots also indicate the mean training performance. For the QCP configuration
scenarios there is clear evidence for overconfidence (divergence between training and test perfor-
mance), while this effect is much smaller for the other scenarios. We attribute this to the higher
variability in instance hardness for the QCP distributions as indicated in Figure 3.

4.4 Trading off Runtime, Number of Training Instances, and Captime

In the previous section, we saw that in each configuration scenario, the simple procedure Ran-
domSearch(100) can identify configurations that already perform better than the respective default
configurations. This speedup was larger on the instances the configurator used for training but also
generalized to test instances unknown to the configurator in all scenarios. However, in these initial
experiments the configurator was allowed to run for a long time of 50 CPU hours. This is despite
the fact that the configuration scenarios have low captimes of only κ = 5s for each single run.

The time required for the evaluation of a parameter configuration is upper-bounded by N × κ,
and we can reduce this bound by decreasing N , κ, or both. However, these speedups come at the
price of potentially worse generalizations to unseen test instances and higher runtimes during test-
ing, respectively. In this section, we explore this trade-off by varying both N and κ. Throughout
this section, we use exactly the same training and test data, as well as the same sequence of pa-
rameter configurations as used in the previous section to produce Figure 5. In order to evaluate the
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Figure 5: Test performance (mean runtime over 1,000 test instances) of RandomSearch(100) for
our INDEPTH scenarios, compared to training performance (mean runtime over N = 100
training instances). We performed 25 repetitions of the configurator and plot mean test
performance ± stddev of test performance, as well as mean training performance; for
reference, we plot test performance of the default parameter configuration.

effect of changing the number of instances or the captime, we simply interpreted this data differ-
ently, pretending that only a smaller number of instancesN was available, or that the captime κ was
lower.

In Figure 6, we plot the test performance that resulted from using training benchmark sets of size
N = 1,10, and 100. The expected amount of time needed for the evaluation of a single parameter
configuration is proportional to the number of training instances, N . Thus, it is not surprising that
the optimization runs only using a single training instance were much faster than those using more
instances. We reiterate that all approaches were evaluated on the same number of configurations;
thus, the curves for N = 1 ends at a time roughly 10 times earlier than N = 10, which in turn ends
roughly 10 times earlier than the curve for N = 100.

We observe that generalization performance from a single instance was very poor, typically
leading to test performance worse than that of the default. A training benchmark set with N = 10
instances yielded fairly fast optimization runs that quickly achieved good generalization perfor-
mance in some scenarios (see, e.g., scenario CPLEX-REGIONS100 in Figure 6(a)). Using N = 100
training instances yielded substantially better test performance than N = 10 for all scenarios ex-
cept CPLEX-REGIONS100, but took much longer to do so. Thus, we conclude that the optimal fixed
number of training instances to use depends on how much time is available for configuration. For
reference, in our experiments described later on in this article, we allocated 5 CPU hours for con-
figuring these INDEPTH scenarios. This coincides with the time at which the plots for N = 10 end.
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Figure 6: Test performance (mean runtime over 1,000 test instances) of RandomSearch(N ) for
our INDEPTH scenarios, for N = 1, 10, and 100. We performed 25 repetitions of
RandomSearch(N ) for each N and plot mean test performance; for reference, we plot
test performance of the default parameter configuration.

At this time, N = 10 yielded the best result for scenario CPLEX-REGIONS100 and roughly tied with
N = 100 for scenario SAPS-SWGCP; for the other three scenarios N = 100 performed best.

Next, we studied the dependence of a configurator’s test performance on the used captime κ
(the maximum time allowed for each run of the target algorithm); to the best of our knowledge,
this is the first study of its kind. Our experimental results are reported in Figure 7. We allowed
the full cutoff time (5 seconds), a tenth of it (0.5 seconds), and a hundredth of it (0.05 seconds).
As with using very few training instances, using a very low κ of 0.05 seconds led to a very fast
search with poor generalization performance (this is most apparent for scenario CPLEX-REGIONS100

in Figure 7(a)). An intermediate value of κ = 0.5 seconds still yielded a fast search, sometimes
leading to good generalizations quickly (see, e.g., scenario SAPS-SWGCP in Figure 7(d)). Finally,
with the highest value of κ, 5 seconds, the best results were achieved, but at the price of longer
runtime. When evaluated at a configuration time of 5 hours (which coincides with the plot for
κ = 0.5 ending), κ = 0.5s yielded slightly better results for scenario SAPS-SWGCP and tied with
κ = 5s for scenario SPEAR-QCP; κ = 5s was the clear winner for scenario CPLEX-REGIONS100 and
best by a small margin for SPEAR-SWGCP and SAPS-QCP. Overall, we observe a phenomenon similar
to overconfidence: when using very low cutoff times, parameter configurations are chosen that
perform well for short cutoff times (i.e., solve a larger percentage of instances than other parameter
configurations). However, these configurations might not solve many more instances when allowed
a larger cutoff time; instead, it might be better to choose parameter configurations that perform
poorly initially but excel when given a large enough cutoff time.
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Figure 7: Test performance (mean runtime over 1,000 test instances) of RandomSearch(100) for
our INDEPTH scenarios, using different cutoff times (κ = 0.05s, κ = 0.5s, and κ = 5s).
We performed 25 repetitions of RandomSearch(100) for each κ and plot mean test per-
formance; for reference, we plot test performance of the default parameter configuration.

As we have seen, the result of the algorithm configuration procedure in terms of target algorithm
performance depends on the number of training instances, N , and the cutoff time per instance, κ.
In a final experiment, we explored this trade-off by varying both N and κ at the same time, and
measuring test performance of the final incumbent for each combination of N and κ.

Figure 8 shows the results of this experiment, illustrating the important tradeoff between cutoff
time and number of training instances. Recall that we use the same runtime data for each combina-
tion. Since the runtime for a single evaluation is upper-bounded by N × κ, the total runtime differs
between the combinations. For example, while the runtime for N = 100 and κ = 5s was 50 CPU
hours, it was roughly 0.5 CPU hours for N = 10 and κ = 0.5s. Thus, unsurprisingly, the best
results were achieved with the maximal number of training instances (N = 100) and the maximal
cutoff time (κ = 5 seconds) and degraded monotonically with lower N and κ.

From the Figure, we observe major differences between the configuration scenarios in terms
of the relative effects of N and κ. For example, for scenario SPEAR-QCP (see Figure 8(b)) the
number of training instances was much more important than the cutoff time (decreasing cutoff time
did not worsen performance as much). On the other hand, for CPLEX-REGIONS100 (see Figure
8(a)) this relationship was reversed, with the cutoff time becoming a crucial component and the
number of training instances being fairly inconsequential. The importance of a large number of
training instances in configuration scenario SPEAR-QCP can be explained by the high variance in
instance hardness as shown in Figure 3(b), which also shows that, when using a large number of
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Figure 8: Test performance (mean runtime over 1,000 test instances) of the best parameter config-
uration found with RandomSearch, as depending on the number of training instances, N ,
and the cutoff time, κ, used. Note that each combination of N and κ was allowed to eval-
uate the same number of configurations, and that the time required for each combination
was thus roughly proportionally to N × κ. Also note the non-standard orientation of the
axes with large values of N and cutoff time towards the front of the 3D plot (chosen to
avoid clutter).

instances, the best parameter configuration with a cutoff time of five seconds was also the best
configuration when using much lower cutoff times, such as 0.1 seconds. This is not the case for
scenario CPLEX-REGIONS100: as shown in Figure 3(a), not a single parameter configuration even
solves a single instance with a cutoff time as low as 0.1 seconds. Thus, in this configuration scenario
comparisons based on such low cutoff times reverted to blind guessing.

5. ParamILS: Iterated Local Search in Parameter Configuration Space

In this section, we address the first and most important of the previously mentioned dimensions of
automated algorithm configuration, the search strategy. For now, we fix the other two dimensions,
using an unvarying benchmark set of instances and fixed cutoff times for the evaluation of each
parameter configuration. Thus, the stochastic optimization problem of algorithm configuration re-
duces to a simple optimization problem, namely to find the parameter configuration that yields the
lowest mean runtime on the given benchmark set.

In Section 4.1, we introduced the configuration procedure RandomSearch. This method was
convenient due to its simplicity and as a way of investigating issues that are important for any ap-
proach for algorithm configuration. However, as one may expect, there are more effective methods
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for searching parameter configuration space. In this section, we describe one such method, an iter-
ated local search framework called ParamILS, and compare its effectiveness in searching parameter
configuration space to that of RandomSearch. We also demonstrate that local optima in parameter
configuration space exist, and that ParamILS deals effectively with them.

5.1 The ParamILS framework

Consider the following manual parameter optimization process:

1. begin with some initial parameter configuration;

2. experiment with modifications to single parameter values, accepting new configurations when-
ever they result in improved performance;

3. repeat step 2 until no single-parameter change yields an improvement.

This widely used procedure corresponds to a manually-executed local search in parameter configu-
ration space. Specifically, it corresponds to an iterative first improvement procedure with a search
space consisting of all possible configurations, an objective function that quantifies the performance
achieved by the target algorithm with a given configuration and a neighbourhood relation under
which each step consists of the modification of a single parameter (a so-called “one-exchange”
neighbourhood).

Viewing this manual procedure as a local search algorithm is advantageous because it suggests
the automation of the procedure, and also the procedure’s improvement by drawing on ideas from
the stochastic local search community. For example, note that the procedure stops as soon as it
reaches a local optimum (a parameter configuration that cannot be improved by modifying a single
parameter value). A more sophisticated approach is to employ iterated local search (ILS) (Lourenço
et al., 2002) to search for performance-optimizing parameter configurations. ILS is a stochastic
local search method that builds a chain of local optima by iterating through a main loop consisting
of (1) a solution perturbation to escape from local optima, (2) a subsidiary local search procedure
and (3) an acceptance criterion that is used to decide whether to keep or reject a newly obtained
candidate solution.

ParamILS (given in pseudocode as Algorithm 2) is an ILS method that searches parameter con-
figuration space. It uses a combination of default and random settings for initialization, employs
iterative first improvement as a subsidiary local search procedure, uses a fixed number (s) of ran-
dom moves for perturbation, and always accepts better or equally-good parameter configurations,
but re-initializes the search at random with probability prestart.2 Furthermore, it is based on a
one-exchange neighbourhood, that is, we always consider changing only one parameter at a time.
ParamILS deals with conditional parameters by excluding all configurations from the neighbour-
hood of a configuration θ that differ only in a conditional parameter that is not relevant in θ.

5.2 The BasicILS Algorithm

In order to turn ParamILS into an executable configuration procedure, it is necessary to augment
the framework given in Algorithm 2 with a function better that determines which of two parame-
ter settings should be preferred. We will ultimately propose several different ways of doing this.

2. Our original choices of 〈r, s, prestart〉 = 〈10, 3, 0.01〉 from (Hutter et al., 2007b) were somewhat arbitrary, though
we expected performance to be quite robust with respect to these settings. We revisit this issue in Section 9.
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Algorithm 2: ParamILS(θ0, r, prestart, s)
Outline of iterated local search in parameter configuration space; the specific variants of ParamILS we
study, BasicILS(N) and FocusedILS, differ in the procedure better (which compares θ, θ′ ∈ Θ).

Input : Initial configuration θ0 ∈ Θ, algorithm parameters r, prestart, and s.
Output : Best parameter configuration θ found.
for i = 1, . . . , r do1

θ ← random θ ∈ Θ;2
if better(θ, θ0) then θ0 ← θ;3

θils ← IterativeFirstImprovement (θ0,N );4
while not TerminationCriterion() do5

θ ← θils;6

// ===== Perturbation
for i = 1, . . . , s do θ ← random θ′ ∈ N (θ);7

// ===== Basic local search
θ ← IterativeFirstImprovement (θ,N );8

// ===== AcceptanceCriterion
if better(θ, θils) then θils ← θ;9
with probability prestart do θils ← random θ ∈ Θ;10

return overall best θ found;11

Procedure IterativeFirstImprovement (θ,N )12
repeat13

θ′ ← θ;14
foreach θ′′ ∈ N (θ′) in randomized order do15

if better(θ′′, θ′) then θ ← θ′′; break;16

until θ′ = θ;17
return θ;18

Procedure 3: betterN (θ1, θ2)
Procedure used in RandomSearch(N ) and BasicILS(N ) to compare two parameter configurations. Pro-
cedure objective(θ,N) returns the user-defined objective achieved by Aθ on the first N instances and
keeps track of the incumbent solution; it is detailed in Procedure 5 on page 31.

Input : Parameter configuration θ1, parameter configuration θ2
Output : True if θ1 does better than or equal to θ2 on the first N instances; false otherwise
ĉN (θ2)← objective(θ2, N)1
ĉN (θ1)← objective(θ1, N)2
return ĉN (θ1) ≤ ĉN (θ2)3

Here, we describe the simplest approach, which we call BasicILS. Specifically, we use the term
BasicILS(N ) to refer to a ParamILS algorithm in which the function better(θ1, θ2) is implemented
as shown in Procedure 3: simply compare estimates ĉN of the cost statistics c(θ1) and c(θ2) that are
based onN runs each. (This is the same procedure that is used to compare parameter configurations
in RandomSearch(N ).)

BasicILS(N ) is a simple and intuitive approach since it evaluates every parameter configuration
by running it on the same N training benchmark instances using the same seeds. Like many other
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related approaches (see, e.g., (Minton, 1996; Coy et al., 2001; Adenso-Diaz and Laguna, 2006)) it
circumvents the stochastic part of the optimisation problem by using an estimation based on a fixed
training set of N instances, effectively treating the problem as a standard optimisation problem.
When benchmark instances are very heterogeneous or when the user can identify a rather small
“representative” subset of instances, this approach can find good parameter configurations with
low computational effort. As we will see, BasicILS can achieve impressive performance in some
configuration scenarios.

5.3 Experimentally Evaluating BasicILS

In this section, we evaluate the effectiveness of BasicILS(N ) against two of its components, RandomSearch(N )
(used in BasicILS(N ) for initialization) and a simple local search (the same type of iterative first im-
provement search used in BasicILS(N ); we dub it SimpleLS(N )). If there is sufficient structure in
the search space, BasicILS should outperform RandomSearch; furthermore, if there are local min-
ima, BasicILS should perform better than basic local search. Our experiments showed that BasicILS
did indeed offer the best performance.

We set the cutoff time to five seconds per run and the number of training instances to 100. For all
configuration procedures, we performed 25 independent repetitions, each of them with a different
training set of 100 instances (constructed as described in Section 3.1.2).

At this point in the paper, we are solely interested in comparing how effectively the approaches
search the space of parameter configurations (and not how the found parameter configurations gen-
eralize to unseen test instances). Thus, we compare training performance achieved.

First, we present our comparison of BasicILS against RandomSearch. In Figure 9, we plotted
the mean solution quality achieved by the two approaches at a given time, for the two configura-
tion scenarios with the least and the most pronounced differences between the two configuration
procedures: SAPS-SWGCP and CPLEX-REGIONS100. BasicILS started with r = 10 random samples
(using the same seed as RandomSearch), which meant that performance for the first part of the tra-
jectory was always identical. After these random samples, BasicILS performed better, quite clearly
so for CPLEX-REGIONS100. Table 3 quantifies the performance of both approaches on our INDEPTH
configuration scenarios. BasicILS always performed better, and in three of the five scenarios the
difference was statistically significant as judged by a paired Max-Wilcoxon test (see Section 3.1.3).
Table 9 also lists the performance of the default parameter configuration for each of the configura-
tion scenarios. We note that both BasicILS and RandomSearch consistently made substantial (and
statistically significant) improvements over these default configurations.

Next, we compared BasicILS against its second component, SimpleLS. This basic local search
is identical to BasicILS, but stops in the first local minimum encountered. We used it in order to
study whether local minima are present that pose a problem for simple first improvement search.
Table 4 shows that in the three configuration scenarios where BasicILS had time to perform multiple
iterations, its training set performance was statistically significantly better than that of SimpleLS.
Thus, we conclude that the search space contains structure that can be exploited with a local search
algorithm as well as local minima that can limit the performance of iterative improvement search.

6. FocusedILS: Adaptively Selecting the Number of Training Instances

In this section, we go beyond BasicILS by addressing the second dimension of automated algorithm
configuration, choosing the number of training instances. In Section 4.3, we described the phe-

23



HUTTER, HOOS, LEYTON-BROWN & STÜTZLE
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Figure 9: Comparison of training performance (mean runtime over N = 100 training instances)
of BasicILS(100) and RandomSearch(100) for the configuration scenarios in which the
difference between the two approaches was least significant and most significant. We per-
formed 25 repetitions of each configurator and at each time step plot the median training
performance of these repetitions (plots are similar for means over 25 repetitions, but more
variable and thus cluttered). Note the logarithmic scale on the x-axis, and the difference
in y-axis scales: we chose a log-scale for SAPS-SWGCP due the large performance vari-
ation seen for this scenario, and a linear scale for CPLEX-REGIONS100, where even poor
configurations performed quite well. We will use these two configuration scenarios for
visualization purposes throughout, always using the same y-axes as in this plot.

Scenario Default RandomSearch(100) BasicILS(100) p-value
SAPS-SWGCP 19.93 0.46± 0.34 0.38 ± 0.19 0.94
SPEAR-SWGCP 10.61 7.02± 1.11 6.78 ± 1.73 0.18
SAPS-QCP 9.11 3.73± 1.53 2.86 ± 1.25 1.8 × 10−5

SPEAR-QCP 2.77 0.58± 0.59 0.36 ± 0.39 0.007
CPLEX-REGIONS100 1.61 1.45± 0.35 0.72 ± 0.45 1.2 × 10−5

Table 3: Comparison of final training performance (mean runtime overN = 100 training instances)
for RandomSearch(100) and BasicILS(100). We performed 25 repetitions of each config-
urator, using identical 〈instance, seed〉 lists for both configurators (but different 〈instance,
seed〉 lists for each of the 25 repetitions). Note that both approaches yielded substantially
better results than the default configuration, and that BasicILS performed statistically sig-
nificantly better than RandomSearch in three of the five INDEPTH configuration scenarios
as judged by a paired Max-Wilcoxon test (see Section 3.1.3).
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Scenario SimpleLS(100) BasicILS(100) p-value
Performance Performance Avg. # iterations

SAPS-SWGCP 0.5± 0.39 0.38 ± 0.19 2.6 9.8 × 10−4

SAPS-QCP 3.17± 1.42 2.86 ± 1.25 4.84 4.9 × 10−4

SPEAR-QCP 0.4± 0.39 0.36 ± 0.39 1.64 0.008

Table 4: Comparison of final training performance (mean runtime overN = 100 training instances)
for SimpleLS(100) and BasicILS(100). We performed 25 repetitions of each configura-
tor, using identical 〈instance, seed〉 lists for both configurators (but different 〈instance,
seed〉 lists for each of the 25 repetitions). In configuration scenarios SPEAR-SWGCP and
CPLEX-REGIONS100, BasicILS did not complete its first iteration in any of the 25 repeti-
tions; the two approaches were thus identical and are not listed here. In all other configu-
ration scenarios, BasicILS found significantly better configurations than SimpleLS.

nomenon of overconfidence: optimizing performance using too small a training set leads to good
training performance, but poor generalization to previously unseen test benchmarks. On the other
hand, we clearly cannot evaluate every parameter configuration on an enormous training set—if we
did, the search progress would be unreasonably slow.

To deal with this problem, we propose adaptively choosing the number of training instances to
be used for the evaluation of each parameter configuration.

Definition 5 (Consistent estimator). ĉN (θ) is a consistent estimator for c(θ) iff

∀ε > 0 : lim
N→∞

P (|ĉN (θ)− c(θ)| < ε) = 1.

When ĉN (θ) is a consistent estimator of c(θ), cost estimates become more and more reliable
as N approaches infinity, eventually eliminating overconfidence and the possibility of mistakes
in comparing two parameter configurations (and thus, over-tuning). This fact is captured in the
following lemma.

Lemma 6 (No mistakes for N → ∞). Let θ1, θ2 ∈ Θ be any two parameter configurations with
c(θ1) < c(θ2). Then, for consistent estimators ĉN , limN→∞ P (ĉN (θ1) ≥ ĉN (θ2)) = 0.

Proof. Write c1 as shorthand for c(θ1), c2 for c(θ2), ĉ1 for ĉN (θ1), and ĉ2 for ĉN (θ2). Define
m = 1

2(c2 + c1) as the midpoint between c1 and c2, and ε = c2 −m = m− c1 > 0 as its distance
from each of the two points.

Since ĉN is a consistent estimator for c, the estimate ĉ1 comes arbitrarily close to the real cost
c1. That is, limN→∞ P (|ĉ1 − c1| < ε) = 1. Since |m − c1| = ε, the estimate ĉ1 cannot be greater
than or equal to m: limN→∞ P (ĉ1 ≥ m) = 0. Similarly, limN→∞ P (ĉ2 < m) = 0. Since

P (ĉ1 ≥ ĉ2) = P (ĉ1 ≥ ĉ2 ∧ ĉ1 ≥ m) + P (ĉ1 ≥ ĉ2 ∧ ĉ1 < m) (3)

= P (ĉ1 ≥ ĉ2 ∧ ĉ1 ≥ m) + P (ĉ1 ≥ ĉ2 ∧ ĉ1 < m ∧ ĉ2 < m) (4)

≤ P (ĉ1 ≥ m) + P (ĉ2 < m), (5)

we have limN→∞ P (ĉ1 ≥ ĉ2) ≤ limN→∞ (P (ĉ1 ≥ m) + P (ĉ2 < m)) = 0 + 0 = 0.
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We note that in many practical scenarios cost estimators may not be consistent, i.e., may fail
to closely approximate the true performance of a given parameter configuration even for a large
number of runs of the target algorithm. For example, when a finite training set, Π, is used during
configuration rather than a distribution over problem instances, D, then for large N , ĉN will only
accurately reflect the cost of parameter configurations on the training set, Π. Even for large training
sets, Π, this may subtly differ from the true cost as defined by performance across the whole distri-
bution, D; for small training sets the difference may be substantial, while it vanishes with training
set size approaching infinity. We thus recommend the use of large training sets whenever possible.

6.1 The FocusedILS Algorithm

FocusedILS is a variant of ParamILS in which the number of training samples considered differs
from one parameter configuration to another. We denote the number of runs available to estimate
the cost statistic c(θ) for a parameter configuration θ byN(θ). Having performed different numbers
of runs using different parameter configurations, we face the question of comparing two parameter
configurations θ1 and θ2 for which N(θ1) 6= N(θ2). One option would be simply to compute the
empirical cost statistic based on the available number of runs for each configuration. However,
considering the issues mentioned in the context of blocking on instances and seeds in Section 3.1,
this may lead to systematic biases. For example, bias would be introduced if the first instances in
our sampled list of 〈instance,seed〉 pairs are easier than the average instance, because parameter
configurations with low numbers of runs would then tend to be preferred to configurations with
higher numbers of runs. For this reason, when comparing two parameter configurations θ and θ′

with N(θ) ≤ N(θ′), we simply compare them based on the first N(θ) runs. Since the first N(θ)
runs for both parameter configurations use exactly the same instances and seeds this allows us to
compare quantities that can directly be compared without introducing bias or increasing variance.
(This is similar to our strategy of blocking on instances and seeds, see Section 3.1.)

This approach to comparison leads us to the concept of domination.

Definition 7 (Domination). θ1 dominates θ2 if and only if N(θ1) ≥ N(θ2) and ĉN(θ2)(θ1) ≤
ĉN(θ2)(θ2).

In words, θ1 dominates θ2 when at least as many runs have been conducted on θ1 as on θ2, and
the performance of A(θ1) on the first N(θ2) runs is at least as good as that of A(θ2)) on all of its
runs.

Now we are ready to discuss the comparison strategy encoded in procedure betterFoc(θ1, θ2),
which is used by the FocusedILS algorithm (see Procedure 4). This procedure first acquires one
additional sample for the configuration with smaller N(θi) (or one for each configuration in the
case of a tie). Then, it iteratively performs runs for the configuration with smaller N(θi) until one
configuration dominates the other. At this point it returns true if θ1 dominates θ2 and false otherwise.
We also keep track of the total number of runs performed since the last improving step (the last time
betterFoc returned true); we denote this number B. Whenever betterFoc(θ1, θ2) returns true, we
perform B “bonus” runs for θ1 and reset B to 0. This mechanism ensures that we perform many
runs with good configurations, and that the error made in every comparison of two configurations
θ1 and θ2 decreases on expectation.

It is not difficult to show that in the limit, FocusedILS will sample every parameter configuration
an unbounded number of times. The proof relies on the fact that, as an instance of ParamILS,
FocusedILS performs random restarts with positive probability.
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Procedure 4: betterFoc(θ1, θ2)
Procedure used in FocusedILS to compare two parameter configurations. Procedure objective(θ,N)
returns the user-defined objective achieved byAθ on the firstN instances, keeps track of the incumbent
solution, and updates B (the number of runs performed since the last improvement step) as well as Rθ

(a global cache of algorithm runs performed with parameter configuration θ); it is detailed in Procedure
5 on page 31. For each θ, N(θ) = length(Rθ).

Input : Parameter configuration θ1, parameter configuration θ2

Output : True if θ1 dominates θ2, false otherwise
if N(θ1) ≤ N(θ2) then θmin ← θ1; θmax ← θ21

else θmin ← θ2; θmax ← θ12

repeat3

i← N(θmin) + 14

ĉi(θmax)← objective(θmax, i) // If N(θmin) = N(θmax), adds a new run to Rθmax .5

ĉi(θmin)← objective(θmin, i) // Adds a new run to Rθmin .6

until dominates(θ1, θ2) or dominates(θ2, θ1)7

if dominates(θ1, θ2) then8
// ===== Perform B bonus runs.

ĉN(θ1)+B(θ1)← objective(θ1, N(θ1) +B) // Adds B new runs to Rθ1 .9

B ← 010

return true11

else return false12

Procedure dominates(θ1, θ2)13

if N(θ1) < N(θ2) then return false14

return objective(θ1, N(θ2)) ≤ objective(θ2, N(θ2))15

Lemma 8 (Unbounded number of evaluations). Let N(J, θ) denote the number of runs FocusedILS
has performed with parameter configuration θ at the end of iteration J to estimate c(θ). Then, for
any constant K and configuration θ ∈ Θ (with finite Θ), limJ→∞ [P (N(J, θ)) ≥ K] = 1.

Proof. After each iteration of ParamILS, with probability prestart > 0 a new configuration is picked
uniformly at random, and with a probability of 1/|Θ|, this is configuration θ. The probability of
visiting θ in an iteration is thus p ≥ prestart

|Θ| > 0. Hence, the number of runs performed with θ is
lower-bounded by a binomial random variable B(k; J, p). Then, for any constant k < K we obtain
limJ→∞ B(k; J, p) = limJ→∞

(
J
k

)
pk(1− p)J−k = 0. Thus, limJ→∞ [P (N(J, θ)) ≥ K] = 1.

Combining our two lemmata we can now show that in the limit, FocusedILS is guaranteed to
converge to the true best parameter configuration.

Theorem 9 (Convergence of FocusedILS). When FocusedILS optimizes a cost statistic c based on
a consistent estimator ĉN , the probability that it finds the true optimal parameter configuration θ∗

approaches one as the number of iterations approaches infinity.

Proof. According to Lemma 8, N(θ) grows unboundedly for each θ ∈ Θ. For each θ1, θ2, as
N(θ1) and N(θ2) approach infinity, Lemma 6 states that in a pairwise comparison, the truly better
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configuration will be preferred. Thus eventually, FocusedILS visits all finitely many parameter
configurations and prefers the best one over all others with probability arbitrarily close to one.

6.2 Experimental Evaluation of FocusedILS

In typical configuration scenarios, we expect that FocusedILS will sample good configurations much
more frequently than bad ones, and therefore, that optimal configurations will be found much more
quickly than is guaranteed by Theorem 9. In this section we investigate FocusedILS’ performance
experimentally.

In contrast to our previous comparison of RandomSearch, SimpleLS, and BasicILS using train-
ing performance, we now compare FocusedILS against BasicILS using test performance. This is
motivated by the fact that while in our previous comparison all approaches used the same number
of runs, N , to evaluate a parameter configuration, the number of runs FocusedILS uses grows over
time. Even different repetitions of FocusedILS (using different training sets and random seeds) do
not use the same number of runs to evaluate parameter configurations. However, they all eventually
aim to optimize the same cost statistic c, and so test set performance (an unbiased estimator of c)
provides a fairer basis for comparison than training performance. We only compare FocusedILS to
BasicILS since BasicILS already outperformed RandomSearch and SimpleLS in Section 5.3.

Figure 10 compares the test performance of FocusedILS and BasicILS(N ) with N = 1, 10, and
100. Using a single run to evaluate each parameter configuration, BasicILS(1) was fast but did not
generalize well to the test set at all. Specifically, in configuration scenario SAPS-SWGCP BasicILS(1)
selected a parameter configuration having test performance even worse than the default. On the
other hand, using a large number of runs to evaluate each parameter configuration resulted in a very
slow search but eventually led to parameter configurations with good test performance. We can
observe this effect for BasicILS(100) in both scenarios in Figure 10. FocusedILS aims to achieve
a fast search and good generalization to the test set. For the configuration scenarios in Figure 10,
FocusedILS started quickly and also led to the best final performance.

We compare the performance of FocusedILS and BasicILS(100) for all configuration scenarios
in Table 5. For two scenarios, FocusedILS performed statistically significantly better than Basi-
cILS(100), and for a third it performed better with the difference falling just short of passing a
significance test. These results are consistent with our past work in which we observed that Fo-
cusedILS always achieved statistically significantly better performance than BasicILS(100) (Hutter
et al., 2007b). However, we found that in both configuration scenarios involving the SPEAR algo-
rithm, BasicILS(100) actually performed better on average than FocusedILS, albeit not statistically
significantly. We attribute this to the fact that for a complete, industrial solver such as SPEAR, the
two benchmark distributions QCP and SWGCP are quite heterogeneous. This can already be seen by
the variation in hardness between instances as shown in Figure 3. We expect FocusedILS to have
problems in dealing with highly heterogeneous distributions due to the fact that it tries to extrapo-
late performance based on a few runs per parameter configuration. In combination with very large
configuration spaces, such as encountered for SPEAR, this leads to a large number of parameter
configurations being evaluated, but a large number of runs is performed for very few of these. In
Section 8, we report experiments on a large number of further scenarios, and find that FocusedILS
performs better than BasicILS in almost all of them.
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Figure 10: Test performance (mean runtime across 1,000 test instances) of BasicILS(N ) with
N = 1, N = 10, and N = 100 vs FocusedILS for two configuration scenarios. We plot
median test performance over 25 repetitions of the configurators. Performance in the
other three INDEPTH scenarios was qualitatively similar: BasicILS(1) was the fastest
to move away from the starting parameter configuration, but its performance was not
robust at all; BasicILS(10) was a rather good compromise between speed and general-
ization performance, but given enough time was outperformed by BasicILS(100). Fo-
cusedILS started finding good configurations quickly (except for scenario SPEAR-QCP,
where it took even longer than BasicILS(100) to improve over the default) and always
was amongst the best approaches at the end of the configuration process.

Scenario Default BasicILS(100) FocusedILS p-value
SAPS-SWGCP 20.41 0.59± 0.28 0.32 ± 0.08 1.4 × 10−4

SPEAR-SWGCP 9.74 8.13 ± 0.95 8.40± 0.92 (0.21)
SAPS-QCP 9.80 5.48± 0.5 5.20 ± 0.38 0.08
SPEAR-QCP 2.65 1.32 ± 0.34 1.35± 0.20 (0.66)

CPLEX-REGIONS100 1.61 0.72± 0.45 0.33 ± 0.03 1.2 × 10−5

Table 5: Comparison of test performance (mean runtime over 1,000 test instances, in CPU sec-
onds) for BasicILS(100) and FocusedILS. For each configuration scenario, we report test
performance of the default parameter configuration, mean ± stddev of the test perfor-
mance reached by 25 repetitions of BasicILS(100) and FocusedILS, and the p-value for a
paired Max-Wilcoxon test (see Section 3.1.3) for the difference of the two configurator’s
performance.
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7. Adaptive Capping of Algorithm Runs

Now we consider the last of our dimensions of automated algorithm configuration, the cutoff time
for each run of the target algorithm. We introduce a novel, effective and simple capping tech-
nique that adaptively determines the cutoff time for each run. The motivation for this capping tech-
nique comes from a problem encountered by all configuration procedures considered in this article
(RandomSearch, SimpleLS, BasicILS, and FocusedILS): sometimes the search for a performance-
optimizing parameter setting spends a lot of time with evaluating a parameter configuration that is
much worse than other, previously seen configurations.

Consider, for example, a case where parameter configuration θ1 takes a total of 10 seconds to
solve each of 100 instances (i.e., it has a mean runtime of 0.1 seconds per instance), and another
parameter configuration θ2 takes one second per instance, i.e., 100 seconds for solving all instances.
In order to compare θ1 and θ2 based on the above 100 instances, knowing the result for θ1, it is not
necessary to run θ2 on all 100 instances. After 11 instances θ2’s mean runtime is already lower-
bounded by 11/100 = 0.11 seconds, because the remaining 89 instances could take no less than
zero time. Since this lower bound exceeds the mean runtime of θ1, we can be certain that the
comparison will favour θ1 without performing any of the remaining 89 runs. This effect provides
the basis for our adaptive capping technique.

We first introduce a trajectory-preserving version of adaptive capping (TP capping) that prov-
ably does not change the search trajectory, but can still lead to large computational savings. For
BasicILS and FocusedILS, we also modify this strategy heuristically to perform more aggressive
adaptive capping (Aggr capping) and yield even better performance in practice. (For Random-
Search and SimpleLS, TP capping and Aggr capping are identical.)

7.1 Adaptive Capping for RandomSearch and SimpleLS

The simplest cases for our adaptive capping technique are RandomSearch and SimpleLS. When-
ever these configurators evaluate a new parameter configuration θ, they perform a comparison bet-
terN (θ, θinc) (for RandomSearch, see Algorithm 1 on page 13; for SimpleLS, see procedure Iter-
ativeFirstImprovement in the general ParamILS framework in Algorithm 2 on page 22). Without
adaptive capping, these comparisons can take a long time, since a poor parameter configuration can
easily take more than an order of magnitude longer than good configurations (see Section 4.2).

For the case of optimizing the mean of some non-negative cost (such as runtime or solution
cost), we implement a bounded evaluation of a parameter configuration θ based on N runs and a
given performance bound in Procedure objective (see Procedure 5). This procedure sequentially
performs runs for parameter configuration θ and after each run computes a lower bound on ĉN (θ)
based on the i ≤ N runs performed so far. Specifically, for our objective of mean runtime we sum
the runtimes of each of the i runs, and divide this sum byN ; since all runtimes must be nonnegative,
this quantity lower-bounds ĉN (θ). Once the lower bound exceeds the bound passed as an argument,
we can skip the remaining runs for θ.

In order to pass the appropriate bounds to Procedure objective, we need to slightly modify
Procedure betterN (see Procedure 3 on page 22) for adaptive capping. Procedure objective now has
a bound as an additional third argument, which has to be set to∞ in line 1 of betterN , and to ĉN (θ2)
in line 2. (Note that the reason for computing ĉN (θ2) before ĉN (θ1) is that in RandomSearch, θ2

is always the incumbent solution, i.e., the best configuration encountered so far, and we thus bound
the evaluation of any new parameter configuration by ĉN (θinc)).
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Procedure 5: objective(θ,N, optional parameter bound)
Procedure that computes ĉN (θ), either by performing new runs or by exploiting previous cached runs.
An optional third parameter specifies a bound on the computation to be performed; when this parameter
is not specified, the bound is taken to be ∞. For each θ, N(θ) is the number of runs performed for
θ, i.e., the length of the global array Rθ. When computing runtimes, we count unsuccessful runs as
taking 10 times their cutoff time.

Input : Parameter configuration θ, number of runs, N , optional bound bound
Output : ĉN (θ) if ĉN (θ) ≤ bound, otherwise a large constant (maxPossibleObjective)

plus the number of instances that remain unsolved when the bound was
exceeded

Side Effect: Adds runs to the global cache of performed algorithm runs, Rθ; updates counter
of bonus runs, B

// ===== Maintain invariant: N(θinc) ≥ N(θ) for any θ

if θ 6= θinc and N(θinc) < N then1

ĉN (θinc)← objective(θinc, N,∞) // Adds N −N(θinc) runs to Rθinc2

// ===== For aggressive capping, update bound.

if Aggressive capping then bound← min(bound, bm× ĉN (θinc))3
// ===== Update the run results in tuple Rθ .

for i = 1...N do4

sum runtime← sum of runtimes in Rθ[1], . . . ,Rθ[i− 1] // Tuple indices starting at 1.5

κ′i ← max(κ,N × bound− sum runtime)6

if N(θ) ≥ i then (θ, πi, κi, oi)← Rθ[i]7

if N(θ) ≥ i and ((κi ≥ κ′i and oi = “unsuccessful”) or (κi < κ′i and oi 6= “unsuccessful”))8

then
o′i ← oi // Previous run is longer yet unsuccessful or shorter yet successful⇒ can re-use result9

else10

o′i ← objective from a newly executed run of Aθ on instance πi with seed si and captime κi11

B ← B + 1 // For FocusedILS, keep track of number of runs since last improving step.12

Rθ[i]← (θ, πi, κ′i, o
′
i)13

if 1/N × (sum runtime + o′i) > bound then return maxPossibleObjective + (N + 1)− i14

if N = N(θinc) and (sum of runtimes in Rθ) < (sum of runtimes in Rθinc) then θinc ← θ15

return 1/N× (sum of runtimes in Rθ)16

Although in this work we focus on the objective of minimizing mean runtime for decision algo-
rithms, we note that our adaptive capping technique can be applied to other configuration objectives.
This is straightforward in the case of any other objective that is based on a a mean (e.g., mean so-
lution quality). It also works for other configuration objectives, in particular for quantiles, such as
the median or the 90% quantile, which we have considered in previous work. In the case of the
median, with M ≤ N/2 runs, we can only obtain a trivial bound of zero; however, for M > N/2,
the N/2th-worst encountered cost of the M runs provides a lower bound on ĉN (θ). A similar result
holds for other quantiles. Interestingly, the more emphasis is put on robustness, the better for our
adaptive capping technique. When the Q% runtime quantile is to be minimized, bounds become
non-trivial after observing the performance for M > N/(100 − Q) runs. For example, after 11
timed-out runs using a configuration θ, it can be concluded that θ′s 90% quantile based on 100 runs
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will be larger than that of a parameter configuration that did not show any timeouts for 100 runs
with the same cutoff time.

7.2 Adaptive Capping in BasicILS

Now, we consider the application of adaptive capping to BasicILS.

7.2.1 TRAJECTORY-PRESERVING CAPPING

In essence, adaptive capping for BasicILS can be implemented by applying the same changes to
Procedure betterN as described above for RandomSearch. However, unlike in the case of Random-
Search, for BasicILS, the current configuration is not always compared to the incumbent configu-
ration, but often to the best encountered in a given iteration of the ILS procedure, which we refer
to as the current iteration’s best configuration. Therefore, where in RandomSearch we compared
lower bounds on solution costs with the performance of the incumbent configuration, we now com-
pare them to the performance of the current iteration’s best configuration. Since during most of
the search process, the current iteration’s best configuration is typically quite good, significant time
can be saved by using adaptive capping. Because this approach amounts to computing exactly the
same function betterN as used in the original version of BasicILS, the modified procedure follows
exactly the same search trajectory it would have followed without capping, but typically requires
much less runtime. Hence, within the same amount of overall running time, this new version of
BasicILS tends to be able to search a larger part of the parameter configuration space.

7.2.2 AGGRESSIVE CAPPING

While the use of trajectory-preserving adaptive capping can result in substantial speedups of Basi-
cILS, it is not always equally effective. One key reason for this comes from the fact that configura-
tions are not always compared to the incumbent, but sometimes to significantly worse-performing
configurations. In particular, this happens after perturbation phases of the ILS procedure. Since
a new iteration starts after each perturbation, the current iteration’s best configuration right after a
perturbation is simply the parameter configuration resulting from the perturbation. In the frequent
case that that configuration performs poorly, the capping criterion does not apply as quickly as when
the comparison is performed against a high-performing configuration.

To counteract this effect, we introduced a more aggressive capping strategy that may terminate
the evaluation of a poor performing configuration at any time. In this heuristic extension of our
adaptive capping technique, we bound the evaluation of any parameter configuration by the per-
formance of the incumbent parameter configuration multiplied by a factor that we call the bound
multiplier, bm. When a comparison between any two parameter configurations θ and θ′ is per-
formed and the evaluations of both are terminated preemptively, the configuration having solved
more instances within the allowed time is taken to be the better one. (This behaviour is achieved by
line 14 in Procedure objective that keeps track of the number of instances solved when exceeding
the bound.) Ties are broken to favour moving to a new parameter configuration instead of staying
with the current one.

Depending on the bound multiplier, the use of this aggressive capping mechanism may change
the search trajectory of BasicILS. While for bm =∞, the heuristic method reduces to our trajectory-
preserving method, a very aggressive setting of bm = 1 means that once we know a parameter
configuration to be worse than the incumbent, we stop its evaluation. In our experiments we set
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bm = 2, that is, once the lower bound on the performance of a configuration exceeds twice the
performance of the incumbent solution, its evaluation is terminated. (In Section 9, we revisit this
choice of bm = 2, configuring the parameters of ParamILS itself.)

7.3 Adaptive Capping in FocusedILS

The main difference between BasicILS and FocusedILS is that the latter adaptively varies the num-
ber of runs used to evaluate each parameter configuration. This difference complicates, but does
not rule out, the use of adaptive capping. This is because FocusedILS always compares pairs of
parameter configurations based on the same number of runs for each configuration, even though
this number can differ from one comparison to the next.

Thus, we can extend adaptive capping to FocusedILS by using separate bounds for every number
of runs, N . Recall that FocusedILS never moves from one configuration, θ, to a neighbouring
configuration, θ′, without performing at least as many runs for θ′ as have been performed for θ.
Since we keep track of the performance of θ with any number of runs M ≤ N(θ), a bound for the
evaluation of θ′ is always available. Therefore, we can implement both, trajectory-preserving and
aggressive capping as we did for BasicILS.

Equivalently to BasicILS, for FocusedILS the inner workings of adaptive capping are imple-
mented in Procedure objective (see Procedure 5). We only need to modify Procedure betterFoc
(see Procedure 4 on page 27) to call objective with the right bounds. This leads to the following
changes in Procedure betterFoc: subprocedure dominates on line 13 now takes a bound as an addi-
tional argument and passes it on to the two calls to objective in line 15. The two calls of dominates
in line 7 and the one call in line 8 all use the bound ĉθmax . The three direct calls to objective in
lines 5, 6, and 9 use bounds∞, ĉθmax , and∞, respectively.

7.4 Experimental Evaluation of Adaptive Capping

We now present experimental evidence that the use of adaptive capping has a strong impact on the
performance of RandomSearch, BasicILS and FocusedILS.

Figure 11 compares training performance of RandomSearch on two configuration scenarios
with and without adaptive capping, and Table 6 quantifies the speedups for all INDEPTH scenarios.
Overall, adaptive capping enabled RandomSearch to evaluate up to 30 times as many parameter
configurations in the same time, while preserving the search trajectory (given the same random
seeds in both cases). This enabled RandomSearch to find parameter configurations with statistically
significantly better training performance in all of our configuration scenarios.

Figure 12 illustrates the extent to which TP capping sped up BasicILS in the same two con-
figuration scenarios. In both cases, capping helped to improve training performance substantially;
for SAPS-SWGCP, BasicILS found the same solutions up to about an order of magnitude faster than
without capping. Table 7 quantifies the speedups for all five INDEPTH configuration scenarios. TP
capping enabled up to four times as many iterations (in SAPS-SWGCP) and improved average perfor-
mance in all scenarios. The improvement was statistically significant in three of the five scenarios.

Aggressive capping for BasicILS was found to further improve performance in several sce-
narios. In the first iteration, both capping techniques are identical (the best configuration in that
iteration is always the incumbent). Thus, we did not observe a difference on configuration scenarios
SPEAR-SWGCP and CPLEX-REGIONS100, for which none of the 25 repetitions of the configurator fin-
ished its first iteration. Table 8 shows results for the other three configuration scenarios. Note that
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Figure 11: Speedup of RandomSearch by adaptive capping for two configuration scenarios. We
performed 25 repetitions of RandomSearch(100) with and without adaptive capping.
For each time step, we computed training performance of each repetition (mean runtime
over N = 100 training instances) and plot the median over the 25 repetitions.

Scenario Mean runtime of best configuration Avg. # configurations evaluated
No capping TP/Aggr capping p-value No capping TP/Aggr capping

SAPS-SWGCP 0.46± 0.34 0.21 ± 0.03 1.2 × 10−5 60 2004
SPEAR-SWGCP 7.02± 1.11 6.70 ± 1.20 6.1 × 10−5 71 199
SAPS-QCP 3.73± 1.53 3.40 ± 1.53 4.0 × 10−5 127 434
SPEAR-QCP 0.58± 0.59 0.45 ± 0.51 6.0 × 10−5 321 1951

CPLEX-REGIONS100 1.29± 0.28 0.70 ± 0.12 1.8 × 10−5 45 1004

Table 6: Effect of adaptive capping on training performance (mean runtime on N = 100 training
instances, in CPU seconds) of RandomSearch. For each configuration scenario, we report
mean ± stddev of the training performance reached by 25 repetitions of the configurator
with and without adaptive capping (for RandomSearch, TP and Aggr capping are iden-
tical), the p-value for a paired Max-Wilcoxon test (see Section 3.1.3) for the difference
between the two, and the average number of configurations they evaluated. Note that the
speedup is highly significant in all scenarios.

the number of iterations for configuration scenario SAPS-SWGCP increased from 12 to 219, and that
for this scenario the gains in training performance were also statistically significant. For the other
configuration scenarios, the gains were less pronounced.

Since adaptive capping improved RandomSearch more than BasicILS, one might now wonder
how our previous comparison between these approaches changes when adaptive capping is used. We
found that the gap between the techniques narrowed, but that the qualitative differences persisted.
Specifically, Table 9 compares the training performance of RandomSearch(100) and BasicILS(100)
with adaptive capping enabled. Comparing this to the performance differences without capping (see
Table 3), now BasicILS only performed significantly better in two of the five INDEPTH scenarios (as
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Figure 12: Speedup of BasicILS by adaptive capping for two configuration scenarios. We per-
formed 25 repetitions of BasicILS(100) without adaptive capping and with TP capping.
For each time step, we computed training performance of each repetition (mean runtime
over N = 100 training instances) and plot the median over the 25 repetitions.

Scenario Mean runtime of best configuration Avg. # iterations
No capping TP capping p-value No capping TP capping

SAPS-SWGCP 0.38± 0.19 0.24 ± 0.05 6.1 × 10−5 3 12
SPEAR-SWGCP 6.78± 1.73 6.65 ± 1.48 0.01 1 1
SAPS-QCP 2.86± 1.25 2.83 ± 1.27 0.31 5 10
SPEAR-QCP 0.361± 0.39 0.356 ± 0.44 0.66 2 3

CPLEX-REGIONS100 0.67± 0.35 0.47 ± 0.26 7.3 × 10−4 1 1

Table 7: Effect of adaptive capping on training performance (mean runtime on N = 100 training
instances, in CPU seconds) for BasicILS(100). For each configuration scenario, we report
mean ± stddev of the final training performance reached by 25 repetitions of the config-
urator capping and with TP capping, the p-value for a paired Max-Wilcoxon test for their
difference (see Section 3.1.3), as well as their average number of iterations.

opposed to three without capping). However, BasicILS still performed better than RandomSearch
in all configuration scenarios on average.

We now move to the experimental evaluation of capping for FocusedILS. Training performance
is not a useful quantity in the context of comparing different versions of FocusedILS, since the num-
ber of runs this measure is based on varies widely between repetitions of the configurator. Instead,
we used two other measures to quantify search progress: the number of iterations performed and
the number N(θinc) of runs performed for the incumbent parameter configuration. Table 10 shows
these two measures for our five INDEPTH configuration scenarios and the three capping schemes
(none, TP, Aggr). FocusedILS with TP capping achieved higher values than without capping for all
scenarios and both measures (although only some of the differences were statistically significant).
Aggressive capping increased both measures further for all scenarios, and most of the differences
between no capping and aggressive capping were statistically significant.
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Scenario Mean runtime of best configuration Avg. # iterations
TP capping Aggr capping p-value TP capping Aggr capping

SAPS-SWGCP 0.24± 0.05 0.21 ± 0.03 1.1 × 10−4 12 219
SAPS-QCP 2.83± 1.27 2.78 ± 1.28 0.13 10 11
SPEAR-QCP 0.356± 0.44 0.356 ± 0.41 0.37 3 3

Table 8: Comparison of training performance (mean runtime over N = 100 training instances, in
CPU seconds) for TP capping and Aggr capping (bm = 2) in BasicILS(100). In con-
figuration scenarios SPEAR-SWGCP and CPLEX-REGIONS100, BasicILS only performed one
iteration; therefore, the two capping approaches were identical and are not listed here. For
the other scenarios, we report mean ± stddev of the training performance reached by 25
repetitions of the configurator with TP and Aggr capping, the p-value for a paired Max-
Wilcoxon test for their difference (see Section 3.1.3), as well as their average number of
iterations.

Scenario RandomSearch(100) BasicILS(100) p-value
SAPS-SWGCP 0.215± 0.034 0.214 ± 0.034 0.35
SPEAR-SWGCP 6.70± 1.20 6.65 ± 1.48 0.51
SAPS-QCP 3.40± 1.53 2.78 ± 1.28 2.7 × 10−5

SPEAR-QCP 0.45± 0.51 0.36 ± 0.41 0.28
CPLEX-REGIONS100 0.73± 0.1 0.47 ± 0.26 0.0013

Table 9: Comparison of final training performance (mean runtime over 100 training instances, in
CPU seconds) of BasicILS(100) and RandomSearch(100), both using the same N = 100
instances, with capping (aggressive capping with bm = 2; the equivalent table without
capping is Table 3.) We also list the p-value for a paired Max-Wilcoxon test (see Section
3.1.3) for the difference of the two configurators’ performance.

Figure 13 demonstrates that for two configuration scenarios FocusedILS with capping reached
the same solution qualities more quickly than without capping. After finding the respective con-
figurations, the performance of FocusedILS shows no further significant increase. The statistics in
Table 11 confirm that at the end of the run there is no statistically significant difference between
FocusedILS with and without capping in any of our five INDEPTH configuration scenarios. The
same table shows that in BasicILS, capping does lead to statistically significant improvements in
the two scenarios SAPS-SWGCP and CPLEX-REGIONS100, for which FocusedILS clearly outperforms
BasicILS when both are ran without capping. Comparing the performance of FocusedILS and Basi-
cILS(100) with capping in Table 11, we find that FocusedILS is only significantly better for scenario
CPLEX-REGIONS100 (which is in some sense the hardest), with insignificant differences for the other
scenarios. This and the stagnation effect seen in Figure 13 leads us to believe that further improve-
ments are hard to obtain for these configuration scenarios, but that capping consistently helps the
ParamILS variants to find good parameter configurations more quickly.
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Number of iterations performed
Scenario No capping TP capping p-value Aggr capping p-value

SAPS-SWGCP 121± 12 166± 15 1.2 × 10−5 244 ± 19 1.2 × 10−5

SPEAR-SWGCP 37± 12 43± 15 0.0026 47 ± 18 9 × 10−5

SAPS-QCP 150± 31 150± 28 0.94 155 ± 31 0.32
SPEAR-QCP 153± 49 165± 41 0.03 213 ± 62 1.2 × 10−5

CPLEX-REGIONS100 36± 13 40± 16 0.26 54 ± 15 1.8 × 10−5

Number of runs N(θinc) performed for the incumbent parameter configuration
Scenario No capping TP capping p-value Aggr capping p-value

SAPS-SWGCP 993± 211 1258± 262 4.7 × 10−4 1818 ± 243 1.2 × 10−5

SPEAR-SWGCP 503± 265 476± 238 (0.58) 642 ± 288 0.009
SAPS-QCP 1702± 397 1748± 383 0.40 1777 ± 306 0.17
SPEAR-QCP 836± 509 1130± 557 0.02 1215 ± 501 0.003

CPLEX-REGIONS100 761± 215 795± 184 0.40 866 ± 232 0.07

Table 10: Effect of adaptive capping on search progress in FocusedILS, as measured by the number
of iterations performed and the number of runs N(θinc) performed for the incumbent
parameter configuration. For each configuration scenario, we report mean ± stddev of
both of these measures across 25 repetitions of the configurator without capping, with TP
capping, and with Aggr capping, as well as the p-values for paired Max-Wilcoxon tests
(see Section 3.1.3) for the differences between no capping and TP capping; and between
no capping and Aggr capping.
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(b) CPLEX-REGIONS100

Figure 13: Speedup of FocusedILS by adaptive capping for two configuration scenarios. We per-
formed 25 repetitions of FocusedILS without adaptive capping, with TP capping and
with Aggr capping. For each time step, we computed the test performance of each
repetition (mean runtime over 1, 000 test instances) and plot the median over the 25
repetitions. The differences at the end of the trajectory were not statistically signifi-
cant; however, with capping the time required to achieve that quality was lower in these
two configuration scenarios. In the other three scenarios, the gains due to capping were
smaller.

37



HUTTER, HOOS, LEYTON-BROWN & STÜTZLE

FocusedILS
Scenario No capping TP capping p-value Aggr capping p-value

SAPS-SWGCP 0.325± 0.08 0.326± 0.06 (0.81) 0.316 ± 0.05 0.72
SPEAR-SWGCP 8.41± 0.92 8.49± 1.07 (0.48) 8.3 ± 1.06 0.68
SAPS-QCP 5.2± 0.38 5.12 ± 0.31 0.47 5.21± 0.39 (0.72)
SPEAR-QCP 1.35± 0.2 1.25 ± 0.21 0.19 1.29± 0.2 0.28

CPLEX-REGIONS100 0.333± 0.03 0.326 ± 0.01 0.24 0.346± 0.04 (0.46)
BasicILS(100)

Scenario No capping TP capping p-value Aggr capping p-value
SAPS-SWGCP 0.59± 0.28 0.36± 0.09 2.5 × 10−4 0.323 ± 0.06 5 × 10−5

SPEAR-SWGCP 8.13± 0.95 8.05 ± 0.9 0.25 identical to TP capping
SAPS-QCP 5.48± 0.5 5.44 ± 0.51 0.5 5.5± 0.53 (1)
SPEAR-QCP 1.32 ± 0.34 1.33± 0.37 (0.58) 1.39± 0.33 (0.24)

CPLEX-REGIONS100 0.72± 0.45 0.5 ± 0.3 7.3 × 10−4 identical to TP capping

Table 11: Effect of adaptive capping on test performances (mean runtime over 1, 000 test instances,
in CPU seconds) of FocusedILS and BasicILS(100). For each configuration scenario and
procedure, we report mean ± stddev of the test performance reached by 25 repetitions of
the configurator without capping, with TP capping, and with Aggr capping, as well as the
p-values for paired Max-Wilcoxon tests (see Section 3.1.3) for the differences in perfor-
mances between no capping and TP capping; and between no capping and Aggr capping.
Comparing FocusedILS and BasicILS(100) (both with Aggr capping), FocusedILS is
significantly better for scenario CPLEX-REGIONS100 (p-value 0.008), insignificantly bet-
ter for scenarios SAPS-SWGCP, SAPS-QCP, and SPEAR-QCP (p-values 0.67, 0.07, and 0.53),
and insignificantly worse for scenario SPEAR-SWGCP (p-value 0.18).

8. Experiments for Broad Collection of Configuration Scenarios

In this section, we present results for automatically configuring SAPS, SPEAR, and CPLEX on
benchmark sets that go beyond the three we have considered so far. We first introduce the new
configuration scenarios, briefly explain our experimental setup and then report the results of our
study.

8.1 Broad Configuration Scenarios

We constructed a broad range of configuration scenarios by acquiring interesting instances from
public benchmark libraries and other researchers. These configuration scenarios include two new
scenarios each for SAPS and SPEAR and five for CPLEX; they are summarized in Table 12. The
target algorithms for our BROAD scenarios are the same as we have used throughout the paper (and
described in Section 3.2.1). Here, we give some details about the new instance benchmark sets; all
of these sets were split 50:50 into disjoint training and test sets.

SWV This set of SAT-encoded software verification instances comprises 604 instances generated
by the CALYSTO static checker (Babić and Hu, 2007). It was generated by Domagoj Babić and
was also used in a previous application study of ParamILS (Hutter et al., 2007a). These instances
contained an average of 64, 416 variables and 195, 058 clauses, with respective standard deviations
of 53, 912 and 174, 534.
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Scenario Type of benchmark instances & citation # training # test
SPEAR-SWV SAT-encoded software verification (Babić and Hu, 2007) 302 302
SPEAR-IBM SAT-encoded bounded model checking (Zarpas, 2005) 382 383

SAPS-RANDOM SAT competition instances, random category (see, e.g., Le Berre and Simon,
2004)

363 363

SAPS-CRAFTED SAT competition instances, crafted category (see, e.g., Le Berre and Simon,
2004)

189 188

CPLEX-REGIONS200 Combinatorial Auctions (CATS) (Leyton-Brown et al., 2000) 1,000 1,000
CPLEX-CONIC.SCH Machine-Job Assignment (BCOL) (Aktürk et al., 2007) 172 171

CPLEX-CLS Capacitated Lot Sizing (BCOL) (Atamtürk and Muñoz, 2004) 50 50
CPLEX-MIK Mixed-integer knapsack (BCOL) (Atamtürk, 2003) 60 60
CPLEX-QP Quadratic programs from RNA energy parameter optimization (Andronescu

et al., 2007)
1,000 1,000

Table 12: Overview of our nine BROAD configuration scenarios. BCOL stands for Berkeley Com-
putational Optimization Lab, CATS for Combinatorial Auction Test Suite.

IBM This set of SAT-encoded bounded model checking instances comprises 765 instances gen-
erated by Zarpas (2005), and was also used in the above-mentioned application study of ParamILS
(Hutter et al., 2007a). These instances contained an average of 91, 041 variables and 386, 171
clauses, with respective standard deviations of 149, 815 and 646, 813. Some of the instances in this
set are extremely hard, the largest instance containing 1, 400, 478 variables and 5, 502, 329 clauses.
In order to reduce training time, we removed the 95 instances from the training set that could not
be solved by SPEAR’s default parameter configuration within one hour, leaving 287 instances for
training (this was identical to our methodology in Hutter et al. (2007a)).

Random This set comprises 726 satisfiable instances collected from the RANDOM categories of
the SAT competitions 2003, 2004, 2005, and 20073 (see, e.g., Le Berre and Simon, 2004). This
instance set is very heterogeneous and contains an average of 1, 004 variables and 6, 707 clauses,
with respective standard deviations of 1, 859 and 8, 236.

Crafted This set comprises 377 satisfiable instances collected from the CRAFTED (or HAND-
MADE) categories of the SAT competitions 2003, 2004, 2005, and 2007 (see, e.g., Le Berre and
Simon, 2004). These instances were contributed by a variety of researchers and are very heteroge-
neous. They contain an average of 2, 319 variables and 48, 914 clauses, with respective standard
deviations of 5, 801 and 183, 632. The largest instance contains 75, 600 variables and 2, 340, 195
clauses.

Regions200 This set is almost identical to the Regions100 set used throughout the paper, but is
much larger. We generated 2,000 MILP instances with the generator provided with the Combinato-
rial Auction Test Suite (Leyton-Brown et al., 2000), based on the regions option with the goods
parameter set to 200 and the bids parameter set to 1,000. These instances contain an average of
1, 002 variables and 385 inequalities, with respective standard deviations of 1.7 and 3.4.

CONIC.SCH This set comprises 343 machine-job assignment instances encoded as mixed integer
quadratically constrained programs (MIQCP). It was obtained from the Berkeley Computational

3. In 2006 a “SAT Race” was run instead of a “SAT competition,”; the SAT Race considers only industrial instances.
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Optimization Lab4 and was introduced by Aktürk et al. (2007). These instances contain an average
of 2, 769 variables and 2255 constraints, with respective standard deviations of 2, 133 and 1, 592.

CLS This set comprises 100 capacitated lot-sizing instances encoded as mixed integer linear pro-
grams (MILP). It was also obtained from the Berkeley Computational Optimization Lab and was
introduced by Atamtürk and Muñoz (2004). All 100 instances contain 181 variables and 180 con-
straints.

MIK This set of 120 MILP-encoded mixed-integer knapsack instances was also obtained from
the Berkeley Computational Optimization Lab and was originally introduced by Atamtürk (2003).
These instances contain an average of 384 variables and 151 constraints, with respective standard
deviations of 309 and 127.

QP This set of quadratic programs originated from RNA energy parameter optimization (An-
dronescu et al., 2007). Mirela Andronescu generated 2,000 instances for our experiments. These
instances contain 9, 366 variables and 9, 191 constraints on average, with respective standard devia-
tions of 7, 165 and 7, 186. Since the instances are polynomial-time solvable quadratic programs, we
set a large number of inconsequential CPLEX parameters concerning the branch and cut mechanism
to their default values, ending up with 27 categorical, 2 integer and 2 continuous parameters to be
configured, for a discretized parameter configuration space of size 3.27× 1017.

8.2 Experimental Setup

For the BROAD configuration scenarios considered in this section, we set significantly longer cut-
off times than on the INDEPTH configuration scenarios we studied previously, in order to study
ParamILS’s behavior when faced with harder problems. Specifically, we used a cutoff time of 300
CPU seconds during training and allowed a running time of two CPU days per configurator and
repetition. As always, our configuration objective was to minimize mean runtime, and we counted
timeouts as ten times the cutoff time (in this case, 3, 000 seconds). We employed our final versions
of BasicILS(100) and FocusedILS, both with aggressive capping (bm = 2), for ten repetitions each,
and measured the test set performance of their respective final incumbent parameter configurations.
We report mean and standard deviation of performance across the ten repetitions of the configura-
tor, and also report the test-set performance of the parameter configuration found in the repetition
with the best training-set performance. Note that choosing the configuration found in the repetition
with the best training-set performance is a perfectly legitimate procedure since it does not require
knowledge of the test set. The only catch is that the running time grows by a factor of ten when we
perform ten repetitions to keep the result of the best one.

8.3 Experimental Results

In Table 13, we compare performance of our algorithms’ default parameter configurations with the
final parameter configurations found by BasicILS(100) and FocusedILS for the nine BROAD con-
figuration scenarios introduced in this section, as well as the five INDEPTH configuration scenarios
we used throughout this paper (defined in Table 1 on page 9). Note that in some configuration
scenarios (e.g., SPEAR-SWV, CPLEX-CLS, CPLEX-MIK) there was substantial variance between the dif-
ferent repetitions of the configurator, and the repetition with the best training performance yielded a

4. http://www.ieor.berkeley.edu/˜atamturk/bcol/
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Test performance (mean runtime over test instances, in CPU seconds)
Scenario Default mean ± stddev. for 10 repetitions Repetition with best training performance Fig.

BasicILS FocusedILS BasicILS FocusedILS
SAPS-SWGCP 20.41 0.32± 0.06 0.32 ± 0.05 0.26 0.26 14(a)
SAPS-QCP 9.80 5.50± 0.53 5.21 ± 0.39 5.91 5.20 14(b)

SPEAR-SWGCP 9.74 8.05 ± 0.9 8.3± 1.1 6.8 6.6 14(c)
SPEAR-QCP 2.65 1.39± 0.33 1.29 ± 0.2 1.16 1.21 14(d)

CPLEX-REGIONS100 1.61 0.5± 0.3 0.35 ± 0.04 0.35 0.32 14(e)
SPEAR-SWV 424 95± 157 10.4 ± 12.4 4.21 1.58 15(a)
SPEAR-IBM 996 996 ± 41 1062± 170 1, 030 958 15(b)

SAPS-RANDOM 1, 271 1, 176± 43 1,140 ± 30 1,180 1, 187 15(c)
SAPS-CRAFTED 1, 556 1,534 ± 64 1, 548± 53 1, 492 1,471 15(d)

CPLEX-REGIONS200 72 45± 24 11.4 ± 0.9 15 10.5 15(e)
CPLEX-CONIC.SCH 5.37 2.27 ± 0.11 2.4± 0.29 2.14 2.35 15(f)

CPLEX-CLS 712 443± 294 327 ± 860 80 23.4 15(g)
CPLEX-MIK 64.8 20 ± 27 301± 948 5 1.72 1.19 15(h)
CPLEX-QP 969 755 ± 214 827± 306 528 525 15(i)

Table 13: Experimental results for our five INDEPTH and nine BROAD configuration scenar-
ios. For each configuration scenario, we list test performance (mean runtime
over test instances) of the algorithm default, mean ± stddev of test performance
across ten repetitions of BasicILS(100) & FocusedILS (run for two CPU days
each), and the test performance of the repetition of BasicILS and FocusedILS
that is best in terms of training performance. Boldface indicates the better of
BasicILS and FocusedILS. The algorithm configurations found in FocusedILS’s
repetition with the best training performance are listed in an online appendix at
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/results.html.
Column “Fig.” gives a reference to a scatter plot comparing the performance of those
configurations against the algorithm defaults.

parameter configuration that was also very good on the test set. We tended to observe higher varia-
tion for FocusedILS than for BasicILS. Even in configuration scenarios where BasicILS performed
better on average, this high variance sometimes helped FocusedILS to achieve the repetition with
the best training performance. Examples for this effect are the scenarios SPEAR-SWGCP, SPEAR-IBM,
SAPS-CRAFTED, CPLEX-MIK, and CPLEX-QP.

While BasicILS outperformed FocusedILS in five of our nine BROAD configuration scenarios
in terms of mean test performance across ten repetitions, FocusedILS achieved the better test per-
formance for the repetition with the best training performance for all but two BROAD configuration
scenarios (in which it performed almost as well). For some of the scenarios, FocusedILS performed
much better than BasicILS, for example in SPEAR-SWV, CPLEX-REGIONS200, and CPLEX-CLS.

5. For configuration scenario CPLEX-MIK, nine out of ten runs of FocusedILS yielded parameter configurations with
average runtimes smaller than two seconds; one run, however, was very unfortunate. There, θinc, one of the first
visited configurations solved the first instance π1 in 0.84 seconds, and no other configuration managed to solve π1 in
less than 2× 0.84 = 1.68 seconds; thus, every configuration θ 6= θinc timed out on π1 due to the aggressive capping
strategy with bm = 2 used in these experiments. FocusedILS then iterated the following steps: perturbation to a new
configuration θ; comparison of θ against a neighbour θ′ using a single run each on π1, both of which timed out after
1.68 seconds, breaking the tie in favour of θ′ since N(θ) = N(θ′) = 1; two bonus runs for N(θ′); comparison of θ′

against all its neighbours θ′′ using a single run on π1, and breaking ties in favour of θ′ since N(θ′) > N(θ′′); 202
bonus runs for θ′. In the seven iterations performed within two CPU days, this process did not find a configuration
better than θinc, which did not manage to solve a single instance in the test set. Since the runtime of unsuccessful
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Note that in all configuration scenarios we considered, both BasicILS and FocusedILS found
parameter configurations that were better than the algorithm defaults, and that sometimes these new
configurations were very substantially better. In Figure 14, we provide a scatter plot for each of
our five INDEPTH configuration scenarios. These plots provide a comparison of the performance of
the default parameter configuration and the configuration found in the repetition with best training
performance. The speedups FocusedILS achieved over the default in terms of average runtimes
ranged from factors of about two and ten for SPEAR-SWGCP and SPEAR-QCP to factors of over 400
and over 3,000 for SAPS-QCP and SAPS-SWGCP, respectively (see the subcaptions of Figure 14 for
the exact numbers).

In Figure 15, we provide analogous scatter plots for each of our BROAD configuration scenar-
ios. In some cases, results were excellent, e.g., for SPEAR-SWV: while the default timed out on 21
instances after a cutoff time of one CPU hour, the automatically configured version took no more
than ten seconds to solve any instance. (In our earlier application paper (Hutter et al., 2007a) we
chose larger cutoff times of 10 CPU hours for SPEAR-SWV and SPEAR-IBM and observed even more
pronounced differences in mean runtime. Especially for SPEAR-IBM, where gains were larger for
harder instances, the larger cutoff time led to a speedup factor of 4.5 as compared to 1.2 with the
cutoff time we chose here.) For the SAPS scenarios SAPS-RANDOM and SAPS-CRAFTED, there was
little correlation between the runtime with the default and the automatically determined parameter
setting, though the latter configurations were somewhat better on average. For CPLEX-REGIONS200,
CPLEX-CONIC.SCH, CPLEX-CLS, and CPLEX-MIK, speedups were quite consistent across instances
(reaching from a speedup in terms of average runtime of a factor of 2 (CPLEX-CONIC.SCH) to an
average factor of 20 (CPLEX-MIK). Finally, for CPLEX-QP, the optimized parameter configuration
achieved good performance with the cutoff time used for the configuration process (300 CPU sec-
onds, see Figure 16), but this performance did not carry over to the higher cutoff time we used in
our tests (3600 CPU seconds, see Figure 15(i)).

We noticed several trends. Firstly, for homogeneous instance distributions the speedups tended
to be higher than for heterogeneous instance collections. While SAPS performance improved greatly
for the fairly homogeneous instance distributions QCP and SWGCP, we did not see a great im-
provement in the two configuration scenarios SAPS-RANDOM and SAPS-CRAFTED whose highly het-
erogeneous benchmark sets consisted of all random and crafted instances from five years of SAT
competitions. Furthermore, in these heterogeneous scenarios, the runtimes for the default and the
optimized parameter configuration were less correlated than in the other scenarios. This is intuitive
since for heterogeneous distributions we cannot expect gains for a subset of instances to carry over
to the entire distribution. Secondly, speedups over the default seemed to be similar for distributions
with smaller and larger instances. In particular, for the very similar scenarios CPLEX-REGIONS100

and CPLEX-REGIONS200 we see slightly larger improvements for the configuration scenario with
the harder instances (a factor of 6.8 vs a factor of 5.0). Finally, for some configuration scenar-
ios (e.g., SPEAR-SWV, CPLEX-CLS, and CPLEX-MIK), speedups were much more pronounced for the
hardest test instances. This is intuitive since we used mean runtime as an optimization objective,
which naturally gives more weight to harder instances. Interestingly, this trend of larger speedups
for harder instances also held for configuration scenario CPLEX-QP, up to the training cutoff time
of 300 seconds (see Figure 16). However, if algorithm behaviour within the training cutoff time is

runs was counted as ten times the cutoff time, this resulted in an average runtime of 10 × 300 = 3, 000 seconds
for this unfortunate run. This demonstrates the risk of capping too aggressively, and underlines the importance of
performing multiple runs of FocusedILS with different orderings of the training instances.
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(b) SAPS-QCP. 75s vs 0.18s; 177 vs 2
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(c) SPEAR-SWGCP. 33s vs 17s; 3 vs 2
timeouts
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(d) SPEAR-QCP. 9.6s vs 0.85s; 1 vs 0
timeouts
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(e) CPLEX-REGIONS100. 1.61s vs
0.32s; no timeouts

Figure 14: Comparison of default vs automatically-determined parameter configurations for our
five INDEPTH configuration scenarios. Each dot represents one test instance; time-outs
(after one CPU hour) are denoted by red circles. The blue dashed line at five CPU
seconds indicates the cutoff time of the target algorithm used during the configuration
process. The subfigure captions give mean runtimes for the instances solved by each of
the configurations (default vs optimized), as well as the number of timeouts for each.
The automatically-determined configurations were obtained from the FocusedILS run
with the best performance on the training set amongst 25 repetitions (each with a running
time of up to five CPU hours). All data shown are based on test sets that are disjoint
from the respective training sets.

not informative about behaviour in longer algorithm runs, performance with longer cutoffs may be
poor. For example, see Figure 15(i); this underlines the importance of choosing the training cutoff
time carefully.
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timeouts out of 302 instances
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(b) SPEAR-IBM. 84s vs 69s; 105 vs 98
timeouts out of 383 instances
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(c) SAPS-RANDOM. 118s vs 91.6s; 130
vs 119 timeouts out of 363 instances
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(d) SAPS-CRAFTED. 68.4s vs 67.6s;
87 vs 83 timeouts out of 188 instances
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(e) CPLEX-REGIONS200. 72s vs
10.5s; no timeouts
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(f) CPLEX-CONIC.SCH. 5.37s vs
2.39.5s; no timeouts
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(g) CPLEX-CLS. 309s vs 21.5s; no
timeouts
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(h) CPLEX-MIK. 28s vs 1.2s; no time-
outs
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(i) CPLEX-QP. 296s vs 234s; 0 vs 21
timeouts out of 1,000 instances

Figure 15: Comparison of default vs automatically-determined parameter configuration for our nine BROAD
configuration scenarios. Each dot represents one test instance; time-outs (after one CPU hour)
are denoted by red circles. The blue dashed line at 300 CPU seconds indicates the cutoff time
of the target algorithm used during the configuration process. The subfigure captions give mean
runtimes for the instances solved by each of the configurations (default vs optimized), as well
as the number of timeouts for each. The automatically-determined configurations were obtained
from the FocusedILS run with the best performance on the training set amongst 10 repetitions
(each with a running time of up to two CPU days). All data shown are based on test sets that are
disjoint from the respective training sets.
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Figure 16: A plot identical to Figure 15(i), but with a test cutoff time of 300 CPU seconds (the
same used for training) instead of 3600 CPU seconds. Although clutter obscures this
fact in the figure, the default timed out on twice as many instances as the automatically-
determined setting (305 vs 150 instances). For the instances solved under both parameter
configurations, the average runtimes were 81 seconds (default) and 44 seconds (opti-
mized). Finally, our scalar cost measure that counts timeouts as 10 × cutoff time eval-
uated to 969 for the default and 525 for the optimized setting. Thus, the parameter
configuration found by FocusedILS did generalize well to previously-seen test data, but
not to larger runtimes.

9. ParamILS configuring itself

As a heuristic optimization procedure, ParamILS is itself controlled by a number of parameters:
the number of random configurations, R, to be sampled at the beginning of search; the pertur-
bation strength, s; and the probability of random restarts, prestart. Furthermore, our aggressive
capping mechanism makes use of an additional parameter: the bound multiplier, bm. In all ex-
periments reported in previous sections, we have used the manually-determined default values
〈R, s, prestart, bm〉 = 〈10, 3, 0.01, 2〉. However, since ParamILS is a general method for automated
algorithm configuration, it is natural to wonder whether we could achieve improved performance by
using ParamILS to configure its own parameters for a given configuration scenario.

Figure 17 illustrates the process of self-configuration. We use ParamILS with its default pa-
rameters as a meta-configurator in order to configure the target configurator ParamILS, which in
turn is run and evaluated on instances of the algorithm configuration problem. These instances
correspond to configuration scenarios, each of which consists of a parameterized base algorithm
and a set of input data. In other words, configuration scenarios, such as SPEAR-QCP, play the same
role in configuring the target configurator (here: ParamILS), as SAT instances do in configuring a
SAT algorithm, such as SPEAR. The objective to be optimized is performance across a number of
configuration scenarios.

For the self-configuration experiment described in the following, we chose FocusedILS with ag-
gressive capping as the target configurator and used the sets of parameter values shown in Table 14.
During the development of ParamILS, we had already considered making the perturbation strength
s dependent on the number of parameters to be configured, but ended up not implementing this idea,
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Figure 17: ParamILS configuring itself. The target algorithm is now ParamILS itself, and its
“benchmark instances” are configuration scenarios. The meta-configurator ParamILS
(with default parameters) searches for good parameter settings for the target configura-
tor, ParamILS, evaluating each parameter setting by running ParamILS on the appro-
priate configuration scenarios, with geometric mean quality of the results serving as
the performance measure. The same binary was used for the meta-configurator and the
target configurator.

because we did not want to introduce too many parameters. However, equipped with an automated
configuration tool, we now introduced a Boolean parameter that would switch between two condi-
tional parameters: fixed absolute perturbation strength sabs and relative perturbation strength srel (a
factor to be multiplied by the number of parameters to be configured to yield different perturbation
strengths in different configuration scenarios). In total, there were 4+4 = 8 settings for perturbation
strength, 2 different restart probabilities, 3 possible numbers of random steps in the beginning, and
5 options for the bound multiplier, leading to 8×2×3×5 = 160 possible parameter configurations
for our target configurator, FocusedILS.

In order to run the self-configuration experiment within a reasonable amount of time on our
cluster, parallelization turned out to be crucial. Because BasicILS is easier to parallelize than Fo-
cusedILS, we chose BasicILS(100) as the meta-configurator. Furthermore, to avoid potentially
problematic feedback between them, we treated the meta-configurator and the target configurator
as two distinct procedures with separate parameters; therefore, changes to the parameters of the
target configurator, FocusedILS, had no impact on the parameters of the meta-configurator, Basi-
cILS(100), which we kept fixed to the previously-discussed default values.

BasicILS(100) evaluated each parameter configuration θ of the target configurator, FocusedILS,
by performing 20 runs of FocusedILS(θ) on each of our five INDEPTH configuration scenarios.
Unlike in previous experiments, we limited the total running time of FocusedILS to one CPU hour
per configuration scenario; this reduction was necessary to keep the overall computational burden of
our experiments within reasonable limits.6 The best parameter configuration of the base algorithm
found in each of these one-hour runs of the target configurator was then evaluated on a validation set
(consisting of the 1,000 training instances but using different random seeds), using 1,000 runs and

6. We note that, similarly to the effect observed for scenario CPLEX-QP in the previous section, there is a risk of finding
a parameter configuration that only works well for runs up to one hour and poorly thereafter.
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Parameter Note Values considered
r Number of initial random configurations 0, 10, 100
bm Bound multiplier for adaptive capping 1.1, 1.3, 1.5, 2, 4

prestart Probability of random restart 0.01, 0.05
pert Type of perturbation absolute, relative
sabs Absolute perturbation strength; only active when pert=absolute 1,3,5,10
srel Relative perturbation strength; only active when pert=relative 0.1,0.2,0.4,0.8

Table 14: Parameters of ParamILS, the possible values considered for the self-configuration,
and the values determined for FocusedILS in the self-configuration experiment. Val-
ues in italic font are the default values, bold faced values are chosen by the meta-
configurator. (Default: 〈r, bm, prestart, pert, sabs〉 = 〈10, 2, 0.01, absolute, 3〉; Self-
configured: 〈r, bm, prestart, pert, srel〉 = 〈10, 4, 0.05, relative, 0.4〉) In the case of relative
perturbation strength, we computed the actual perturbation strength as max(2, srel×M),
where M is the number of parameters to be set in a configuration scenario.

a cutoff time of five CPU seconds. Thus, including validation, each run of the target configurator
required up to approximately 2.5 CPU hours (one hour for the configuration process7 plus up to
5000 CPU seconds for validation).

The meta-configurator used the geometric mean of the 100 validation results obtained in this
manner from the 20 runs for each of the 5 configuration scenarios to assess the performance of
configuration θ. (We used geometric instead of arithmetic means because the latter can easily be
dominated by the results from a single configuration scenario.) We note that, while this performance
measure is ultimately based on algorithm runtimes (namely those of the base algorithms configured
by the target configurator), unlike the objective used in previous sections, it does not correspond to
the runtime of the target configurator itself (here: ParamILS). Rather, it corresponds to the solution
quality the target configurator achieves within bounded runtime (one hour).

The 100 runs of the target configurator performed in order to evaluate each parameter configu-
ration were run concurrently on 100 CPUs.We ran the meta-configurator BasicILS(100) for a total
of five iterations in which 81 parameter configurations were evaluated. This process took a total of
about 500 CPU days (where some of the 100 CPUs used in the experiment were occasionally idle
after validation tasks requiring less than 5000 CPU seconds). The best configuration of the target
configurator, FocusedILS, found in this experiment is shown in Table 14; it had a geometric mean
runtime of 1.40 CPU seconds across the 100 validation runs (as compared to a geometric mean run-
time of 1.45 achieved using FocusedILS’s default settings) and was found after a total runtime of 71
CPU days; it was the 17th of the 81 configurations evaluated by BasicILS(100) and corresponded

7. ParamILS’s CPU time is typically dominated by the time spent running the target algorithm. However, in config-
uration scenarios where each execution of the base algorithm is very fast this was not always the case, because of
overhead due to bookkeeping and calling algorithms on the command line. In order to achieve a wall clock time close
to one hour for each ParamILS run in the self-configuration experiments, we minimized the amount of bookkeeping
in our simple Ruby implementation of ParamILS and counted every algorithm execution as taking at least one sec-
ond. This lower bound on algorithm runtimes is a parameter of ParamILS that was set to 0.1 seconds for all other
experimental results.
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Scenario Default ParamILS Self-configured ParamILS p-value
SAPS-SWGCP 0.316 ± 0.054 0.321± 0.043 (0.50)
SPEAR-SWGCP 8.30± 1.06 8.26 ± 0.88 0.72
SAPS-QCP 5.21± 0.39 5.16 ± 0.32 0.69
SPEAR-QCP 1.29± 0.20 1.22 ± 0.18 0.28

CPLEX-REGIONS100 0.35± 0.05 0.34 ± 0.02 0.34

Table 15: Comparison of test set performance (mean runtime of best configuration found, in CPU
seconds) for FocusedILS with its default parameter settings, and with the parameter set-
tings found via self-configuration. For each configuration scenario, we report mean ±
stddev of the test performance over 25 repetitions of the configurators, and the p-value
for a paired Max-Wilcoxon test (see Section 3.1.3).

to the first local minimum reached. The next three iterations of BasicILS all led to different and
slightly worse configurations. In the fifth iteration, the same best configuration was found again.

Table 15 reports the performance achieved by FocusedILS with this new, automatically deter-
mined parameter settings, on the original INDEPTH configuration scenarios. We note that the perfor-
mance measure used here differs from the objective optimized by the meta-configurator, BasicILS
(namely, geometric mean runtimes over all scenarios with reduced running times). Nevertheless,
the self-configuration process resulted in minor performance improvements in four out of five con-
figuration scenarios. Upon closer examination, these performance differences turned out not to
be statistically significant. Thus, while ParamILS appears to be capable of configuring itself, this
computationally expensive process led to merely marginal improvements. We believe that this re-
flects the fact that the performance of FocusedILS (at least for the INDEPTH configuration scenarios
considered here) is much more robust with respect to parameter settings than that of many other,
highly-parameterised heuristic algorithms, and that, based on our insights into and experience with
the ParamILS framework, we happened to previously choose close-to-optimal default parameter
values.

10. Related Work

Many researchers before us have been dissatisfied with manual algorithm configuration, and various
fields have developed their own approaches for automatic parameter tuning. We start this section
with the most closely-related work—approaches that employ direct search to find good parameter
configurations—and then describe other methods. Finally, we discuss work on related problems,
such as finding the best parameter configuration or algorithm on a per-instance basis, and approaches
that adapt their parameters during an algorithm’s execution.

10.1 Direct Search Methods for Algorithm Configuration

Approaches for automated algorithm configuration go back to the early nineties, when a number of
systems were developed for adaptive problem solving. One of these systems is Composer (Gratch
and Dejong, 1992), which performs a hill-climbing search in configuration space, taking moves if
enough evidence has been gathered to render a neighbouring configuration statistically significantly
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better than the current configuration. Composer was successfully applied to improving the five
parameters of an algorithm for scheduling communication between a collection of ground-based
antennas and aircraft in deep space (Gratch and Chien, 1996).

Around the same time, the MULTI-TAC system was introduced by Minton (1993, 1996). MULTI-
TAC takes as input a number of generic heuristics as well as a specific problem domain and a
distribution over problem instances. It adapts the generic heuristics to the problem domain and au-
tomatically generates domain-specific LISP programs implementing them. A beam search is then
used to choose the best LISP program where each program is evaluated by running it on a number
of problem instances sampled from the given distribution.

Another search-based approach that uses a fixed training set was introduced by Coy et al. (2001).
Their approach works in two steps. First it finds a good parameter configuration θi for each instance
Ii in the training set by a combination of experimental design (full factorial or fractional factorial)
and gradient descent. Then it combines the parameter configurations θ1, . . . , θN thus determined, by
setting each parameter to the average of the values taken in all of them. Observe that this averaging
step restricts the applicability of the method to algorithms with exclusively numerical parameters.

A similar approach, also based on a combination of experimental design and gradient descent,
using a fixed training set for evaluation, is implemented in the CALIBRA system of Adenso-Diaz
and Laguna (2006). CALIBRA starts by evaluating each parameter configuration in a full factorial
design with two values per parameter. It then iteratively homes in to good regions of parameter
configuration space by employing fractional experimental designs that evaluate nine configurations
around the best performing configuration found so far. The grid for the experimental design is re-
fined in each iteration, which provides a nice solution to the automatic discretization of continuous
parameters. Once a local optimum is found, the search is restarted (with a coarser grid) by com-
bining some of the best configurations found so far, but also introducing some noise to encourage
diversification. The experiments reported by Adenso-Diaz and Laguna (2006) show great promise
in that CALIBRA was able to find parameter settings for six independent algorithms that matched
or outperformed the respective originally proposed parameter configurations. CALIBRA’s main
drawback is its limitation to tuning numerical and ordinal parameters, and to tuning a maximum of
five free parameters.

When we first introduced ParamILS, we ran experiments with CALIBRA, BasicILS, and Fo-
cusedILS for four configuration scenarios (Hutter et al., 2007b). In two scenarios, our algorithms
performed better than CALIBRA, on the third scenario there was no statistically significant differ-
ence, and for the fourth CALIBRA was not applicable because the algorithm had too many param-
eters and some of them were categorical. (This current article focuses on complex algorithms with
large numbers of parameters, and we thus do not repeat the comparison with CALIBRA.)

Oltean (2005) employed linear genetic programming to evolve genetic algorithms. This ap-
proach has its roots in automatically finding computer programs to solve a given problem, and
was adapted to search for the best combination of genetic programming operators, such as muta-
tion, crossover, and selection of individuals. His experiments show that the automatically-evolved
genetic algorithms outperformed standard implementations of genetic algorithms on a variety of
tasks, such as function optimization, the travelling salesperson and the quadratic assignment prob-
lem (Oltean, 2005). However, as most of the approaches we surveyed so far (with the notable excep-
tion of Composer), this work did not use a separate test set to evaluate the performance of the final
configurations found; thus, it is unclear to what extent the reported results reflect overconfidence of
the configurator.
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There is also work on automated parameter tuning in the numerical optimization literature. In
particular, Audet and Orban (2006) propose the mesh adaptive direct search algorithm. Designed
for purely continuous parameter configuration spaces, this algorithm is guaranteed to converge to a
local optimum of the cost function. Parameter configurations were evaluated on a fixed set of large
unconstrained regular problems from the CUTEr collection, using runtime and number of function
calls necessary for solving the problem as optimization objectives. Performance improvements of
around 25% over the classical configuration of four continuous parameters of interior point methods
were reported.

Algorithm configuration is a stochastic optimization problem, and there exists a large body of
algorithms designed for such problems (see, e.g., Spall, 2003). However, many of the algorithms in
the stochastic optimization literature require explicit gradient information and are thus inapplicable
to algorithm configuration. There exist a number of algorithms that approximate the gradient from
function evaluations only (e.g., by finite differences), and provably converge to a local minimum
of the cost function under mild conditions, such as continuity. Still, these methods are primarily
designed to deal with numerical parameters and only find local minima. We are not aware of any
applications of general purpose algorithms for stochastic optimization to algorithm configuration.

10.2 Other Methods for Algorithm Configuration

Sequential parameter optimization (SPO) (Bartz-Beielstein, 2006) is a model-based parameter op-
timization approach. It starts by running the target algorithm with parameter configurations from a
Latin hypercube design on a number of training instances. It then builds a response surface model
based on Gaussian process regression and uses the model’s predictions and predictive uncertain-
ties to determine the next parameter configuration to evaluate. The metric underlying the choice
of promising parameter configurations is the expected improvement criterion (Jones et al., 1998).
After each algorithm run the response surface is refitted, and a new parameter configuration is deter-
mined based on the updated model. In contrast to the previously-mentioned methods, SPO does not
use a fixed training set; instead, it starts with a small training set and doubles its size every time a
parameter configuration is determined to be optimal for two iterations in a row. The main drawback
of SPO is its limitation to continuous parameters.

Another approach is based on adaptations of racing algorithms in machine learning to the al-
gorithm configuration problem. Birattari et al. (2002; 2005) applied F-races to the configuration
of stochastic local search algorithms. Their procedure takes as input an algorithm A, a finite set
of algorithm configurations Θ, and an instance distribution D. It iteratively runs the target algo-
rithm with all “surviving” parameter configurations on a number of instances sampled from D (in
the simplest case, each iteration runs all surviving configurations on one instance). A configura-
tion is eliminated from the race as soon as enough statistical evidence is gathered against it: after
each iteration first the non-parametric Friedman test is applied to check whether there are signifi-
cant differences among the configurations. If this is the case, the inferior-performing configurations
are eliminated, based on the results of Friedman post-tests. This process is iterated until only one
configuration survives or a given cutoff time is reached. Various applications of F-race have demon-
strated very good performance (for an overview, see Birattari, 2005). However, since at the start
of the procedure all candidate configurations are evaluated, this approach is limited to situations in
which the number of candidate configurations considered simultaneously is not too large. In fact,
published experiments with F-race have been limited to applications with only around 1200 config-
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urations. A recent extension presented by Balaprakash et al. (2007) iteratively performs F-races on
differently-defined subsets of parameter configurations. This approach scales better to large config-
uration spaces, but the version discussed in (Balaprakash et al., 2007) was described for algorithms
with numerical parameters only.

10.3 Related Algorithm Configuration Problems

So far in this section—and indeed, throughout this article—we have focused on the problem of
finding the best algorithm configuration for an entire set (or distribution) of problem instances.
Related approaches attempt to find the best configuration or algorithm on a per-instance basis, or to
adapt algorithm parameters during the execution of an algorithm. Approaches for setting parameters
on a per-instance basis have been, for example, introduced in (Patterson and Kautz, 2001; Cavazos
and O’Boyle, 2006; Agakov et al., 2006; Hutter et al., 2006). For approaches that try to choose the
best algorithm on a per-instance basis, see (Leyton-Brown et al., 2002; Carchrae and Beck, 2005;
Gebruers et al., 2005; Gagliolo and Schmidhuber, 2006; Xu et al., 2008). Other related work makes
online decisions about when to restart an algorithm (Horvitz et al., 2001; Kautz et al., 2002; Gagliolo
and Schmidhuber, 2007). Finally, so-called reactive search methods modify algorithm parameters
during the algorithm trajectory (Battiti et al., 2008). This strategy can be seen as complementary
to our work: even reactive search methods tend to have a number of parameters that remain fixed
during the search and can hence be configured by offline approaches.

11. Conclusions and Future work

In this work, we studied the problem of automatically configuring the parameters of complex,
heuristic algorithms in order to optimise performance on a given set of benchmark instances. Build-
ing on our previous work, we gained further insights into this commonly encountered and practi-
cally relevant algorithm configuration problem (such as, for example, the importance of the cutoff
time used during configuration). We also extended our earlier algorithm configuration procedure,
ParamILS, with a new capping mechanism and obtained excellent results when applying the result-
ing enhanced version of ParamILS to two high-performance SAT algorithms as well as to CPLEX

and a wide range of benchmark sets.
On test sets disjoint from the training set available to ParamILS, the parameter configurations

ParamILS found almost always outperformed the algorithms’ carefully-chosen default configura-
tions, for some configuration scenarios by as much as two orders of magnitude. The improvements
over CPLEX’s default parameter configuration are particularly noteworthy. To the best of our knowl-
edge, ours is the first published work on automatically configuring this algorithm. We do not claim
to have found a new parameter configuration for CPLEX that is uniformly better than its default.
Rather, given a somewhat homogeneous instance set, we find a configuration specific to that set that
typically outperforms the default, sometimes by a factor as high as 20. Note that we achieved these
results even though we are not intimately familiar with CPLEX and its parameters; we chose the pa-
rameters to optimize as well as the values to consider based on a single person-day of studying the
CPLEX user manual. The success of automated algorithm configuration even under these extreme
conditions demonstrates the potential of the approach.

The ParamILS source code and executable are freely available at

http://www.cs.ubc.ca/labs/beta/Projects/ParamILS/,
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along with a quickstart guide and benchmark data for the configuration scenarios studied in this
article. Briefly, in order to employ ParamILS, a user must discretize the target algorithm’s parameter
configuration space and choose a representative instance set of interest as well as a cutoff time for
each algorithm run. To safeguard against over-tuning, the instance set should be large enough and
split into disjoint training and test sets whenever possible. The cutoff time for each run should be
chosen such that target algorithm behaviour within that time is representative of behaviour at true
runtimes of interest.

Overall, we firmly believe that automated algorithm configuration methods such as ParamILS
will play an increasingly prominent role in the development of high-performance algorithms and
their applications. The study of such methods is a rich and fruitful research area with many inter-
esting questions remaining to be explored.

In ongoing work, we are currently developing methods that adaptively adjust the domains of
integer-valued and continuous parameters during the configuration process. Similarly, we plan to
enhance ParamILS with dedicated methods for dealing with continuous parameters that do not re-
quire discretisation by the user.

Another direction for further development concerns the strategic selection of problem instances
used during evaluation of configurations and of instance-specific cutoff times used in this context.
By heuristically preventing the configuration procedure from spending inordinate amounts of time
in trying to evaluate poor parameter settings on very hard problem instances, it should be possible
to improve its scalability.

We believe that there is significant room for combining aspects of the methods studied here with
concepts from related work on this and similar algorithm configuration problems. In particular, we
believe it would be fruitful to integrate statistical testing methods — as used, e.g., in F-race — into
ParamILS. Furthermore, we see much potential in the use of response surface models and active
learning, and believe these can be combined with our approach.

Finally, while the algorithm configuration problem studied in this article is of significant prac-
tical importance, there is also much to be gained from studying methods for related problems, in
particular, instance-specific algorithm configuration and on-line adjustment of parameters during
the run of an algorithm.
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