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This entry provides an overview of experimental design using a Bayesian

decision-theoretic framework. Scientific experimentation requires decisions about

how an experiment will be conducted and analyzed. Such decisions depend

on the goals and purpose of the experiment, but certain choices may be re-

stricted by available resources and ethical considerations. Prior information

may be available from earlier experiments or from conjectures which moti-

vate the investigation. The Bayesian approach provides a coherent framework

where prior information and uncertainties regarding unknown quantities can

be combined to find an experimental design that optimizes the goals of the

experiment.

1 Introduction

Experimentation plays an integral part in the scientific method. Conjectures

and hypotheses are put forth based on the current state of knowledge. Exper-

imental data may be collected to address unknown aspects of the problem.
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Finally, analysis of experimental results may lead to one hypothesis being fa-

vored over others or may lead to new questions and investigations, so that the

process is repeated, with the accumulation of additional knowledge about the

scientific process under investigation.

In some fields of scientific inquiry, physical models can be used to describe the

outcome of an experiment given certain inputs with complete certainty. In the

majority of applications, one cannot describe the scientific phenomena per-

fectly, leading to a distribution on possible outcomes, which can be described

by probability models. For example, in comparing a new therapy to an existing

treatment, individuals receive one of two treatments. The outcome or response

is an indicator of “success” or “failure” of the given treatment, which can be

modeled using Bernoulli distributions with unknown success probabilities. In

psychological or educational testing, the outcome may be scores on a battery

of tests. The outcomes or responses may depend on many other factors besides

the assigned treatment, such as age, education, gender, or other explanatory

variables. Hypotheses or quantities of interest are often phrased in terms of

parameters θ of statistical models which relate the distribution of outcomes

Y to levels of explanatory variables.

In conducting an experiment, there are many design issues to resolve, including

deciding which treatments to study, which factors to control, and what aspects

of an experiment to randomize. Other aspects of experimental design, such as

how many experimental units are needed, how many observations should be
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allocated to each treatment, or what levels of other input or control variables

should be used, have traditionally fallen under the umbrella of statistical de-

sign (see Experimental Design: Overview). Because of costs, ethics, or other

limitations on resources or time, sample sizes are usually restricted, and effi-

cient use of available resources is critical. The purpose of optimal experimental

design is to improve statistical inference regarding the quantities of interest

by the optimal selection of values for design factors under the control of the

investigator, within, of course, the constraints of available resources. Decision

theory (see Decision Theory, Bayesian) provides a mathematical foundation

for the selection of optimal designs. Prior information from earlier related

experiments, observational studies, or subjective beliefs from personal obser-

vations, can be valuable in deciding how to allocate treatments efficiently,

leading to more informative experiments. The Bayesian approach to exper-

imental design provides a formal way to incorporate such prior information

into the design process.

2 Bayesian Optimal Designs

The statistical aspects of an experiment e may be formally described by the

sample space Ω (possible outcomes for the response Y ), the parameter space

Θ, and a probability model pe(y|θ) that represents the distribution of ob-

servable random variables Y indexed by a parameter θ, an element of the

parameter space Θ. Sample sizes, treatment levels, number of treatments, lev-
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els of explanatory variables, or other aspects of the design to be selected are

implicitly contained in pe(Y |θ). The primary goal(s) or terminal decision(s)

of an experiment may include, but are not limited to, estimating θ or other

quantities of interest that are functions of θ, predicting future observations,

selecting among competing models, or testing other hypotheses.

Lindley (1972) presented a two-part decision theoretic approach to experi-

mental design, which provides a unifying theory for most work in Bayesian

experimental design today. Lindley’s approach involves specification of a suit-

able utility function reflecting the purpose and costs of the experiment; the

best design is selected to maximize expected utility. In this framework, an ex-

periment e is selected from the possible collection of experiments E (the first

decision problem). After choosing an experiment e, outcomes Y are observed.

Based on the observed data Y and experiment e, a terminal decision d is se-

lected from possible decision rules D, which addresses the terminal goal(s) of

the experiment. A utility function in the form U(d, θ, e, Y ) encodes the costs

and consequences of using experiment e and decision d with data Y and pa-

rameter θ. Assuming that the goals of an experiment and terminal decision

can be formally expressed through a utility function, the Bayesian solution is

to find the best design and best decision rule that maximize expected utility.

While the process of experimentation followed by inference/decision making

proceeds in time order, it is easier to solve the optimal decision problem in re-

verse time order. The terminal stage decision problem involves finding the best



5

decision rule d given the observed data Y under experiment e that maximizes

the posterior expected utility,

max
d

∫
Θ

U(d, θ, e, Y )p(θ|Y, e)dθ = U(e, Y ). (1)

Here, the expectation or averaging over θ accounts for uncertainty regarding

the unknown θ. The expectation is taken with respect to the posterior dis-

tribution of θ, which properly reflects uncertainty in θ at the terminal stage

after Y has been observed under experiment e.

As the experiment e must be selected before data Y are observed, the second

stage optimization problem involves finding the best experiment e that maxi-

mizes the pre-posterior expected utility. The pre-posterior expected utility is

obtained by integrating the result in (1 ) over possible outcomes in the sample

space Ω,

U(e) =
∫
Ω

U(e, Y )p(Y |e)dY =
∫
Θ

∫
Ω

U(e, Y )pe(Y |θ)p(θ)dθdY. (2)

This integral is with respect to p(Y |e), the marginal distribution of the data

under experiment e, which is obtained by integrating pe(Y |θ) over possible

prior values for θ, described by prior distribution p(θ). The Bayesian solution

to the experimental design problem is provided by the experiment e∗ which

maximizes U(e):

U(e∗) = max
e

∫
Ω

max
d

∫
Θ

U(d, θ, e, Y ) p(θ|y, e) p(y|e)dθdY. (3)

This general formulation can be used to find optimal designs for a single exper-
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iment, and can be extended to optimal selection of a sequence of experiments

and sequential decision making (Lindley, 1972).

3 Choice of Utility Functions

It is important that utility functions be tailored to the goals of a given problem.

Optimal designs for discriminating between two different models may be quite

different than designs for prediction. In a one-way analysis of variance model,

the best design for comparing k treatments to a control group, is not necessar-

ily the optimal design for estimating the effects of k + 1 treatments, as these

experiments have different goals. While taking equal number of observations

in each of the k +1 treatment groups is a possibility, other arrangements may

provide more information, particularly when data from previous experiments

are taken into account. For example, several previous studies may be available

using an existing therapy, but limited information may be available on a new

treatment. Differential costs of treatment also need to be considered, which

may lead to other allocations of sample sizes or choice of experiments. Ethical

considerations may also be incorporated that may constrain the assignment

of treatments (Kadane, 1996).

Many of the papers in Bayesian design have based utility functions on Shan-

non information or quadratic loss. Motivation for these choices is discussed

below. The reader is encouraged to refer to Chaloner and Verdinelli (1995)

for additional details on these criteria, references, and relationships of other
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Bayesian utility functions to standard optimality criteria.

3.1 Shannon Information

Shannon information is appropriate for inference problems regarding θ or func-

tions in θ, without specification of particular hypotheses. The expected utility

function is based on the expected change in Shannon information or equiva-

lently the Kullback-Leibler divergence between the posterior and prior distri-

butions. As the prior distribution does not depend on the design, this simplifies

to the expected Shannon information of the posterior distribution,

U(e) =
∫
Θ

∫
Ω

log{p(θ|U, e)}pe(y|θ)p(θ)dY dθ (4)

thus the design goal is to find the design that maximizes the information

provided by the experiment. In normal linear models with normal prior distri-

butions, this leads to a criterion related to the well known D-optimality from

classical design,

U(e) ∝ log |(XT

e
Xe + R)/σ2| (5)

where Xe is the design matrix for experiment e and R/σ2 is the prior precision

matrix (inverse of the prior covariance matrix).

If prediction of future observations is important, the expected gain in Shannon

information for a future observation Yn+1,

U(e) =
∫

log(p(Yn+1|Y, e)p(Yn+1|Y, e)p(Y |e)dY dYn+1 (6)
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may be relevant. In normal linear models with prediction at a new point xn+1

this leads to

U(e) ∝ log[{xT

n+1(X
T

e
Xe + R)−1xn+1 + 1}−1/σ2], (7)

a Bayesian version of c-optimality.

3.2 Quadratic Loss

Point estimation based on quadratic loss leads to the expected utility function

U(e) = −
∫
Θ

∫
Ω

(θ − θ̂)T A((θ − θ̂) (8)

where A is a symmetric non-negative definite matrix. The matrix A can be

used to weight several different estimation problems where interest may be in

estimating individual components of θ or linear combinations of θ. Under the

normal linear model and normal prior distribution this results in

U(e) = −σ2tr{A(XT

e
Xe + R)−1} (9)

a Bayesian generalization of the A-optimality design criterion.

3.3 Other Utility and Loss Functions

Utility functions may be based on other loss functions besides quadratic loss.

While a quadratic loss function may be appropriate in many cases, there are

times when underestimation of a quantity incurs greater losses than overes-

timation. In such situations, asymmetric loss functions are more appropriate
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for design and inference (Clyde et al., 1996). Discussion of other utility func-

tions related to prediction, hypothesis testing and model discrimination and

applications can be found in Chaloner and Verdinelli (1995).

3.4 Multiple Objectives

An experiment may often have several, possibly competing objectives which

cannot be easily characterized by only one of the standard optimality crite-

ria, and several design criteria may be appropriate. Weighted combinations of

utility functions are still valid utility functions, so optimal designs for multiple

objectives can be handled within the maximizing expected utility framework.

For examples see Verdinelli (1992); Verdinelli and Kadane (1992); Clyde and

Chaloner (1996). A difficulty with this approach is that utilities may be ex-

pressed in different scales which must be accounted for in the choice of weights.

Equivalently, one can find the optimal experiment under one (primary) op-

timality criterion subject to constraints on the minimal efficiency of the ex-

periment under criteria for other objectives. These approaches are a potential

way to address robustness of experimental designs under multiple objectives,

models, and prior distributions.

4 Prior Distributions

Prior elicitation is an important step in designing Bayesian experiments, as

well as analysis. Clyde et al. (1996) use historical data from previous experi-
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ments to construct a hierarchical prior distribution to use for design of future

experiments. Kadane (1996) consider many of the practical issues in subjec-

tive elicitation for clinical trials. Tsai and Chaloner (2001) describe a design

problem where prior distributions are elicited from over 50 clinical experts.

While some researchers may agree to using prior information to help design

an experiment, they may want to have their final conclusions stand on their

own, such as in a frequentist analysis. One of the goals of the experiment may

be to convince a skeptic, who has different beliefs from the designer of the

experiment, that a treatment is effective. In such cases the prior distribution

used in constructing the posterior distribution p(θ|Y e) in the expected utility

(1) for the terminal decision problem may be different than the prior distri-

bution p(θ) used in finding the best design in (2). Etzioni and Kadane (1993)

consider the problem of design when the designer and terminal decision maker

have different prior beliefs corresponding to different decision rules.

5 Calculations

Calculation of expected utility, as in (1-2), requires evaluation of potentially

high dimensional integrals, combined with difficult optimization problems, and

in part, has limited the use of Bayesian optimal design in the practice. In

normal linear models for many of the standard utility functions presented,

the terminal decision rule can be solved in closed form and integrals can be

computed analytically, leaving the optimization problem of finding the best
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experiment e∗. Except in special cases, numerical optimization must often be

used to find the optimal design.

One can often relax the problem in the following way. Finding optimal “ex-

act” designs is often a difficult problem (similar to the traveling salesman

problem). Designs can often be viewed in terms of a collection of support

points (treatment levels) with weights that indicate the number of observa-

tions to be assigned at each support point. An exact design is one where the

number of observations at each support point is an integer. A “continuous”

design is obtained by allowing the solution for the weights to be any real num-

ber. Rather than finding the optimal exact design, in the relaxed problem, the

class of experiments is enlarged to include continuous designs. Mathematically,

finding the optimal design in the continuous problem is easier to solve, and

methods for checking optimality are often feasible. If the solution corresponds

to an exact design, one can then show that it is the globally optimal design.

While continuous designs cannot be used in practice, rounding of continuous

designs often provides exact solutions that are close to optimal.

For nonlinear models, generalized linear models and other “nonlinear” design

problems (i.e. interest in nonlinear functions in an otherwise linear model),

expected utility generally cannot be calculated in closed form and must be

approximated. Many of the results for nonlinear design rely on asymptotic

normal approximations in calculating expectations (Chaloner and Verdinelli,

1995). Integrals may also be approximated by numerical quadrature, Laplace
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integration or Monte Carlo integration. With advances in computing resources,

simulation-based optimal design is now an option, although methods often

have to be designed for each specific application (see Müller (1999) for an

overview of this area). As utility functions in many problems have been se-

lected for their computational tractability, simulation-based design may soon

open the way for greater use of scientific based utility functions that better

match the goals of the experiment. Hierarchical models are becoming increas-

ingly important in modelling latent and random effects and accounting for

subject-to-subject variability, for example. Advances in Bayesian computa-

tion, such as Markov chain Monte Carlo, now mean that inference in such

models can be carried out in real problems. It is becoming easier to accommo-

date hierarchical and other complex models in the design of experiments with

simulation-based optimal design schemes. Clyde et al. (1996) compare ana-

lytic approximations and Monte Carlo based design schemes for a hierarchical

binary regression model using an asymmetric loss function.

6 Applications

Pilz (1991) covers Bayesian design and estimation in linear models, although

from a rather mathematical viewpoint. Atkinson (1996) reviews both classical

and Bayesian optimal design for linear and nonlinear designs, and presents

recent applications such as design for clinical trials. Chaloner and Verdinelli

(1995) provide an thorough review of literature on Bayesian designs and ap-
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plications, which includes experimental design for linear models such as re-

gression and analysis of variance models, factorial and fractional factorial ex-

periments, variance component models, mixtures of linear models, hierarchical

models, nonlinear regression models, binary regression models, design for clin-

ical trials and sequential experimentation. The article includes several worked

out examples, including design for one-way analysis of variance. The article by

Clyde et al. (1996) explores simulation-based design for a hierarchical logistic

regression model, and illustrates how to construct prior distributions based

on previous experiments. Other examples of simulation-based design appear

in Müller (1999). For an example related to social sciences, see Experimental

design: large scale social experimentation.

The area of Bayesian design and analysis for clinical trials in both sequential

and non-sequential designs is an exciting and active area, with many practical

developments. For a survey of literature on sequential design, see the entry

Sequential Statistical Methods. The volume edited by Kadane (1996) describes

a complete case study and discusses many of the critical issues in design and

analysis of clinical trials, considering ethics, prior elicitation, randomization,

treatment allocation, utilities, and decision making. Tsai and Chaloner (2001)

describe the design of two large clinical trials, where prior distributions are

based on eliciting prior opinions from over 50 clinicians. The design problem

involves finding a sample size so that consensus of opinion is met with high

probability, where consensus means that all clinicians would prescribe the
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same treatment based on their posterior opinions after the trial. Other recent

examples include Rosner and Berry (1995); Simon and Freedman (1997).

While the increase use of Bayesian design in applications is especially en-

couraging, specialized software is often required. There is a growing need for

reliable, user-friendly software for Bayesian design so that the methods can be

more accessible and see greater applicability.

7 Example

The following design problem is concerned with choosing a sample size for

an experiment to confirm results from an earlier study. All individuals in the

first study had been diagnosed with breast cancer. Each individual had a

biopsy of tumor tissue analyzed for expression levels of a protein implicated

in progression of the disease; measured protein expression levels were scored

between 0 and 8. All 135 individuals received a chemotherapeutic agent, with

the goal of achieving pre-operative tumor regression. The measured outcome

for each subject was a binary indicator of tumor regression. The researchers

expected that the probability of tumor regression would increase as protein

expression levels increased, and were surprised that the estimated probabilities

reached a maximum around a expression level of 5, and then declined with

higher levels. A logistic regression model (see Multivariate Analysis: Discrete

Variables, Logistic Regression) was used to relate expression levels to clinical

outcome (indicator of tumor regression). The linear predictor in the logistic
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regression model included a term with a parameter θ, such that for θ ≥ 1

the probability of tumor regression increases with expression level, while for

θ < 1 the probability of tumor regression increases up to a level of 5, then

decreases. From a statistical perspective the evidence in favor of θ < 1 was

weak with a Bayes Factor of 1.65 (“not worth a bare mention” on Jeffreys’ scale

of interpretation for Bayes Factors (Kass and Raftery, 1995)). The goal of the

second study is to investigate whether this decline was a chance occurrence.

If the decrease is real, then this may suggest that a higher dose is necessary

at higher expression levels, leading to other experiments.

Spezzaferri (1988) presented a utility function for model discrimination which

can be used in designs for testing H0 : θ ≥ 1 versus H1 : θ < 1. Spezzaferri’s

criterion can also incorporate parameter estimation, but for simplicity only

model discrimination is considered. The expected utility function for model

discrimination can be represented as

U(e) =
∫
Ω

Pr(θ < 1|Y, e)p(Y |e, H1)dY

where p(Y |e, H1) is the marginal distribution of the new data under H1 : θ < 1.

The experimental design involves selecting the total sample size Ne, as indi-

viduals with specific protein expression levels cannot be selected in advance

due to costs of obtaining the results. The expected utility versus negative costs

(-$2000 ×N) is illustrated in Figure 1, and was constructed using smoothing

of utilities generated using Monte Carlo experiments (Müller, 1999). While
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analytic calculations are intractable, calculation of utilities for this model are

straightforward via simulation. The marginal distribution for Y given an ex-

periment with sample size N must incorporate averaging over different config-

urations of expression levels among the N subjects and the unknown param-

eters in the logistic regression model. Configurations of size N are generated

using a multinomial distribution with a probability vector π. The expression

level distribution from the first study is used to construct a conjugate Dirichlet

prior distribution for π. Data from the previous experiment is used to con-

struct the prior distribution for θ and other parameters in the logistic model,

and construct the predictive distribution of the new data given a vector of

new expression levels. For each set of simulated data under the new study

Pr(θ < 1|Y, e) is calculated, which incorporates both the old data (in the

prior distribution) and the new data. For each sample size N , protein ex-

pression levels and outcomes are repeatedly generated from their predictive

distributions, and the average of Pr(θ < 1|Y, e) over experiments e with the

same sample size Ne provides an estimate of the expected utility for e. These

averages were smoothed in order eliminate Monte Carlo variation in their

estimates and are plotted in Figure 1.

For the above criterion, expected utility will increase with the total sample

size, and as formulated the design problem has an infinite solution. Each point

on the curve (Figure 1) is a combination of U(e) and cost. Expected utility

has a maximum at 1, which is obtained as N goes to infinity (and with infinite
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costs). The experiment which minimizes costs is given by N = 0, where the

posterior probability that θ < 1 given the data from the previous study was

0.85. The researchers want to minimize total costs, but at the same time

find a sample size such that the expected utility is above 0.95 (corresponding

to a Bayes factor above 3, which would provide strong evidence in favor of

H1). Combining costs and model discrimination, the combined expected utility

function can be written as

U(e)− λ($2000 ∗Ne) (10)

where λ reflects the tradeoff between information for discriminating between

the two hypotheses and costs of subjects. In general, it is difficult to specify

these tradeoffs explicitly, as the different components are often measured in

different units. Verdinelli and Kadane (1992) illustrate choosing λ when there

are tradeoffs between two components in a utility function. If the expected util-

ity for model discrimination is selected as 0.95, then the corresponding cost is

$421,327 (the point represented by the triangle in Figure 1), and λ corresponds

to the negative of the slope of the curve at this point (λ = 0.0001961/$2000).

Figure 2 shows the combined utility given by equation (10) using this value of

λ. The maximum (marked by the triangle) corresponds to an optimal sample

size of 211. For utilities which combine more than two objectives, graphical

solutions may not be feasible, but a constrained optimization approach can

be used to determine the tradeoff parameters (Clyde and Chaloner, 1996).
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8 Summary

Bayesian experimental design is a rapidly growing area of research, with many

exciting recent developments in simulation-based design and a growing number

of real applications, particularly in clinical trials. By incorporating prior infor-

mation, the Bayesian approach can lead to more efficient use of resources with

less-costly and more informative designs. Utility functions can be explicitly

tailored to the given problem and can address multiple objectives. Models,

prior distributions, and utility functions have often been chosen to permit

tractable calculations. However, with increased computing power, simulation-

based methods for finding optimal designs allow for more realistic model, prior

and utility specifications. Optimal designs have often been criticized because

the number of support points in the design equal the number of parameters

(in nonlinear Bayesian design this is not always the case), which does not per-

mit checking the assumed model form. Model uncertainty is almost always an

issue in inference, and certainly at the design stage. Bayesian model averaging

has been extremely successful in accounting for model uncertainty in inference

problems, and has great potential for use in Bayesian experimental design for

constructing more robust designs.
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Figure 1

Smoothed expected utility for model discrimination versus costs; the points indicate

simulated expected utilities which exhibit Monte Carlo variation
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Combined utility for model discrimination with a penalty for costs; the triangle

indicates the combined utility at the optimal design


