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Abstract

We provide the first algorithm for online bandit linear optimization whose regret
after T rounds is of order

√
Td lnN on any finite class X ⊆ Rd of N actions,

and of order d
√
T (up to log factors) when X is infinite. These bounds are not

improvable in general. The basic idea utilizes tools from convex geometry to
construct what is essentially an optimal exploration basis. We also present an
application to a model of linear bandits with expert advice. Interestingly, these
results show that bandit linear optimization with expert advice in d dimensions is
no more difficult (in terms of the achievable regret) than the online d-armed bandit
problem with expert advice (where EXP4 is optimal).

1 Introduction and Related Work

The problem of bandit linear optimization [1, 5, 6, 8] can be described as a repeated game between a
forecaster and an opponent. The game is parameterized by a finite setX = {x(1), . . . ,x(N)} ⊆ Rd
of actions (we discuss the case where X is infinite later in the introduction). At each round t =
1, 2, . . . of the game, the forecaster chooses an action index Kt ∈ {1, . . . , N} and, simultaneously,
the opponent chooses a payoff vector yt ∈ Rd. The only information the forecaster receives after
each round is the obtained payoff y>t x(KT ). More formally, the game is described as follows:

For each step t = 1, 2, . . .

1. The opponent secretly chooses a payoff vector yt ∈ Rd
2. The forecaster chooses Kt ∈ {1, . . . , N}
3. The payoff y>t x(Kt) is announced to the forecaster.

Throughout this paper, we assume that |y>t x(k)| ≤ 1 for all k = 1, . . . , N and t ≥ 1.

We consider randomized forecasters that, at each round t, choose a distribution pt−1 over
{1, . . . , N} and then draw an action index Kt from pt−1. The forecaster’s goal is to control the
regret

RT = max
k=1,...,N

T∑
t=1

y>t x(k)−
T∑
t=1

y>t x(Kt)

in probability with respect to the forecaster’s internal randomization. In this paper we focus on the
weaker notion of pseudoregret

RT = max
k=1,...,N

T∑
t=1

E
[
y>t x(k)− y>t x(Kt)

]
.

Though RT ≤ RT , the techniques of [5] imply that the pseudoregret guarantees obtained in this
work can be extended to give regret bounds that hold with high probability.
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This work provides an algorithm with essentially optimal regret, both in terms of T and d. In
particular, [8] shows that for all d ≥ 1 there exists a set X ⊆ Rd of size N = 2d such that
RT = Ω

(
d
√
T
)
. Hence, our upper bound O

(√
Td lnN

)
is not improvable, in general.

1.1 A template algorithm based on hedge

Two previously proposed forecasting strategies for this problem are GeometricHedge [8] and its
variant ComBand [6]. Both strategies extend to the linear bandit case the Exp3 strategy of [2], and
choose the sampling distribution pt as a mixture (1−γ)qt+γ µ. The fixed “exploration distribution”
µ is used to control the range of the estimates of the payoff vectors, and the way µ is defined is the
only difference between the two forecasting strategies. In particular, GeometricHedge chooses µ to
be uniform over a specific subset of actions (the barycentric spanners ofX , defined later). ComBand,
instead, sets µ to the uniform distribution over the entire action set.

We now introduce GGH, a template for both strategies in which the exploration distribution is a
parameter of the algorithm.

Algorithm: GGH (Generalized GeometricHedge)
Parameters: Finite action set X = {x(1), . . . ,x(N)} ⊆ Rd

Exploration distribution µ over {1, . . . , N}
Mixing coefficient γ > 0
Learning rate η > 0

Initialization: q0 = uniform distribution over {1, . . . , N}
For t = 1, 2, . . .
1. Let pt−1 = (1− γ)qt−1 + γ µ
2. Draw action Kt from pt−1
3. Gain and observe payoff y>t x(Kt)

4. Let Pt−1 = E
[
XX>

]
where X has law pt−1

5. Let ŷt = P+
t−1x(Kt)x(Kt)

>yt

6. Update qt(k) ∝ qt−1(k) exp
(
−η ŷ>t x(k)

)
for all k = 1, . . . , N .

Note that the unknown payoff vector yt at time t is approximated using the “least square” estimate
ŷt = P+

t−1x(Kt)x(Kt)
>yt, where Pt−1 = E

[
XX>

]
and X is distributed according to the

sampling distribution pt−1 over X . A key idea in this algorithm is that ŷ>t x is an unbiased estimate
of y>t x. Namely, E

[
ŷ>t x

]
= y>t x for x ∈ X , where the expectation is w.r.t. pt−1 (which is

straightforward to show —see [6, 8]). The pseudoregret of GGH is controlled by the variance of this
estimate, and the analysis in [6, 8] shows, for a specific choice of η, the bound

max
x∈X

∣∣x>ŷt∣∣ ≤ B2

γλmin
. (1)

HereB is an upper bound on the norm of any vector inX and λmin is the smallest nonzero eigenvalue
of Aµ = E

[
Z Z>

]
with Z distributed according to the fixed exploration distribution µ. As shown

in [6, 8], a suitable choice of the mixing coefficient γ guarantees a pseudoregret bound of the form

RT ≤ 2

√(
2B2

d λmin
+ 1

)
Td lnN . (2)

Since the trace of Aµ is at most B2, if the spectrum of Aµ is approximately uniform, then λmin is
close to B2/d and GGH achieves the optimal pseudoregret bound of order

√
Td lnN . ComBand

chooses µ to be uniform over X , which amounts to betting that X is already nearly isotropic. In [6]
the authors show different concrete choices of X where λmin = Ω

(
B2/d

)
.

Unlike ComBand, GeometricHedge uses a preprocessing step to make X look isotropic. Since the
regret does not depend on the choice of the basis for Rd, one can pick a convenient basis in which to
express both actions and payoff vectors. The hope is that, when the matrix Aµ is expressed in this
basis and µ is uniform over the same basis, λmin becomes as close as possible to B2/d.
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The basis used by GeometricHedge are the barycentric spanners [3] of X . This is a subset
s1, . . . , sd ∈ X (without loss of generality, assume X spans Rd) with the following properties:

1. {s1, . . . , sd} spans X .

2. For all i = 1, . . . , d and x ∈ X , the i-th coordinate of x in the spanner basis, denoted by
x(i), satisfies x(i) ∈ [−1, 1].

An elegant algebraic argument from [3] shows that barycentric spanners always exist.

GeometricHedge chooses µ to be the uniform distribution over the spanners and performs an eigen-
decomposition of the symmetric matrix Aµ with respect to the spanner basis and the induced scalar
product 〈u,v〉 =

∑d
i=1 u(i)v(i). Then, if e is the eigenvector associated with any eigenvalue λ of

that matrix,

λ =

d∑
i=1

1

d
〈si, e〉2 =

1

d

due to the orthonormality of eigenvectors (irrespective of the orthonormality of the spanner ba-
sis). Thus X is isotropic under the uniform measure over the spanners. However, by definition of
barycentric spanner, x(i) ∈ [−1, 1]. This implies 〈x,x〉 ≤ d for all x ∈ X . Hence B =

√
d, and,

from (2), we have RT ≤ 2
√

(2d+ 1)Td lnN , a suboptimal bound. Using ideas from convex ge-
ometry, this work provides an optimal exploration strategy which simultaneously makes X isotropic
while controlling the maximal norm over the set of actions.

1.2 Infinite decisions sets and computational efficiency

If X is a compact subset of Rd, then, as shown in [8], any bandit forecaster for finite action classes
can be applied to infinite action sets via discretization; in particular, [8] show this construction results
in pseudoregret of order d3/2

√
T using (4dT )d/2 discretized actions.

With regards to computationally efficiency, when the size of X is infinite or exponential in d, GGH
may not have an efficient implementation in general, though for important special cases (such as
shortest path problems and certain dynamic programming problems) GGH can be implemented
efficiently —see [6, 8]. For computationally efficiency, a third, radically different, forecasting strat-
egy for bandit linear optimization was proposed based on the use of interior-point methods with
self-concordant functions [1]. The resulting bound on the pseudoregret is 16d

√
θT lnT , where

θ = O(d) is the parameter of the self-concordant function; the pseudoregret implied by [1] is of the
order d3/2

√
T (ignoring log factors).

The results we provide here lead to a regret of d
√
T (up to constants and log factors) for arbitrary

decision spaces (with the same discretization argument from [8]), matching the lower bound in [8].
An open question is if this rate is achievable with an efficient algorithm, which we discuss later.

2 An optimal exploration distribution

We use the following result from convex geometry —see [4] for a proof.

Lemma 1 (John’s theorem). Let K ⊆ Rd be a convex set. The volume-minimizing ellipsoid enclos-
ing K is the (translated) unit ball in some norm ‖·‖ derived from a scalar product 〈·, ·〉 if and only
if there exists a probability distribution p∗1, . . . , p

∗
n over the contact points x∗i , . . . ,x

∗
n between the

ellipsoid and K such that
n∑
i=1

p∗i 〈x∗i ,v〉
2

=
1

d
for all v ∈ Rd such that ‖v‖ = 1.

Let E =
{
v ∈ Rd : (v − x0)>H−1(v − x0) ≤ 1

}
be the volume-minimizing ellipsoid enclos-

ing X . This is often called the Löwner-John ellipsoid in the literature. Define a new system
of coordinates where v ∈ Rd is represented as v′ = H−1(v − x0). Define the scalar product
〈u,v〉H = u>Hv. It is easy to see that in the new system of coordinates E is the unit ball with
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respect to the above scalar product. Namely, if v ∈ E then 〈v′,v′〉H = (v−x0)>H−1(v−x0) ≤ 1.
Now Lemma 1 implies that we can perform exploration in an optimal way.
Theorem 2. Let X ⊆ Rd with |X | = N and assume |y>t x| ≤ 1 for all x ∈ X and t ≥ 1. Suppose
GGH is run on X ′ ≡

{
H−1

(
x− x0

)
: x ∈ X

}
with scalar product 〈·, ·〉H and exploration distri-

bution µ = (p∗1, . . . , p
∗
n) over the contact points {x∗i , . . . ,x∗n} ⊆ X ′. If GGH parameters are chosen

as η =
√

(lnN)
/

(3dT ), γ = dη, then its pseudoregret after T steps satisfies RT ≤
√

12Td lnN .

Proof. Note that 〈yt,x′〉H = y>t HH−1(x−x0) = y>t x−y>t x0 for any x′ ∈ X ′. Since the regret
is invariant with respect to the choice of the origin, we do not lose any generality by running GGH
on X ′ and computing payoffs as 〈yt,x′〉H . Since X ′ is enclosed by the unit ball, we immediately
have 〈x′,x′〉H ≤ 1 for all x′ ∈ X ′, so that B = 1. Moreover, the choice of µ and Lemma 1 ensures
that 〈v, Aµv〉H =

∑n
i=1 pi 〈x∗i ,v〉

2
H = 1

d for all v ∈ Rd such that 〈v,v〉H = 1. This implies
λmin = 1

d . From (2) we then obtain the desired bound.

3 Computational issues

If X is given by a finite set of points, then there is a polynomial time algorithm for computing
a constant factor approximation to the Löwner-John ellipsoid [9] (and this approximate basis will
provide the same order of regret). However, if X is specified by the intersection of half spaces, then
obtaining such a constant factor approximation to this ellipsoid is NP-hard in general [10]. Here, it is
possible to efficiently compute an ellipsoid where the factor of 1

d is replaced by 1
d3/2

in Lemma 1 [9],
which leads to a slightly worse dependence on d in the regret bound.

In special cases, we conjecture that Löwner-John ellipsoid may be computed efficiently, as for cer-
tain problems, there are efficient implementations of GeometricHedge that lead to optimal rates
(such as shortest path problems and other settings where dynamic programming solutions exists).

4 Application to bandits with experts

Consider the following model of linear bandits with N experts. At each time step t = 1, 2, . . . , each
expert i = 1, . . . , N suggests an action xt(i) ∈ Rd. The pseudoregret of a randomized linear bandit
algorithm choosing expert It ∈ {1, . . . , N} a time t is defined by

R
exp

T = max
i=1,...,N

T∑
t=1

E
[
y>t xt(i)− y>t xt(It)]

where the expectation is w.r.t. the algorithm’s internal randomization and y1,y2, . . . ∈ Rd is any
sequence of payoff vectors such that

∣∣y>t xt(i)∣∣ ≤ 1 for all t = 1, 2, . . . and i = 1, . . . , N .

Corollary 3. There exists a randomized algorithm for linear bandits with experts such that R
exp

T ≤√
12Td lnN .

Proof. We apply a variant of GGH in which the exploration distribution µ changes over time. Let
Xt = {xt(1), . . . ,xt(N)} ⊆ Rd and let X ′t ≡

{
H−1t

(
xt(k)− xt,0

)
: k = 1, . . . , N

}
, where

Ht and xt,0 are defined with respect to the the volume-minimizing ellipsoid Et enclosing Xt. The
algorithm chooses µt defined by the contact points for X ′t and then draws an action by calling GGH
with µt as exploration distribution. Then, it feeds to GGH the payoff vector estimate at time t using
〈·, ·〉H . Since condition (1) holds at each time step, the pseudoregret after T rounds has the same
bound as GGH (Theorem 2).

For example, let each expert i = 1, . . . , N be associated with a fixed payoff vector y(i) ∈ Rd and
the suggested action be defined by xt(i) = argmaxx∈St y(i)>x where St ⊆ Rd is an arbitrary
“context set”. This can be viewed as a natural nonstochastic variant of the contextual linear bandit
model of [7]. Another notable special case is the d-armed bandit problem with expert advice, where
we can view the suggested actions as the corners of the d-dimensional simplex. Here, the EXP4
algorithm of [2] achieves a regret of order

√
Td lnN . Interestingly, the regret achievable in the more

general d-dimensional linear optimization setting is no worse than in the d-armed bandit setting.
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