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Abstract

Optimization is about inferring the location of the optimum of a function. An
information-optimal optimizer should thus aim to collapse its belief about the
location of the optimum towards a point-distribution, as fast as possible. But the
state of the art rarely addresses this inference problem. Instead, it usually relies on
some heuristic predicting function optima, then evaluates at the maximum of the
heuristic. The reason there are no truly probabilistic optimizers yet is that they are
intractable in several ways. In this paper, we present tractable approximations for
each of these issues, and arrive at a flexible global optimizer for functions under
Gaussian process priors, which performs well in comparison to a state of the art
Gaussian process optimizer.

1 Introduction

Global optmization is a wide field, re-discovered several times in different communities. While
the resulting algorithms vary widely in their motivation, characteristic behaviour and performance,
they can usually be reduced to one of two general classes: Stochastic exploration (as in simulated
annealing, genetic algorithms, etc.), or heuristic exploration. The latter class uses some model for the
function (parametric, as in most local convex optimizers, or nonparametric, as in Gaussian Process
optimization), then defines a heuristic on this model (such as the minimum of the model, or the
“Expected Improvement” and “Probability of Improvement” heuristics and their variants, on Gaussian
beliefs [1, 2, 3]). Neither of these two general classes are information efficient. Stochastic explorers
do not have a notion of guided learning at all. Heuristic explorers have such a notion but, from
an information-theoretic viewpoint, it is non-optimal in two ways: First, the heuristic is at best an
approximation to, but not the probability distribution over the location of the optimum. Second, the
heuristic optimizer tries to optimize the heuristic, not information gain about the heuristic. Instead of
trying to learn most about the location of the optimum, these algorithms try to evaluate where some
approximation thinks the optimum is most likely to be.

There is a reason why there are no information-optimal function optimizers around: They are
intractable, in three ways:

• Even given a proper probabilistic model p(f) for the function f : x Z_ f(x) in question,
the probability distribution pmin = p(x = arg minx′ f(x′)) is usually intractable, even for
relatively simple priors, such as multivariate Gaussians, on finite discrete domains. This
problem is compounded when the domain of f is continuous.

• Optimizing for information gain requires a model for how the belief pmin changes as a result
of evaluation. This model is usually itself probabilistic, and not always tractable.

• Optimizing a number of subsequent evaluation points, whether under the probabilistic
description of pmin or any heuristic, is an exponentially hard dynamic programming problem.
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In an effort to find approximate answers to these challenges, we propose the following approach:

• Following other authors [e.g. 1, 2, 3], we adopt a Gaussian process prior for f . We then
construct an approximation on pmin, by representing the belief with finitely many samples
and constructing a belief over the minimum using Expectation Propagation (EP) [4]. The
samples for this discretisation should be chosen efficiently, but the most efficient sampling
distribution is intractable, so we use a heuristic.

• We use analytic properties of the Gaussian process belief and the EP approximation to
construct a first-order probabilistic prediction for the change of pmin as a function of the
next evaluation location.

• Finally, we choose the next evaluation point by maximizing the expected change of an
information measure on the continuous but bounded domain of f : relative entropy between
the uniform distribution and pmin. This is a greedy approach, so it essentially ignores the
third point above, but there is evidence that greedy approaches work well in such settings.

We also present empirical results suggesting that this approach considerably improves on the closest
competitor – Expected improvement search [1], which is among the best global optimizers [2].

For simplicity, we will assume that the function f to be optimized is defined on a bounded region
of a Hilbert space, and known up to a specific Gaussian process prior induced by a positive-definite
kernel k. A general purpose implementation should arguably have a more general prior than this, but
our derivations can be extended straightforwardly to priors defined as mixtures of Gaussian processes
as gained from sampling the hyper-parameters of the Gaussian process model (see [3]).

2 Methods

2.1 Approximating the Belief over the Location of the Optimum

Assume for the moment that the optimization problem is discrete: There is a finite number of
locations {xi}i=1,...,I , we are given a multivariate Gaussian prior N (f(x);µ,Σ) over the values of
the function f on the domain, and asked to infer the belief over the identity of the minimum pmin. In
other words, what is the probability that f(xi) < f(xj) ∀ j 6= i?

pmin(xi) =

∫
N (f(x);µ,Σ)

I∏
j 6=i

θ[f(xj)− f(xi)] df (1)

where θ is Heaviside’s step function. This is an integral of a multivariate normal distribution, over a
piecewise linear, half-open, convex integration region. Such integrals are known to be intractable, but
can be approximated well with Expectation Propagation [4], with cost O(I4).

However, in our setting the belief over f is an infinite-dimensional Gaussian process. Assuming
the kernel is continuous, the true function is continuous, and pmin can be approximated arbitrarily
well with a finite number of discrete representer points {xn}n=1,...,N . But, given that EP is costly,
how should we choose the representer points such that the discrete representation comes as close
to the true distribution as possible? A naı̈ve approach would be to put xn on a regular grid. This is
intractable in high-dimensional domains, and also not efficient. The optimal choice of representer
points is given by the natural metric of – the measure defined by – pmin. Unfortunately, this being
the distribution we are trying to construct from those representers, it is not available at this point in
the algorithm. So we choose to sample {xn} from some heuristic that should be close to pmin. Here
the literature comes to our help: The expected improvement heuristic [1] ι(x;µ,Σ; η), which is a
measure relative to a current best guess function value η, is given by (Φ, φ are standard Gaussian cdf
and pdf, respectively)

ι(x) = Z−1

{
[η − µ(x)]Φ

(
η − µ(x)√

Σ(x, x)

)
+
√

Σ(x, x)φ

(
η − µ(x)√

Σ(x, x)

)}
. (2)

It is computationally cheap and known to contain much information about pmin [2]. The normalization
constant Z is intractable, but irrelevant for our problem. So we approximate pmin(x) on the domain
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of f by a staircase function defined using a set of samples {xi} ∼ ι and the discrete pmin(xi)
constructed by EP on them:

pmin(x) ≈ pmin(xc)ι(xc)N where xc = arg minxi
{||xi − x||}i (3)

2.2 Information Measure on Continuous Domains

It is well known that the concept of entropy does not generalise trivially from probability distributions
to probability densities. In continuous domains, consistent measures of uncertainty and information
are provided by relative entropies [e.g. 5] with respect to a base measure. We choose the uniform
measure p0(xmin) = |I|−1 on the bounded search domain I as this measure, providing an uninfor-
mative prior belief on the location of the minimum (Other measures are possible, but complicate
EP inference somewhat). In other words, the algorithm tries to maximize KL-divergence between
its belief and uniform uncertainty. With this, the uncertainty over pmin(x) is approximated by our
samples as (note that the step size in the staircase function is δxi ≈ (ιN)−1)

H[pmin(x)] = −
∫
pmin(x) log[pmin(x)|I|] dx ≈ −

∑
i

pmin(xi) log[pmin(xi)ι(x)|I|N ] (4)

This formulation offers a consistent extension of the concept of uncertainty (as measured by Shannon
Entropy) from discrete to continuous domains.

2.3 Predicting Information Gain

One of the many convenient aspects of Gaussian process uncertainty is that the predicted change of
the belief after evaluation at location xe is itself a sample from a Gaussian process, with a covariance
function given by an innovation function L(x∗;xe) (details can be found in [6, in press]). The change
to mean and covariance functions are

δµ(x∗)|xe
= L(x∗, xe)ω where ω ∼ N (0, 1) and δΣ(x∗, x∗)|xe

= −L(x∗;xe)L(x∗;xe) (5)

The EP approximation to pmin also provides analytic derivatives with respect to µ and Σ [7]. So we
can construct a first-order prediction of the change of relative entropy as (using Itō’s lemma, and the
sum convention)

E[δH]|xe
≈
∫

H

[
pmin,0 +

∂pmin

∂Σi
δΣi

xe
+

1

2

∂2pmin,0

∂µi∂µj
δµi

xe
δµj

xe
+
∂pmin,0

∂µi
δµi

xe
· ω
]
φ(ω) dω. (6)

The expectation over the Gaussian uncertainty can most simply be taken by Monte Carlo integration
using a small number of samples. The resulting function is differentiable if the kernel is differentiable,
and can thus be efficiently optimized locally. So our algorithm boils down to choosing the next
evaluation point as the one locally minimizing E[δH]|xe

. Note that our choice of logarithmic loss
function (relative entropy) for this decision problem has no bearing on computational complexity –
should one prefer a different loss, it is trivial to use it instead.

3 Experiments

Figure 1 provides intuition for the new paradigm on a simple example of a 1-dimensional function,
given 3 observations and a rational quadratic kernel. See caption for details, note the structural
difference between the local expected improvement heuristic and the global view afforded by pmin

and the information theoretic description. Figure 2 compares the performance of the new algorithm,
Entropy Search to the expected improvement heuristic for global search [1, 2], on two standard test
functions (Branin’s and Goldstein’s & Price’s functions).

4 Conclusion

We have outlined information-theoretic desiderata for global optimization, pointed out that they
are analytically challenging, then suggested a number of approximations to address each challenge.
The result is an information-greedy global optimization algorithm for functions defined on Hilbert
spaces, and known up to Gaussian process priors. Empirical evidence suggests this treatment leads to
considerable performance increase over one of the best known competitors.
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Figure 1: Overview of problem and algorithm. Top: 3 observed datapoints, GP belief with samples,
mean, marginal variance. Middle: Expected Improvement heuristic in green, next evaluation point at
vertical mark. Predicted change of Entropy, from a regular grid of 100 points (blue) or 30 samples
as described in the text (red), with next evaluation points marked. Note that the information-greedy
algorithm takes nonlocal structure into account, like the extend of the uncertain region around the
evaluation point, while the EI heuristic does not. Bottom: Belief over location of minimum, from
MC samples (solid), from EP on regular grid (dashed, mostly overlapping solid line), and 30 samples.
Note the nontrivial edge-effects, not taken into account by the EI heuristic.
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Figure 2: Performance on two test environments (value of function at optimizer’s best guess, minus
true minimum). Ten individual experiments as thin lines, means as thick lines. E-I: Expected
Improvement. H-S: Entropy search (this work). Left: Branin’s function. The H-searcher is between
1.5 and 2 times faster. Right: Goldstein-Price function. The EI heuristic does not typically discover
the minimum within the 50 alloted evaluations, while the H-Searcher usually does.
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