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Abstract

In this paper, we propose a sequential sampling approad@sfonating the quan-
tile of Y = f(X), whereX has a known distribution iiR? and f is an unknown,
expensive-to-evaluate real-valued function. Our apgr@ams at estimating the
quantile by using as few evaluations pfs possible and consists in modellifig
as the sample of a well-chosen Gaussian process. Our medhlied @Pquantile
is compared with a more naive methodology on synthetic daidjs also applied
to real data coming from numerical dosimetry.

1 Introduction

Over the past 30 years, wireless communication systems thesm increasingly used. The num-
ber of mobile phones, WIFI boxes, antennas, etc., is growdggther with a strong public concern
over possible health problems related to the exposure ttrefeagnetic fields (EMF). Among the
questions linked to exposure effects, the assessment fafttiees exposure to EMF has been recom-
mended as a top priority research topic by the World Healtia@ization'. To deal with this issue,
several approaches can be used: long-term epidemiolagiadiks, in vitro and in vivo studies, and
numerical dosimetry based methods. Here, we shall congidéatter point of view, which consists
in numerically evaluating the absorbed dose of EMF enerdly thie so-called Specific Absorption
Rate (SAR), expressed in watts per kilogram, using 3D pregwamen and fetuses models built
from MRI data, see [1]. As the SAR depends on several parasstieh as the morphology and the
posture of the mother and fetus, the position and the typleeofvireless device, we shall model the
SAR asY = f(X), wheref is an unknown real-valued function aiXis a random vector oR?
having a known distribution. However, the evaluationvofor a given input involve complex and
time-consuming computer simulations. This issue of dgalith expensive-to-evaluate functions
is not new. For instance, many papers such as those of [1]],[H], and references therein have
proposed Bayesian optimization methods for finding the mara of functions which are costly to
evaluate. Here, we propose a sequential sampling strabegsfimating the quantile df, called
GPquantile in the following, using as few evaluations ¢gfas possible.GPquantile is based on
modelling f as a sample of a Gaussian process.

This paper is organized as follows: in Section 2, we desa@ibi@pproach. In Section 8Pquantile
is applied to a one-dimensional functighintroduced in [10] and compared with a more naive
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approach. Finally, in Section 4, our approach is appliedsgess the exposure to EMF of a 26-
week-old fetus in a simplified context.

2 Description of the method

In this section, we shall explain our sequential samplimgtsgy for estimating the-quantileq,,
of Y = f(X), for a givena in (0,1), wheref is an unknown infinitely differentiable real-valued
function andX is a random vector dR? having a known distribution. The-quantileq,, is defined
by

P(f(X) < qa) =a.
Writing X as '~ (U), whereF is the c.d.f. ofX, andU is a uniform random variable g, 1]¢,
we shall assume in the sequel tahas a uniform distribution of, 1]¢.

Following [9] and [11], we put a G@, k(x,x’)) prior on f, where GF0, k(x,x’)) denotes a zero-

mean Gaussian process havings a covariance function. For a sample = (Y1,...,Yr)T, the
posterior overf is a GP distribution again with mean-(x) and covariancér (x,x’) given by

pr(x) =kr(x)"Kz'yr 1)

kr(x,x") = k(x,x") — kT(X)TK;lkT(X') , (2)

wherekr(x) = [k(x1,x%) ... k(xr,x)]T andKr = [k(x;,%;)]1<ij<r. Sincef is assumed to be
very smooth, we shall use a squared exponential covariamotién defined by

w2
k(x,x") = exp <(x2£;<)) ; 3)

where the characteristic length-scdlées estimated by maximizing with respect #dhe posterior
log-likelihood given by

1 _ 1 T
—iy%KleT ~3 log |Kr| — ilog 27 .

Let us now describe the different steps of our method. X &k a fine grid of0, 1]¢.

e We start with an evaluation off at a small numberl;, of observations: X, =
{x1,...,x7,}. Thus, we have the observations, = (f(x1),..., f(x7,))T.

e The point ofY’ to add to the set of observationsxg, ., defined by

X7,4+1 = arg max g1 (X) ,
XEX

whered; (x) is an estimator of the standard deviation of the quantilehefdbservations
at the first iteration of the procedure which is computed dsvis: we simulateN sam-
ple paths of a Gaussian process having a mean and a covaggquaktoyr, and kr,,
respectively and compute, for each path of this sample,rigrecal quantile estimator of
g at each poink of X. We recall that the empirical quantile for a samplenafandom
variablesZ,, ..., Z, is given byF,; ! (a), whereF,,(t) = n~' 37 117,<4. The set of
observations becomed, = Xy U {x7,41}-

e The point of Y’ to add to the set of observationsxg, ., defined by

X742 = arg max do(X) ,
XEX

wheredz(x) is an estimator of the standard deviation of the quantiléefabservations at
the second iteration of the procedure which is computedeasqursly except that the mean
and the covariance of the Gaussian process are now givem by andkr, 1. The set of
observations becomet, = X} U {x7;,12}.

o We iterate this procedure and stop it at the iteratisrthen K1, ., is not invertible.



3 Numerical experiments

In this section, we apply the methodology presented in 8e@ito the following one-dimensional
function already used in [10]:

cos(8mx)

f(z) = sin(2wz) + , xel0,1].

Here we aim at estimating the 95% quantilef@fX), where X ~ |0, 1]; the real value of this
quantile isgg.95 =~ 1.149.

We start with a sett; of 7, = 10 points selected with a maximin LHS obtained with the
| hsdesi gn function of Matlab. This set is included in a larger g&bf cardinality 1000 also ob-
tained with a LHS. In Figure 1 (a)r, and the values of at the points of the set|, are displayed.
The N = 1000 sample paths of the corresponding GP are simulated (20 wf éine displayed in the
left plot of Figure 2): for each point in X'\ X, we haveN = 1000 possible values of (z), hence
1000 possible values of the quantile estimator, which exsab$ to evaluate the empirical standard
deviation of the quantile at each pointn X'\ X, the value of the standard deviation of the quantile
at the pointse of X being equal to zero. This standard deviation is represenmittda dotted line

in Figure 1 (a). As we previously explained, the paint ., for which the standard deviation is the
highest is added to the set of observatidfsin Figure 1 (a), this point is around 0.172. Hence in
Figure 1 (b), this point has been added to the set, and the &Bdem updated, and a new empirical
standard deviation function has been computed. The prategs at the iterationh = 7 for which
the set of observations contains points so closekhat. ; is not invertible. In Figures 1 (e) and (f),
the empirical standard deviation is almost constant anehitses are very small. Note also that the
results displayed in Table 1 show that the last values of tlaatje estimator are the same.
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Figure 1: Each plot ((a) to (f)) displays the mean of the Gaunsprocess (plain black line), the
values of the observation points (gray stars) and the stdrakviation of the estimated quantile
(dotted line) at each iteration. The scale of the standavahtien is displayed in the righj-axis.

lteration ¢) | 1 2 3 4 5 6 7
q(t) \0.469 0.805 0.805 1.125 1.127 1.149 1.149

Table 1: The quantile estimators at the different iterasitaps.

We propose now to compare our approach with a more naive whéfamdom) which consists in
randomly adding a new point at each iteration. This comparis performed through 1000 Monte-
Carlo replications (on the choice of the sétsandX’) and the corresponding means of the relative
errors|qo.05 — ¢(t)|/qo.05 at each iteration (t = 1, ...,20) are displayed in Figure 3. We can see
from this figure that our approach outperforms Redom method.
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Figure 2: Simulated Gaussian process paths at differeps stiethe process. From left to right: at
the beginning, after 3 iterations and at the last iteration.
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Figure 3: Means of the relative errors at each iterati®Rquantile (black plain line) andkandom
(gray dotted line).

4 Application to real data

In this section, we shall apply the methodology developeBdation 2 to the estimation of the 95%
guantile of the SAR of a 26-week-old fetus. Our applicat®all the more interesting since most of
dosimetric studies are carried out with deterministic apph, which means with one human model
in a given posture and one configuration of exposure (suchramtal incident plane wave). As it
has been shown in [6], [3] and [4], that morphology, posture position of the EMF source have
an high influence on the exposure, the JST-ANR Fetus prajeehich this work is included aims at
statistically analyzing the exposure of fetuses. We stslan anatomically realistic woman model
designed by [8] corresponding to the average dimensionapzEniese women, in which a 26-week-
old fetus model has been inserted (see [7]); indeed, whally poegnant woman models do not
exist, as medical data needed to build them is not always$adé@i In our application, the pregnant
woman model is exposed to 900 MHz vertically polarized etgnagnetic plane waves with a 1 Volt
per meter amplitude.

The SAR (expressed in W/kg) of the fetus will be considered fametion of only one parameter:
the azimuth of the incident wave. The value of the SAR for &givalue of the azimuth is computed
through the Finite Difference in Time Domain (FDTD) methadhich is commonly used in the field
of dosimetry, see for instance [5], [3], [13]. Using the sgmaeameters as those used in Section 3,
we obtain the values given in Table 2 as 95% quantile estirnaitioeach iteration

lteration ¢) | 1 2 3 4 5 6 7 8
q(t) x 107 \4.843 5.744 6.300 6.300 6.329 6.336 6.338 6.341

Table 2: The quantile estimators at the different iteratitaps.

As a comparison, the SAR of the fetus in the pregnant Japanedel exposed to a frontal incident
plane wave i%$.136 * 10~7 W/Kg.
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