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Abstract

In this paper, we propose a sequential sampling approach forestimating the quan-
tile of Y = f(X), whereX has a known distribution inRd andf is an unknown,
expensive-to-evaluate real-valued function. Our approach aims at estimating the
quantile by using as few evaluations off as possible and consists in modellingf
as the sample of a well-chosen Gaussian process. Our method calledGPquantile
is compared with a more naive methodology on synthetic data,and is also applied
to real data coming from numerical dosimetry.

1 Introduction

Over the past 30 years, wireless communication systems havebeen increasingly used. The num-
ber of mobile phones, WIFI boxes, antennas, etc., is growing together with a strong public concern
over possible health problems related to the exposure to electromagnetic fields (EMF). Among the
questions linked to exposure effects, the assessment of thefetuses exposure to EMF has been recom-
mended as a top priority research topic by the World Health Organization1. To deal with this issue,
several approaches can be used: long-term epidemiologicalstudies, in vitro and in vivo studies, and
numerical dosimetry based methods. Here, we shall considerthe latter point of view, which consists
in numerically evaluating the absorbed dose of EMF energy with the so-called Specific Absorption
Rate (SAR), expressed in watts per kilogram, using 3D pregnant women and fetuses models built
from MRI data, see [1]. As the SAR depends on several parameters such as the morphology and the
posture of the mother and fetus, the position and the type of the wireless device, we shall model the
SAR asY = f(X), wheref is an unknown real-valued function andX is a random vector ofRd

having a known distribution. However, the evaluation ofY for a given input involve complex and
time-consuming computer simulations. This issue of dealing with expensive-to-evaluate functions
is not new. For instance, many papers such as those of [11], [12], [2], and references therein have
proposed Bayesian optimization methods for finding the maximum of functions which are costly to
evaluate. Here, we propose a sequential sampling strategy for estimating the quantile ofY , called
GPquantile in the following, using as few evaluations off as possible.GPquantile is based on
modellingf as a sample of a Gaussian process.

This paper is organized as follows: in Section 2, we describeour approach. In Section 3,GPquantile
is applied to a one-dimensional functionf introduced in [10] and compared with a more naive

1see p. 21 ofhttp://whqlibdoc.who.int/publications/2010/9789241599948_eng.
pdf
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approach. Finally, in Section 4, our approach is applied to assess the exposure to EMF of a 26-
week-old fetus in a simplified context.

2 Description of the method

In this section, we shall explain our sequential sampling strategy for estimating theα-quantileqα
of Y = f(X), for a givenα in (0, 1), wheref is an unknown infinitely differentiable real-valued
function andX is a random vector ofRd having a known distribution. Theα-quantileqα is defined
by

P(f(X) ≤ qα) = α .

Writing X asF−1(U), whereF is the c.d.f. ofX, andU is a uniform random variable on[0, 1]d,
we shall assume in the sequel thatX has a uniform distribution on[0, 1]d.

Following [9] and [11], we put a GP(0, k(x,x′)) prior onf , where GP(0, k(x,x′)) denotes a zero-
mean Gaussian process havingk as a covariance function. For a sampleyT = (Y1, . . . , YT )

T , the
posterior overf is a GP distribution again with meanµT (x) and covariancekT (x,x′) given by

µT (x) = kT (x)
TK−1

T yT , (1)

kT (x,x
′) = k(x,x′)− kT (x)

TK−1

T kT (x
′) , (2)

wherekT (x) = [k(x1,x) . . . k(xT ,x)]
T andKT = [k(xi,xj)]1≤i,j≤T . Sincef is assumed to be

very smooth, we shall use a squared exponential covariance function defined by

k(x,x′) = exp

(

−
(x− x′)2

2ℓ2

)

, (3)

where the characteristic length-scaleℓ is estimated by maximizing with respect toℓ the posterior
log-likelihood given by

−
1

2
yT
TK

−1

T yT −
1

2
log |KT | −

T

2
log 2π .

Let us now describe the different steps of our method. LetX be a fine grid of[0, 1]d.

• We start with an evaluation off at a small numberT0 of observations: X0 =
{x1, . . . ,xT0

}. Thus, we have the observationsyT0
= (f(x1), . . . , f(xT0

))T .

• The point ofX to add to the set of observations isxT0+1 defined by

xT0+1 = argmax
x∈X

σ̂1(x) ,

whereσ̂1(x) is an estimator of the standard deviation of the quantile of the observations
at the first iteration of the procedure which is computed as follows: we simulateN sam-
ple paths of a Gaussian process having a mean and a covarianceequal toµT0

andkT0
,

respectively and compute, for each path of this sample, the empirical quantile estimator of
qα at each pointx of X . We recall that the empirical quantile for a sample ofn random
variablesZ1, . . . , Zn is given byF̂−1

n (α), whereF̂n(t) = n−1
∑n

i=1
1{Zi≤t}. The set of

observations becomesX1 = X0 ∪ {xT0+1}.

• The point ofX to add to the set of observations isxT0+2 defined by

xT0+2 = argmax
x∈X

σ̂2(x) ,

whereσ̂2(x) is an estimator of the standard deviation of the quantile of the observations at
the second iteration of the procedure which is computed as previously except that the mean
and the covariance of the Gaussian process are now given byµT0+1 andkT0+1. The set of
observations becomesX2 = X1 ∪ {xT0+2}.

• We iterate this procedure and stop it at the iterationt whenKT0+t is not invertible.
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3 Numerical experiments

In this section, we apply the methodology presented in Section 2 to the following one-dimensional
function already used in [10]:

f(x) = sin(2πx) +
cos(8πx)

5
, x ∈ [0, 1] .

Here we aim at estimating the 95% quantile off(X), whereX ∼ U [0, 1]; the real value of this
quantile isq0.95 ≈ 1.149.

We start with a setX0 of T0 = 10 points selected with a maximin LHS obtained with the
lhsdesign function of Matlab. This set is included in a larger setX of cardinality 1000 also ob-
tained with a LHS. In Figure 1 (a),µT0

and the values off at the points of the setX0 are displayed.
TheN = 1000 sample paths of the corresponding GP are simulated (20 of them are displayed in the
left plot of Figure 2): for each pointx in X \X0, we haveN = 1000 possible values off(x), hence
1000 possible values of the quantile estimator, which enables us to evaluate the empirical standard
deviation of the quantile at each pointx in X \X0, the value of the standard deviation of the quantile
at the pointsx of X0 being equal to zero. This standard deviation is representedwith a dotted line
in Figure 1 (a). As we previously explained, the pointxT0+1 for which the standard deviation is the
highest is added to the set of observationsX0; in Figure 1 (a), this point is around 0.172. Hence in
Figure 1 (b), this point has been added to the set, and the GP has been updated, and a new empirical
standard deviation function has been computed. The processstops at the iterationt = 7 for which
the set of observations contains points so close thatKT0+t is not invertible. In Figures 1 (e) and (f),
the empirical standard deviation is almost constant and itsvalues are very small. Note also that the
results displayed in Table 1 show that the last values of the quantile estimator are the same.
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Figure 1: Each plot ((a) to (f)) displays the mean of the Gaussian process (plain black line), the
values of the observation points (gray stars) and the standard deviation of the estimated quantile
(dotted line) at each iteration. The scale of the standard deviation is displayed in the righty-axis.

Iteration (t) 1 2 3 4 5 6 7
q̂(t) 0.469 0.805 0.805 1.125 1.127 1.149 1.149

Table 1: The quantile estimators at the different iterationsteps.

We propose now to compare our approach with a more naive method (Random) which consists in
randomly adding a new point at each iteration. This comparison is performed through 1000 Monte-
Carlo replications (on the choice of the setsX0 andX ) and the corresponding means of the relative
errors|q0.95 − q̂(t)|/q0.95 at each iterationt (t = 1, . . . , 20) are displayed in Figure 3. We can see
from this figure that our approach outperforms theRandom method.
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Figure 2: Simulated Gaussian process paths at different steps of the process. From left to right: at
the beginning, after 3 iterations and at the last iteration.
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Figure 3: Means of the relative errors at each iteration.GPquantile (black plain line) andRandom
(gray dotted line).

4 Application to real data

In this section, we shall apply the methodology developed inSection 2 to the estimation of the 95%
quantile of the SAR of a 26-week-old fetus. Our application is all the more interesting since most of
dosimetric studies are carried out with deterministic approach, which means with one human model
in a given posture and one configuration of exposure (such as afrontal incident plane wave). As it
has been shown in [6], [3] and [4], that morphology, posture and position of the EMF source have
an high influence on the exposure, the JST-ANR Fetus project in which this work is included aims at
statistically analyzing the exposure of fetuses. We shall use an anatomically realistic woman model
designed by [8] corresponding to the average dimensions of Japanese women, in which a 26-week-
old fetus model has been inserted (see [7]); indeed, whole body pregnant woman models do not
exist, as medical data needed to build them is not always available. In our application, the pregnant
woman model is exposed to 900 MHz vertically polarized electromagnetic plane waves with a 1 Volt
per meter amplitude.

The SAR (expressed in W/kg) of the fetus will be considered as afunction of only one parameter:
the azimuth of the incident wave. The value of the SAR for a given value of the azimuth is computed
through the Finite Difference in Time Domain (FDTD) method,which is commonly used in the field
of dosimetry, see for instance [5], [3], [13]. Using the sameparameters as those used in Section 3,
we obtain the values given in Table 2 as 95% quantile estimators at each iterationt.

Iteration (t) 1 2 3 4 5 6 7 8
q̂(t)× 107 4.843 5.744 6.300 6.300 6.329 6.336 6.338 6.341

Table 2: The quantile estimators at the different iterationsteps.

As a comparison, the SAR of the fetus in the pregnant Japanesemodel exposed to a frontal incident
plane wave is6.136 ∗ 10−7 W/kg.

4



References

[1] L. Bibin, J. Anquez, J. de la Plata Alcalde, T. Boubekeur,E. Angelini, and I. Bloch. Whole-
body pregnant woman modeling by digital geometry processing with detailed uterofetal unit
based on medical images.Biomedical Engineering, IEEE Transactions on, 57(10):2346 –2358,
oct. 2010.

[2] E. Brochu, V. M. Cora, and N. de Freitas. A tutorial on bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
CoRR, abs/1012.2599, 2010.

[3] E. Conil, A. Hadjem, F. Lacroux, M. F. Wong, and J. Wiart. Variability analysis of sar from
20 MHz to 2.4 GHz for different adult and child models using finite-difference time-domain.
Physics in Medicine and Biology, 53(6):1511, 2008.

[4] A. E. Habachi, E. Conil, A. Hadjem, E. Vazquez, M. F. Wong,A. Gati, G. Fleury, and J. Wiart.
Statistical analysis of whole-body absorption depending on anatomical human characteristics
at a frequency of 2.1 GHz.Physics in Medicine and Biology, 55(7):1875, 2010.

[5] A. Hirata, S. Kodera, J. Wang, and O. Fujiwara. Dominant factors influencing whole-body
average SAR due to far-field exposure in whole-body resonance frequency and GHz regions.
Bioelectromagnetics, 28(6):484–487, 2007.

[6] T. Kientega, E. Conil, A. Hadjem, E. Richalot, A. Gati, M.Wong, O. Picon, and J. Wiart. A
surrogate model to assess the whole body SAR induced by multiple plane waves at 2.4 GHz.
Annals of Telecommunications, 66:419–428, 2011. 10.1007/s12243-011-0261-z.

[7] T. Nagaoka, T. Togashi, K. Saito, M. Takahashi, K. Ito, and S. Watanabe. An anatomically
realistic whole-body pregnant-woman model and specific absorption rates for pregnant-woman
exposure to electromagnetic plane waves from 10 MHz to 2 GHz.Physics in Medicine and
Biology, 52(22):6731, 2007.

[8] T. Nagaoka, S. Watanabe, K. Sakurai, E. Kunieda, S. Watanabe, M. Taki, and Y. Yamanaka.
Development of realistic high-resolution whole-body voxel models of japanese adult males
and females of average height and weight, and application ofmodels to radio-frequency
electromagnetic-field dosimetry.Physics in Medicine and Biology, 49(1):1, 2004.

[9] C. E. Rasmussen and C. K. I. Williams.Gaussian Processes for Machine Learning (Adaptive
Computation and Machine Learning). The MIT Press, December 2005.

[10] Robert B. Gramacy and Herbert K. H. Lee. Adaptive Designand Analysis of Supercomputer
Experiments.Technometrics, 2009.

[11] N. Srinivas, A. Krause, S. M. Kakade, and M. Seeger. Gaussian process bandits without regret:
An experimental design approach.CoRR, abs/0912.3995, 2009.

[12] E. Vazquez and J. Bect. Convergence properties of the expected improvement algorithm
with fixed mean and covariance functions.Journal of Statistical Planning and Inference,
140(11):3088 – 3095, 2010.

[13] J. Wiart, A. Hadjem, M. F. Wong, and I. Bloch. Analysis ofrf exposure in the head tissues of
children and adults.Physics in Medicine and Biology, 53(13):3681, 2008.

5


