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Abstract

This paper presents some statistical refinements of the bandits approach presented in [1] in the
situation where there is no observation noise. We give an improved bound on the cumulative regret
of the samples chosen by an algorithm that is related (though not identical) to the UCB algorithm
of [1] in a complementary setting. Given a function f on a domain D, sampled from a Gaussian
process with an anisotropic kernel that is four times differentiable at 0, and a lattice L ⊆ D, we
show that if the points in L are chosen for sampling using our branch-and-bound algorithm, the
regret asymptotically decreases according to O

(
e−

3√
T
)

with high probability.

1 Introduction

Let f : D → R be a function on a compact subset D ⊆ Rd. We would like to address the global optimization problem

xM = argmax
x∈D

f(x).

Let us assume for the sake of simplicity that the objective function f has a unique global maximum (although it can
have many local maxima). We will also assume in this paper that at each point the value of the function can be
observed without noise.

Here, we will use Gaussian process bandits (aka Bayesian optimization) to approach this problem. The general idea is
to use a surrogate function that provides a good upper bound for the objective function f and that is also easier to deal
with: this idea is illustrated in Figure 1, where the red curve serves the role of the surrogate function.

2 Nonparametric bandits (aka Bayesian optimization)

2.1 Gaussian processes

As in [1], the reward function is distributed according to a Gaussian process prior:

f(x) ∼ GP(m(·), κ(·, ·)). (1)

For convenience, and without loss of generality, we assume that the prior mean vanishes, i.e., m(·) = 0.
∗The names of the authors appear in alphabetical order.
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There are many possible choices for the covariance kernel, e.g., we could use a linear kernel and recover the linear
case. Since we assume a non-linear reward model, one of the obvious choices is an anisotropic kernel κ with a vector
of automatic relevance determination (ARD) hyperparameters θ (cf. [2], §4.2.1):

κ(xi, xj) = κ̃
(
−(xi − xj)>D(xi − xj)

)
(2)

where κ̃ is an isotropic kernel and D = diag(θ2) is a diagonal matrix with entries θ2 along the diagonal and zeros
elsewhere. Our results apply to the case when κ̃ is either the squared exponential or the Matérn kernel with parameter
ν > 2. In this paper, we assume that the hyperparameters are fixed and known in advance.

We can sample the GP at t points by choosing points x1:t := {x1, . . . , xt} and sampling the values of the function
at these points to produce the values f1:t = [f(x1) · · · f(xt)]>. The function values are distributed according to
a multivariate Gaussian distribution N (0,K), with covariance entries κ(xi, xj). Assume that we already have the
observations, say recorded data, and that we want to use Bayesian optimization to decide what action xt+1 should be
considered next. Let us denote the value of the function at this arbitrary point as ft+1. Then, by the properties of GPs,
f1:t and ft+1 are jointly Gaussian: [

f1:t
ft+1

]
∼ N

(
0,

[
K k>

k κ(xt+1, xt+1)

])
,

where k = [κ(xt+1, x1) · · ·κ(xt+1, xt)]
>. Using the Schur complement, one arrives at an expression for the posterior

predictive distribution:
P (ft+1|x1:t+1, f1:t) = N (µt(xt+1), σ

2
t (xt+1)),

where
µt(xt+1) = k>K−1f1:t, where f1:t = [f(x1) · · · f(xt)]> (

P
)

σ2
t (xt+1) = κ(xt+1, xt+1)− k>K−1k.

2.2 Bayesian optimization

Here, we will make more precise the ideas summarized in Section 1 in the context of a Gaussian Process prior. When
it is assumed that our objective function f is sampled from a GP, then one can use a combination of the posterior

Figure 1: An example of the branch and bound algorithm being applied to a function, and the shrinking of the search space: the
algorithm does not have to sample in the shaded region anymore. As shown in the figure, the shaded region consist of the points x,
for which µ(x)+

√
βTσ(x) < f(x+), where x+ is the best sampled point so far. Moreover, Note that the UCB surrogate function

(the red curve) bounds the objective function (the black curve) from above.
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predictive mean and variance given by equations (P) above to propose surrogate functions. The combination that we
will utilize in this paper is the Upper Confidence Bound (UCB) given by the expression

µT (x) +BTσT (x),

where {BT }∞T=1 is a sequence of numbers that will be specified by the algorithm. The other choices are Probability
of Improvement, Expected Improvement and Thompson sampling, for a description of which the reader is referred to
[3], [4] and [5].

2.3 Our algorithm

The precise algorithm with which we work is given in Algorithm 1, the main idea of which is to tighten the bound on
f given by the UCB surrogate function by sampling the search space more and more densely and shrinking the search
space as more and more of the UCB surrogate function is “submerged” under the maximum observed value of the
objective function, as depicted in Figure 1.

Let us point out here that the purpose of this algorithm is not to be of practical use in applications, but rather to provide
a worst case scenario as far as performance is concerned given how manifestly wasteful it is when it comes to choosing
the samples.

Algorithm 1 Branch and Bound

Given a compact subset D ⊆ Rd, a discrete lattice L ⊆ D and a function f : D → R, we execute the following
algorithm:
R ← D
δ ← 1
repeat

Sample Twice as Densely:

• δ ← δ

2
• Sample f at enough points in L so that every point inR is contained in a simplex of size δ

Shrink the Relevant Region:
• Set

R̃ :=

{
x ∈ R

∣∣∣∣µT (x) +√βTσT (x) > max
t=1,...,T−1

f(xt)

}
,

where T is the number points sampled so far and βT = 4 ln
(
|L|T
α

)
for a given α > 0.

• Solve the following constrained optimization problem:

(x∗1, x
∗
2) = argmax

(x1,x2)∈R̃×R̃
‖x1 − x2‖

• R ← B (x∗1, ‖x∗1 − x∗2‖) ∩B (x∗2, ‖x∗1 − x∗2‖), where B(p, r) is the ball of radius r centred around p.
untilR∩ L = ∅

The idea of this algorithm was drawn from an observation made in [1] pointing out that the optimum point cannot lie
outside our relevant set R̃.

3 Analysis

Let us recall that D ⊆ Rd is assumed to be a non-empty compact subset and f a sample from the Gaussian Process
GP(0, κ(·, ·)) on D. Moreover, in what follows we will use the notation xM := argmaxD f . Also, by convention, for
any set S, we will denote its interior by S◦ and its boundary by ∂S.

Definition 1 Given the above setup, the regret function is defined to be

r(x) = max
D

f − f(x).

Proposition 2 The following holds true:
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∀I Suppose we are given the following setup:

– α > 0

– D ⊆ Rd a compact subset;
– κ an stationary kernel on Rd that is four times differentiable;
– f ∼ GP(0, κ) a continuous sample on D that has a unique global maximum xM , which satisfies one of

the following two conditions:
(†) xM ∈ D◦ and f(xM ) − c1‖x − xM‖2 < f(x) ≤ f(xM ) − c2‖x − xM‖2 for all x satisfying

x ∈ B(xM , ρ0) for some ρ0 > 0;
(‡) xM ∈ ∂D and both f and ∂D are smooth at xM , with∇f(xM ) 6= 0;

∃I Then, there exist positive numbers A and τ such that

∀I for any lattice L ⊆ D satisfying the following two conditions

(♣) 2L ∩ conv(L) ⊆ L,

(♠) 2d− log2
ρ0

diam(D)e+1L ∩ L 6= ∅ if f satisfies (†),

∃I there exists an interger T such that the points specified by the Branch and Bound algorithm, {xt}, will satisfy
the following asymptotic bound:

∀I for all t > T , with probability 1− α we have

r(xt) < Ae−τ
3√t.

Remark 3 (1) Note that for a random sample f ∼ GP(0, κ) one of conditions (†) and (‡) will be satisfied almost
surely if κ is a Matérn kernel with ν > 2 because the sample f is twice differentiable almost surely (by Theorem 1.4.2
of [6] and §2.6 of [7]) and the vanishing of at least one of the eigenvalues of the Hessian is a codimension 1 condition.

(2) The two conditions (♣) and (♠) simply require that the lattice be “divisible by 2” and that it be fine enough so
that the algorithm can sample inside the ball B(xM , ρ0) when the maximum of the function is located in the interior
of the search space D.
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