
Algorithms for Pure Nash
Equilibria in Weighted
Congestion Games

Panagopoulou and Spirakis

Review by Chris Fawcett
CPSC 536H
April 2, 2008

Outline

• Game theory background.

• Bird’s eye view of the paper.

• Weighted congestion games.

• Overview of the algorithm.

• Experimental design and empirical results.

• Comments and criticism.

Game Theory

• Models interaction between multiple agents
in a structured system.

• Defined by:

• A set of players.

• A set of strategies for each player.

• A payoff function for each player (a
function of the strategy chosen).

Game Theory

• At each step of a game, each player is
allowed to change strategies.

• Each player aims to maximise their own
payoff function.

Game Theory

• A pure strategy for a given player uses only
a single strategy at each step from the
available set.

• A mixed strategy for a given player is a
probability distribution over the set of
available strategies.

• This paper only deals with pure strategies.

Game Theory

• A Nash Equilibrium is where:

• No player can change strategies to
improve their own payoff function.

• Must assume the strategies of other
players stay fixed.

Game Theory

• A Nash equilibrium is guaranteed to exist
when players can use mixed strategies.

• If all players use pure strategies, a pure
Nash equilibrium may exist.

Bird’s Eye View

• Weighted congestion games model the
experience of users in a shared network.

• A pure Nash equilibrium always exists in
these games.

• No mathematical proof that a pure Nash
Equilibrium is computable in polynomial
time for all instances.

Congestion Games

• Given a directed network G = (V,E)

• Every player wants to route traffic from a
source node to a sink node in the network.

• If these source/sink nodes are the same
for every player, we have a single
commodity network congestion game.

• Strategy sets assumed to be equal.

Congestion Games
Algorithms for Pure Nash Equilibria in Weighted Congestion Games • 11

Fig. 4. Network 4.

Fig. 5. Network 5.

Fig. 6. Network 6.

paths, each of different length. Finally, Network 9 is an arbitrary nonlayered
network.

6.2.2 Distributions of Weights. For each network, we simulated the algo-
rithm Nashify() for n = 10, 11, . . . , 100 users. Obviously, if users’ weights are
polynomial in n, then the algorithm will definitely terminate after a polynomial
number of steps. Based on this fact, as well as on Proposition 4.1, we focused
on instances where some usershave exponential weights. More specifically, we

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Congestion Games

• Each player has a set of paths from their
source node to their sink node.

• These are the strategies.

• The payoff for a given strategy is based on
the the number of players sharing edges.

Weighted Version

• Each player can now demand more than
one unit of traffic on a link.

• The delay on an edge is now a function of
the demands of each user sharing that
edge.

The Problem

• This paper considers only weighted, single-
commodity network congestion games.

• Edge delays are allowed to be either
polynomial or exponential in their loads
(the sum of the demands).

Theoretical Results

• Proof is given that at least one pure Nash
equilibrium always exists for these games.

• One of these equilibria can be computed in
time polynomial in the number of players
and the magnitude of the weights.

Theoretical Results

• It is conjectured by the authors that a pure
Nash equilibrium is computable in
polynomial time.

• Even when the edge delays are
exponential.

The Algorithm

Algorithms for Pure Nash Equilibria in Weighted Congestion Games • 7

COROLLARY 3.2. For any weighted single-commodity network congestion
game with resource delays equal to their loads, at least one pure Nash equi-
librium exists and can be computed in pseudopolynomial time.

PROOF (SKETCH). The b-potential function establishing the result is

!(") =
∑

e∈E
(θe("))2 +

n∑

i = 1

|"i|w2
i (1)

where, ∀i ∈ N , bi = 1
2wi

.

In Section 4, we present the pseudopolynomial algorithm Nashify() for the com-
putation of a pure Nash equilibrium for a weighted single-commodity network
congestion game, while in Section 6 we provide experimental evidence that such
a pure Nash equilibrium can actually be computed in polynomial time, as our
following conjecture asserts:

CONJECTURE 3.3. Algorithm Nashify() converges to a pure Nash equilibrium
in polynomial time.

4. THE ALGORITHM

The algorithm presented below converts any given nonequilibrium configura-
tion into a pure Nash equilibrium by performing a sequence of greedy selfish
steps. A greedy selfish step is a user’s change of her current pure strategy (i.e.,
path) to her best pure strategy with respect to the current configuration of all
other users. By Shortest Pathi("−i) we denote the path that minimizes the la-
tency of user i, with respect to the configuration of all other users.

Algorithm Nashify(G, (wi)i∈N , ")

Input: $ network G = (V , E) with a unique source–destination pair (s, t)
$ a set N = {1, . . . , n} of users, each user i having weight wi

Output: configuration " which is a pure Nash equilibrium

1. begin
2. select an initial configuration " = ("1, . . . , "n)
3. while ∃ user i that is unsatisfied
4. "i := Shortest Pathi("−i)
5. return "

6. end

The above algorithm starts with an initial allocation of each user i ∈ N on
an s − t path "i of the single-commodity network G. The algorithm iteratively
examines whether there exists any user that is unsatisfied. If there is such a
user, say i, then user i performs a greedy selfish step, i.e., she switches to the s−t
path that minimizes her latency, given the configuration "−i. The existence of
the potential function (1) assures that the algorithm will terminate after a finite
number of steps at a configuration from which no user will have an incentive
to deviate, i.e., at a pure Nash equilibrium.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Experimental Design

• Nashify() was implemented in C++ using
data structures in the LEDA library.

• Nine different networks of varying
structure were used.

• Nashify() was run on each network, with
{10,11,...,100} players.

Experimental Design

• Two different methods for choosing an
initial set of strategies.

• Four different distributions of weights.

Initial Strategies

• Random Allocation

• Each user assigns traffic on an s-t path
chosen uniformly at random.

• Shortest-Path

• Users sorted in non-increasing order of
their demands.

• Each selects the best possible s-t path, in
order.

Weight Distributions

• Four different allocations of weights were examined.

1. 10% of players have weight 10n/10 and 90% of players have
weight 1.

2. 50% of players have weight 10n/10 and 50% of players have
weight 1.

3. 90% of players have weight 10n/10 and 10% of players have
weight 1.

4. Each player has a weight selected uniformly at random
from [1, 10n/10].

Networks Used
10 • P. N. Panagopoulou and P. G. Spirakis

Fig. 1. Network 1.

Fig. 2. Network 2.

Fig. 3. Network 3.

1. Random allocation: Each user assigns its traffic uniformly at random on an
s − t path.

2. Shortest-path allocation: Users are sorted in nonincreasing order of their
weights, and the maximum weighted user among those that have not been
assigned a path yet selects a path that minimizes her latency, with respect
to the loads on the edges caused by the users of larger weights.

Note that, in our implementation, the order in which users are checked for
satisfaction (line 3 of algorithm Nashify()) is the worst possible, i.e., we sort
users in nondecreasing order of their weights and, at each iteration, we choose
the minimum weighted user among the unsatisfied ones to perform a greedy
selfish step. By doing so, we force the potential function to decrease as little
as possible and thus we maximize the number of iterations, so as to be able to
better estimate the worst-case behavior of the algorithm.

6.2 Experimental Setup

6.2.1 Networks. Figures 1–9 show the single commodity networks consid-
ered in our experimental evaluation of algorithm Nashify(). Network 1 is the
simplest possible layered network and Network 2 is its generalization. Observe
that the number of possible s − t paths of Network 1 is 3, while the number of
possible s− t paths for Network 2 is 35. Network 3 is an arbitrary dense layered
network and Network 4 is the 5 × 5 grid. Networks 5 and 6 are !-layered net-
works with the property that layers 1, 2, . . . , ! − 1 form a tree rooted at s and
layer ! comprises all the edges connecting the leaves of this tree with t. Network
7 is the clique of 9 nodes, while Network 8 is a 16-node network with 15 s − t

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Networks Used
Algorithms for Pure Nash Equilibria in Weighted Congestion Games • 11

Fig. 4. Network 4.

Fig. 5. Network 5.

Fig. 6. Network 6.

paths, each of different length. Finally, Network 9 is an arbitrary nonlayered
network.

6.2.2 Distributions of Weights. For each network, we simulated the algo-
rithm Nashify() for n = 10, 11, . . . , 100 users. Obviously, if users’ weights are
polynomial in n, then the algorithm will definitely terminate after a polynomial
number of steps. Based on this fact, as well as on Proposition 4.1, we focused
on instances where some usershave exponential weights. More specifically, we

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games • 11

Fig. 4. Network 4.

Fig. 5. Network 5.

Fig. 6. Network 6.

paths, each of different length. Finally, Network 9 is an arbitrary nonlayered
network.

6.2.2 Distributions of Weights. For each network, we simulated the algo-
rithm Nashify() for n = 10, 11, . . . , 100 users. Obviously, if users’ weights are
polynomial in n, then the algorithm will definitely terminate after a polynomial
number of steps. Based on this fact, as well as on Proposition 4.1, we focused
on instances where some usershave exponential weights. More specifically, we

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Networks Used

12 • P. N. Panagopoulou and P. G. Spirakis

Fig. 7. Network 7.

Fig. 8. Network 8.

Fig. 9. Network 9.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

12 • P. N. Panagopoulou and P. G. Spirakis

Fig. 7. Network 7.

Fig. 8. Network 8.

Fig. 9. Network 9.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

12 • P. N. Panagopoulou and P. G. Spirakis

Fig. 7. Network 7.

Fig. 8. Network 8.

Fig. 9. Network 9.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Results

• Evidence suggests polynomial scaling on
these nine networks.

• The shortest path allocation appears to
dominate the random allocation.

• The authors conjecture that Nashify() will
find a pure Nash equilibrium in a
polynomial number of steps for any
instance.

Results

• For weight distributions 1-3, #steps/n
bounded above by log(W).

• Implies O(nlog(W)) runtime.

• For weight distribution 4, #steps/n bounded
above by nlog(W).

• Implies O(n2log(W)) runtime.

Algorithms for Pure Nash Equilibria in Weighted Congestion Games • 15

Fig. 13. Experimental results for Network 4.

Fig. 14. Experimental results for Network 5.

ACM Journal of Experimental Algorithmics, Vol. 11, Article No. 2.7, 2006.

Some Criticism

• May want to repeat outside of the linear
spread of players (10-100).

• Perhaps try n=200 and n=500 just to
confirm.

• The networks tested had a narrow spread
in terms of number of nodes.

• What happens if we double the number
of nodes in the same structures?

Some Criticism

• The experimental environment is never
described in any detail whatsoever.

• The computation time is measured in
terms of steps, with each step assumed to
be a single greedy path selection.

• Should at least mention the basic machine
characteristics for reproducibility.

Some Criticism

• The log(W) comparison for each network
was different.

• Compared against log(W), nlog(W),
2log(W), (n/3)log(W).

• Made comparing between networks
difficult.

Some Criticism

• This appears to be a manual guess of the fit
for each network structure.

• Would have been more informative to do
an automatic fit and compare between the
structures.

Questions?

