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Game Theory

® Models interaction between multiple agents
in a structured system.

® Defined by:
® A set of players.
® A set of strategies for each player.

® A payoff function for each player (a
function of the strategy chosen).




Game Theory

® At each step of a game, each player is
allowed to change strategies.

® Fach player aims to maximise their own
payoff function.




Game Theory

® A pure strategy for a given player uses only
a single strategy at each step from the
available set.

® A mixed strategy for a given player is a
probability distribution over the set of
available strategies.

® This paper only deals with pure strategies.




Game Theory

® A Nash Equilibrium is where:

® No player can change strategies to
improve their own payoff function.

® Must assume the strategies of other
players stay fixed.




Game Theory

® A Nash equilibrium is guaranteed to exist
when players can use mixed strategies.

e |f all players use pure strategies, a pure
Nash equilibrium may exist.




Bird’s Eye View

® Weighted congestion games model the
experience of users in a shared network.

® A pure Nash equilibrium always exists in
these games.

® No mathematical proof that a pure Nash
Equilibrium is computable in polynomial
time for all instances.




Congestion Games

® Given a directed network G = (V,E)

® Every player wants to route traffic from a
source node to a sink node in the network.

® |f these source/sink nodes are the same
for every player, we have a single
commodity network congestion game.

® Strategy sets assumed to be equal.




Congestion Games




Congestion Games

® Each player has a set of paths from their
source node to their sink node.

® These are the strategies.

® The payoff for a given strategy is based on
the the number of players sharing edges.




VWWeighted Version

® Fach player can now demand more than
one unit of traffic on a link.

® The delay on an edge is now a function of
the demands of each user sharing that

edge.




The Problem

® This paper considers only weighted, single-
commodity network congestion games.

® Edge delays are allowed to be either

polynomial or exponential in their loads
(the sum of the demands).




Theoretical Results

® Proof is given that at least one pure Nash
equilibrium always exists for these games.

® One of these equilibria can be computed in
time polynomial in the number of players
and the magnitude of the weights.




Theoretical Results

® |t is conjectured by the authors that a pure
Nash equilibrium is computable in
polynomial time.

® Even when the edge delays are
exponential.




The Algorithm

Algorithm Nashify(G, (w;);cn, @)

Input: A network G = (V, E') with a unique source—destination pair (s, ¢)
A aset N ={1,...,n}of users, each user i having weight w;
Output: configuration @ which is a pure Nash equilibrium

begin
select an initial configuration w = (wq, ..., @,)
while 3 user i that 1s unsatisfied
w; = Shortest_Path;(w_;)
return o
end




Experimental Design

® Nashify() was implemented in C++ using
data structures in the LEDA library.

® Nine different networks of varying
structure were used.

® Nashify() was run on each network, with
{10,11,...,100} players.




Experimental Design

® [wo different methods for choosing an
initial set of strategies.

® Four different distributions of weights.




Initial Strategies

® Random Allocation

® Each user assigns traffic on an s-t path
chosen uniformly at random.

® Shortest-Path

® Users sorted in non-increasing order of
their demands.

® Fach selects the best possible s-t path, in
order.




Weight Distributions

® Four different allocations of weights were examined.

10% of players have weight 10™'% and 90% of players have
weight |.

50% of players have weight 10"!% and 50% of players have
weight |.

90% of players have weight 10"'% and 10% of players have
weight |.

Each player has a weight selected uniformly at random

from [1, 10"1°].
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Fig. 5. Network 5.

Fig. 4. Network 4.




Networks Used




Results

® Evidence suggests polynomial scaling on
these nine networks.

® The shortest path allocation appears to
dominate the random allocation.

® The authors conjecture that Nashify() will
find a pure Nash equilibrium in a

polynomial number of steps for any
Instance.




Results

® For weight distributions |-3, #steps/n
bounded above by log(WV).

® |mplies O(nlog(W)) runtime.

® For weight distribution 4, #steps/n bounded
above by nlog(W).

® Implies O(n%log(W)) runtime.
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Fig. 13. Experimental results for Network 4.
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Some Criticism

® May want to repeat outside of the linear
spread of players (10-100).

® Perhaps try n=200 and n=500 just to
confirm.

® The networks tested had a narrow spread
in terms of number of nodes.

® What happens if we double the number
of nodes in the same structures?




Some Criticism

® The experimental environment is never
described in any detail whatsoever.

® [he computation time is measured in
terms of steps, with each step assumed to
be a single greedy path selection.

® Should at least mention the basic machine
characteristics for reproducibility.




Some Criticism

® The log(VV) comparison for each network
was different.

® Compared against log(VV), nlog(W),
2log(W), (n/3)log(WV).

® Made comparing between networks
difficult.




Some Criticism

® This appears to be a manual guess of the fit
for each network structure.

® Would have been more informative to do
an automatic fit and compare between the
structures.




Questions!



