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Abstract

A hybrid algorithm is devised to boost the performance of
complete search on under-constrained problems. We suggest
to use random variable selection in combination with restarts,
augmented by a coarse-grained local search algorithm that
learns favorable value heuristics over the course of several
restarts. Numerical results show that this method can speed-
up complete search by orders of magnitude.

Introduction
Local search methods are known to perform well on under-
constrained problems where they allow us to solve instances
of sizes that are orders of magnitude larger than what any
systematic search method is able to handle. Complete search
methods on the other hand are suited to tackle critically con-
strained and over-constrained problems as well, due to their
ability to prove unsatisfiability when no solution exists.

Related Work: Many efforts have been undertaken in the
past to bring the respective strengths of both local and com-
plete search approaches together. In (Fang and Ruml 2004)
and in (Shen and Zhang 2005), local search approaches
were presented that trade some of their time and space effi-
ciency to also be able to prove unsatisfiability. Analogously,
in (Prestwich 2002) and in (Prestwich 2000), the ideas of
“stochastic local search” and “randomized backtracking”
were introduced. In the same spirit as “greedy randomized
adaptive search procedures (GRASPs)” (Hart and Shogan
1987; Pitsoulis and Resende 2001), these methods consist
in tree-based search methods that achieve some speed-up on
under-constrained problem instances by giving up the com-
pleteness of the underlying systematic algorithms.

While all these contributions try to overcome the limita-
tions of the respective main approach by giving up some of
its strength, there were also hybrid approaches proposed that
actually combine local and systematic search. Probably the
easiest hybridization idea is to use local search first and then
to switch over to complete search later. This is a very com-
mon idea in constrained optimization, where the initial local
search phase can help to find a near-optimal solution quickly,
which can improve tremendously the pruning effectiveness
in the following branch-and-bound approach. Another idea
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in this scenario is to use a very simple local search algorithm
(like a quick greedy algorithm for instance) to improve on
the performance of any feasible solution that is being found
by the “master” tree-search approach. This idea was adapted
by (Habet et al. 2002) for SAT where a depth-bounded sys-
tematic search triggers local searches at nodes that reach the
depth-limit. (Fischetti and Lodi 2003) introduced the idea of
“local branching”, a method that partitions the search space
by adding non-unary branching constraints that emulate the
local search neighborhood of some “guiding solution”.

In the realm of constraint satisfaction, a partially
very successful technique is “large neighborhood search
(LNS)” (Shaw 1997) which can be viewed as a special case
of “variable neighborhood search” (Hansen and Mladenovic
2003). The idea here is to explore a potentially very large
local search neighborhood by means of systematic search
methods. Interestingly, discrepancy-based search meth-
ods like “limited discrepancy search” (Harvey and Gins-
berg 1997) and other methods like “dynamic backtrack-
ing” (Ginsberg et al. 1996) can also be viewed as hybrids
as they enforce search space exploration and effectively en-
able complete search methods to find feasible solutions very
quickly if they exist. Many other hybrid local/complete
search approaches have been developed, and thanks to new
powerful tools like the constraint-based local search sys-
tem “Comet” (Van Hentenryck and Michel 2005) and novel
conceptual frameworks like the one developed by (Hooker
2005), we can hope for many more in the future. For a
more thorough introduction to the topic of local and com-
plete search hybridization we refer the reader to the excel-
lent tutorial presented by (Focacci et al. 2001).

Contribution: Tree-search typically constitutes the core
of constraint programming solvers and Davis-Putnam-
Logewood-Loveland (DPLL) algorithms in satisfiability.
These algorithms have shown to be well-suited for critically
constrained and over-constrained problem instances, but for
under-constrained problems they often lack the speed and ef-
ficiency that local search approaches exhibit. When a user is
not really sure whether his/her problem instance has a solu-
tion, what is (s)he supposed to do? Today, an expert would
probably recommend to try a local search first, and if that
does not work for some time, to start over with a systematic
search. An approach which strangely resembles the authors’
own strategy when trying to find the latest credit card bill at
home... Unfortunately, unlike for constrained optimization,



in constraint satisfaction an initial local search phase really
does not give us anything and is basically a waste of time if
it ends unsuccessfully.

In this paper, we try to improve upon the situation by en-
hancing the ability of tree-search based methods to find fea-
sible solutions for under-constrained problems quickly. We
pursue this goal by exploiting the following observation: Be-
tween restarts, we have the freedom to change not only the
variable ordering (which is of course being picked randomly
in this setting), but we also have the freedom to change the
value selection heuristic which tells our search which child-
node to investigate first when diving deeper into the tree.
The main contribution of this paper is an algorithm that uses
local search to “learn” better value selection heuristics over
the course of many restarts.

We describe the idea in detail in the following section.
Then, we provide extensive numerical results that show that
our method is able to speed-up tree-search by orders of mag-
nitude on under-constrained problems.

Organizing Systematic Search
Whether we consider integer programming, constraint pro-
gramming, or satisfiability: all three areas are dealing with
finite yet NP-hard problems, and in all three areas the most
efficient and most successful complete solvers are based on
tree-search augmented by some inference methods such as
linear programming relaxations, constraint propagation, or
no-good learning. Consequently, research in the respective
communities can roughly be separated in inference related
or search related contributions.

This paper deals with search. Within any systematic
search, there are some liberties that require us to make deci-
sions on how we want to organize the search. The important
questions that need to be answered are: How do we split the
partition that we are currently investigating when our infer-
ence methods are inconclusive? And second, in which parti-
tion of the search space do we continue our search next? In
classical backtrack search with unary branching, these ques-
tions simplify to the following questions: On which variable
shall we branch next? And what value shall we assign to the
branching variable first?

Interestingly, there are really two schools who advocate
two radically different ways of answering these questions.
The first group of researchers tries to devise “heuristics”.
Some try to come up with procedures that make decisions
that appear reasonable from a human point of view, and
others try to “learn” from the experience gathered during
search to make better decisions in the future (see as an ex-
ample (Epstein et al. 2002; Vidotto et al. 2005)).

The second school of researchers takes a completely dif-
ferent approach: instead of attempting to make “reasonable
guesses”, they have chance decide how the search space
is partitioned. Now, there is a substantial probability that
random choices result in very long runtimes — in practice
we measure heavy-tailed runtime distributions (Gomes et al.
1997) — but there is also a good chance that we end up with
a reasonably short run. Consequently the random-choice ap-
proach is complemented by the idea of restarting the search
whenever we have reason to believe that we were probably
just not lucky with the particular partitioning that we just
tried (see as an example (Kautz et al. 2002)).

Random Variables — Heuristic Values
To speed-up complete search on under-constrained problem
instances, we hybridize both ideas: We suggest to choose
the branching variables randomly while trying to learn good
value heuristics over the course of different restarts. The
motivation for this is that a good value selection heuristic
can guide us to a feasible solution effectively no matter how
badly we happen to partition the search space. The idea is
not unlike the motivation behind adaptive multistart meth-
ods for local search where starting states are generated by a
generation method that is biased by the centroid of previous
local optima (Boese et al. 1994). The approach, if it suc-
ceeds, has the advantage that, when we are insecure about
the constrainedness of our problem instance, we could start
out with one approach right away without wasting time on
an initial, potentially unsuccessful, local search phase.

The question arises how we can improve our value selec-
tion heuristic by learning from previous searches? We de-
cided to take a very conservative approach by trying to stick
to most parts of the earlier value selection heuristic and to
update it only where the search has proven it to be inconsis-
tent. Let us explain this in a little more detail: To us, a value
selection heuristic is simply an assignment of values to vari-
ables. It captures nothing else than the value that we intend
to try on every variable first. By representing a value selec-
tion heuristic as an assignment, the entire endeavor to find
a good value heuristic nicely aligns with our overall goal to
find a feasible assignment.

Note that one can view the conservative update of the
heuristic over the course of several restarts as a very coarse-
grained local search (some may even view it as a large neigh-
borhood search): The next heuristic evolves from the previ-
ous one by a very complex move that is the result of the pre-
vious restart of the randomized systematic search procedure.
We said already that we want to keep as much of the previ-
ous heuristic assignment as possible. On the other hand, we
also want to update the heuristic where search has revealed
that it is in itself inconsistent.

So, what does an unsuccessful restart tell us with respect
to the inconsistencies within our last value selection heuris-
tic? Let us use the convention that a left-most branch cor-
responds to following the heuristic. Now, we consider the
path that leads to the search node right before backtrack-
ing fails and the cut-off limit is reached. Wherever that path
does not follow the left-most branch, the search has revealed
that, given the decisions taken before, the heuristic is incon-
sistent at this point. Furthermore, whenever constraint or
unit propagation reveal that a value in the current assignment
must be eliminated from the domain of the current variable,
the heuristic is inconsistent.

Consequently, after a restart reaches its cut-off limit, we
update the heuristic like this: We consider the domains of
variables at . For all variables, we check whether the value
denoted in our current value selection heuristic is actually
still in its domain. If yes, then we leave the heuristic un-
touched for this variable. And if no, then we choose a ran-
dom value out of the variable’s domain and make that value
our next first choice value for this variable. We refer to this
method as Disco-Novo-GoGo.1

1From (poor) Latin: “I learn, I start anew, I speed myself up”



We formalize the discussion by sketching the algorithms
that we will use in our experimental evaluation. Assume our
traditional tree-search approach with restarts works like this:

TR: bool Traditional (void)
InitFailLimit (failLimit)
while (true) do

status TreeSearch(failLimit)
if (status inconclusive) then

return (status == solved)
end if
UpdateFailLimit (failLimit)

end while
Note that we leave it open according to which strategy

the successive failLimits are chosen (see e.g. (Luby et al.
1993)), and that the call to TreeSearch may very well have
global side-effects, e.g. due to no-good learning. Then, for
our basic hybrid, we change the algorithm as follows:

BH: bool BasicHybrid (void)
InitFailLimit(failLimit), InitRandom (heuristic)
while (true) do

status TreeSearch(failLimit,heuristic)
if (status inconclusive) then

return (status == solved)
end if
UpdateHeuristic (heuristic), UpdateFailLimit (failLimit)

end while
We assume that TreeSearch actually performs one more

backtracking step after the fail limit has been reached. Then,
at the choice point where the search ends, either all variables
still have at least one value in their respective domains, or
the search fails entirely, in which case we expect TreeSearch
to return ’unsolvable’. Only when this is not the case, we
update the heuristic as follows:

void UpdateHeuristic (ValueArray heuristic)
for all (x variableSet) do

if (heuristic[x] domain[x]) then
heuristic[x] ChooseRandomValue(domain[x])

end if
end for

Now, depending on how the fail limit is updated after each
restart, the length of each restart can actually become very
long rather quickly. Obviously, the local search approach
that learns a better value heuristic suffers dearly if there are
only very few steps taken. Therefore, and also to account
for the fact that local search algorithms are known to benefit
from restarts themselves, we introduce two variants of the
traditional and the basic hybrid approach:

MRT: bool MetaRestartTraditional (void)
InitMoveLimit(maxLocalMoves)
while (true) do

InitFailLimit(failLimit), moves 0
while (moves++ maxLocalMoves) do

status TreeSearch(failLimit)
if (status inconclusive) then

return (status == solved)
end if
UpdateFailLimit (failLimit)

end while
UpdateMovesLimit(maxLocalMoves)

end while
Note how a loop of “meta-restarts” is wrapped around our

traditional approach now, whereby, at the beginning of every
meta-restart, the fail limit for the tree-search procedure is re-

set to its original value. We introduce this variant so that we
can distinguish between the effect of different restart strate-
gies and the actual improvement caused by learning better
value heuristics when experimenting with the following hy-
brid algorithm:

MRH: bool MetaRestartHybrid (void)
InitMoveLimit(maxLocalMoves)
while (true) do

InitFailLimit(failLimit), InitRandom (heuristic), moves 0
while (moves++ maxLocalMoves) do

status TreeSearch(failLimit,heuristic)
if (status inconclusive) then

return (status == solved)
end if
UpdateHeuristic (heuristic), UpdateFailLimit (failLimit)

end while
UpdateMovesLimit(maxLocalMoves)

end while
In every meta-restart, not only is the fail limit reset to the

original start value, but also the heuristic is reset randomly.
This results in shorter tree-searches and an effective restart
of our local search for a good value selection heuristic. How-
ever, we do assume that global side-effects of TreeSearch are
not affected by meta-restarts, i.e., if TreeSearch learns no-
goods for example, then they are not lost by meta-restarts.

Numerical Results
We have introduced the idea of hybridizing complete and
local search by using a random variable selection/restart ap-
proach augmented by a local search algorithm that learns
better value selection heuristics over the course of several
restarts. We outlined a basic hybrid algorithm (BH) and a
variant with local search meta-restarts (MRH). In this sec-
tion, we compare these two approaches with the correspond-
ing traditional approaches (TR) and (MRT) on a number
of applications modeled as satisfiability and constraint pro-
gramming problems. Note that all four methods are com-
plete and have the potential to solve critically constrained
and over-constrained problem instances.

Diagonally Ordered Magic Squares
We start our experimentation on magic squares which rep-
resent nice under-constrained problems that are non-trivial
for both complete and local search approaches. A magic
square (Moran 1982) of order is an by matrix with
entries from to , such that the sum of the entries in
each column, row, and the main diagonals is the same. In
a Diagonally Ordered Magic Square (DOMS) (Gomes and
Sellmann 2004) the entries on the main diagonals, when tra-
versed from left to right, have strictly increasing values. To
the best of our knowledge, no polynomial-time construction
for DOMS is known.

We use a simple constraint programming approach to
tackle this problem: There is one variable per cell with an
associated domain of values between 1 and , and all vari-
ables must take different values. The sum and ordering con-
straints are added to the model. We order the rows randomly
and then traverse the square row by row choosing the left-
most variable with the smallest domain as our branching
variable. In our TR approach, the branching value is cho-
sen randomly. The search proceeds in standard backtrack-
ing fashion ((Shaw 2005) suggests that fancier search meth-



 0

 0.5

 1

 1.5

 2

 120 90 60 30M
ed

ia
n/

A
ve

ra
ge

 R
at

io

Magic Square Cells

Restarts
Time

Figure 1: The ratio of average and median number of restarts
and time used by method MRH for DOMS of orders 3 to 12.

ods like least discrepancy search do not perform better than
depth-first search in restarting methods) and is interrupted
when a fail-limit of is reached,
where ’restarts’ counts the number of restarts conducted so
far. The MRT approach uses the very same setting, but af-
ter have been conducted,
’restarts’ is reset to zero, where ’metaRestarts’ counts the
number of such resets.

We compare these approaches with our MRH method
where the value heuristic is chosen randomly at the begin-
ning of each meta-restart and is updated according to the
function given in the previous section after every (ordinary)
restart. The algorithms were implemented in Ilog Solver
6.0 and experiments were conducted with an AMD Athlon
2 GHz Processor 3000+ with 1 GB of main memory.

Since we are dealing with randomized methods, we con-
duct 100 runs for each instance with magic square orders
growing from 3 to 12. To assure that the restart strategies
are actually doing their job, we first compare the median and
average values of various parameters such as time, number
of choice points, etc. For all methods and all such parame-
ters we look at similar plots as the one shown in Figure 1.
We see that the ratios of median over average of number of
restarts and time are almost constant, which implies that the
averages are well under control and do not grow arbitrarily
as it would be typical for heavy-tailed distributions. Conse-
quently, we conclude that the restarts are indeed helping us
to avoid heavy-tailed runtime behavior.

Now, Figure 2 shows the average number of (ordinary)
restarts needed by all three approaches when computing di-
agonally ordered magic squares of orders 3 to 12. We see
how effectively our heuristic-learning algorithm can reduce
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Figure 2: DOMS tackled with CP-based methods TR, MRT,
and MRH. The picture shows the varying number of restarts
[log-scale] needed by the different methods.
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Figure 3: DOMS tackled with CP-based methods TR, MRT,
and MRH. The picture shows the varying time [log-scale]
needed by the different methods.

that number when comparing MRH and MRT that both fol-
low the very same restart strategy. The average number of
restarts is actually reduced by an order of magnitude. When
comparing MRH with TR, on the other hand, we see that the
reduction is not nearly that dramatic, the number of restarts
is reduced by a factor of 2. However, we need to take into
account that, in TR, the fail-limits grow linearly and that
tree-searches become longer and longer over time. Conse-
quently, when comparing the actual runtimes in Figure 3,
we see that MRH outperforms both traditional algorithms
by roughly a factor of 20 on DOMS of order 12.

We were curious to see how our new method would per-
form on more tightly constrained problems. Despite the
great speed-ups that we were able to achieve, we would
not have gained much if our improved performance on
under-constrained problems would have to be paid for by
an inferior performance on critically constrained and over-
constrained problem instances where the true strength of
complete search methods lies. Therefore, we conducted the
same set of experiments on a related problem, namely that of
computing Dumbledore Squares which are DOMS that hide
a Latin square structure. Curiously, in (Gomes and Sellmann
2004) it was found that this special kind of DOMS could ac-
tually be solved faster than ordinary DOMS. Figure 4 shows
that, for these tightly constrained problems, the performance
of all three methods is essentially the same. It is not surpris-
ing that MRH does not yield any speed-ups for this problem
that is hardly suited for local search approaches, but we are
relieved to find that the frequent update of our value selec-
tion heuristic does not slow down the overall search either.
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Figure 4: Dumbledore Squares tackled with CP-based meth-
ods TR, MRT, and MRH. The picture shows the varying time
[log-scale] needed by the different methods.



v cl TR-exp TR-linear BH-exp BH-linear
600 7000 29.3 18.1 4.37 2.6
600 7050 33 64 8.68 5.66
600 7100 46 88 18.72 6.54
600 7150 39.5 485 15.6 23
600 7200 171 847 92 78

Table 1: Median time [sec] for 5-SAT instances with 600
variables and number of clauses ranging from 7000 to 7200
(50 instances per data point).

v cl TR-exp TR-linear BH-exp BH-linear
600 7000 29.38 18.1 4.37 2.6
660 7700 67 267 2.26 3.5
720 8400 98 874 9.4 7
780 9100 227 2000 31.9 35
840 9800 1062 2000 103 77

Table 2: Median time [sec] for 5-SAT instances at
clause/variable-ratio (50 instances per data point).

Experimental Results on SAT Instances
After our encouraging results on problems that were mod-
eled as constraint programs, we were curious to see how
our method would perform on satisfiability instances. For
our experiments, we decided to use MiniSAT (Eén and
Sörensson 2003) as our “traditional solver” TR. It has been
awarded several times at SAT competitions and its source
code is publicly available.

MiniSAT is an interesting solver for us since, among other
advanced methods like clause learning, MiniSAT takes ad-
vantage of randomized branching variable selection in com-
bination with a restarting strategy. At the same time, the
value selection heuristic is surprisingly simply: MiniSAT
always tries setting the branching variable to ’false’ first.
Initially, the fail-limit is set to 100 and it is increased by
a factor of after every restart, i.e., the fail-limit grows
exponentially over the number of restarts. We refer to the
original MiniSAT solver as TR-exp and to our basic hy-
brid derived from MiniSAT as BH-exp. Obviously, an ex-
ponential growth of subsequent restarts is not preferable for
our approach. Therefore, we also investigated variations of
these solvers, TR-linear and BH-linear, where we increase
the fail-limit after each restart by an increment of 100. Con-
sequently, the fail-limits now grow just linearly.

The first set of SAT-related experiments was conducted
on a set of randomly generated 5-SAT instances (where each
clause consists of exactly 5 literals) that were produced by
the generator from (Selman et al. 1992). This and all follow-
ing SAT experiments were performed with an AMD Opteron
2 GHz Processor 248+ with 2 GB of main memory.

In Table 1, we give the median time in seconds needed
by our four different solvers on 5-SAT instances with 600
variables and an increasing number of clauses. Like that,
we hope to gain an idea how the solvers compare on in-
creasingly constrained problem instances. First, we see that,
for the pure MiniSAT solver, a linear restart strategy is only
beneficial on rather under-constrained instances. As the in-
stances become more and more constrained, MiniSATs ex-

order holes TR-exp TR-linear BH-exp BH-linear
38 1200 2.47 1.88 0.87 0.90
40 1200 1.36 1.26 0.77 0.68
42 1200 3.33 5.27 0.69 0.76
44 1200 21.29 15.76 5.3 4.11

Table 3: Median time [sec] for QCP instances with 1200
holes where order of the square ranges from 38x38 to 44x44
(100 instances per data point).

order holes TR-exp TR-linear BH-exp BH-linear
44 1150 17.39 15.81 4.55 5.022
44 1200 21.29 15.76 5.3 4.11
44 1250 17.30 23.75 7.16 4.78
44 1300 19.5 21.44 4.54 2.83
44 1350 16.83 16.45 2.96 1.81
44 1400 15.69 31.01 3.23 2.19

Table 4: Median time [sec] for QCP instances of order 44
with the number of holes ranging from 1150 to 1400 (100
instances per data point).

ponential strategy is clearly the better choice. Now, when
comparing against the respective versions of our hybrid
solver, we see that learning favorable value selection heuris-
tics is clearly a good idea: BH-exp and BH-linear are up to 7
times faster than TR-exp and TR-linear. However, as was to
be expected, the runtime improvements become less promi-
nent as the instances become more and more constrained.

What is curious here is that BH-linear actually outper-
forms BH-exp. Intuitively, it does make more sense to restart
more rapidly if one would have expected to have found a so-
lution already when the value heuristic is expected to work
well. Also, faster restarts give more burden to the local
search part of our hybrid algorithm which may be beneficial
on under-constrained problems. However, this is specula-
tion and more research is needed to explain this effect more
fundamentally.

In order to see how the speed-ups scale with instance size,
we conducted another set of experiments whose results are
shown in Table 2. We fixed the clause/variable-ratio at 11.67
and increased the number of variables to 840 in increments
of 60. We observe, the speed-ups gain in momentum for
larger instances, and the hybrid algorithms outperform their
traditional variants by an order of magnitude.

Finally, we wanted to investigate whether our method
could also improve the performance on more structured
problem instances. As our benchmark, we chose a set of
SAT instances that model the Quasigroup Completion Prob-
lem (QCP): Given a square with rows and columns, we
are to fill the cells in each row with a permutation of the
numbers 1 to such that each column also shows a permu-
tation of those numbers. This structure is known as a “Latin
square”. Now, in the QCP some of the cells in the square are
already filled in, and we need to decide whether a comple-
tion to a full Latin square is possible or not. We use the QCP
generator “lsencode” presented in (Kautz et al. 2001) in or-
der to generate instances that exhibit a balanced structure
of holes — which results in SAT instances that are known



to be much harder to solve than random instances with an
arbitrary pattern of holes.

In Table 3, we report the median time in seconds needed
by our four contestants on QCP instances with 1200 holes
and varying order from 38x38 to 44x44. As we keep the
number of holes fixed in this experiment, the instances be-
come both larger and more constrained as we increase the
order. We see that, for this problem instance, the hybrid
methods still consistently outperform their traditional coun-
terparts, even though the speed-ups are not quite as dramatic
as we have seen them before.

The results of our final experiment are summarized in Ta-
ble 4 where we vary the constrainedness of our problem in-
stances again at a fixed size of order 44. Once more we see
clearly that the speed-ups achieved by learning good value
heuristics become larger the more under-constrained our in-
stances get. Eventually, BH-exp outperforms TR-exp by a
factor of 5, and BH-linear outperforms TR-linear by a factor
of 10.

Conclusions
We introduced the idea to augment restarted randomized
complete search algorithms with a simple local search pro-
cedure that learns favorable value-selection heuristics over
the course of several restarts. In some sense this idea can be
viewed as complimentary to the use of no-goods: the latter
store information about parts of the search space that cannot
contain solutions, whereas the value heuristics that we learn
store information about promising parts of the search space.
Experiments on constraint programming and satisfiability
problems showed that the new method can lead to speed-
ups of orders of magnitude on under-constrained problem
instances.

Regarding future work, an anonymous reviewer suggested
to leverage other ways to update the value heuristics. E.g.,
one could keep statistics how often a value is still in the do-
main of a variable after the fail limit is reached. With respect
to domains of size larger than two, one could also keep an
ordering of values for each variable rather than storing the
first choice value only.
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