
Learning Dynamic Algorithm Portfolios

Matteo Gagliolo J̈urgen Schmidhuber

Technical Report No. IDSIA-02-07
February 2, 2007

IDSIA / USI-SUPSI
Istituto Dalle Molle di studi sull’intelligenza artificiale
Galleria 2, 6928 Manno, Switzerland

IDSIA was founded by the Fondazione Dalle Molle per la Qualità della Vita and is affiliated with both the Università della Svizzera italiana (USI)
and the Scuola unversitaria professionale della Svizzera italiana (SUPSI).

Both authors are also affiliated with the University of Lugano, Faculty of Informatics (Via Buffi 13, 6904 Lugano, Switzerland). J. Schmidhuber is
also affiliated with TU Munich (Boltzmannstr. 3, 85748 Garching, München, Germany).
This work was supported by SNF grant 200020-107590/1.
This article will appear in the AI & MATH 2006 Special Issue ofthe Annals of Mathematics and Artificial Intelligence, published by Springer.
The original publication is available atwww.springerlink.com (DOI 10.1007/s10472-006-9036-z). This version was compiled using
lower resolution images.

Technical Report No. IDSIA-02-07 1

Learning Dynamic Algorithm Portfolios

Matteo Gagliolo J̈urgen Schmidhuber

February 2, 2007

Abstract

Algorithm selection can be performed using a model of runtime distribution,learned during a prelim-
inary training phase. There is a trade-off between the performance ofmodel-based algorithm selection,
and the cost of learning the model. In this paper, we treat this trade-off inthe context of bandit problems.
We propose a fully dynamic and online algorithm selection technique, with no separate training phase: all
candidate algorithms are run in parallel, while a model incrementally learns their runtime distributions.
A redundant set oftime allocatorsuses the partially trained model to propose machine time shares for
the algorithms. A bandit problem solver mixes the model-based shares witha uniform share, gradually
increasing the impact of the best time allocators as the model improves. Wepresent experiments with a
set of SAT solvers on a mixed SAT-UNSAT benchmark; and with a set ofsolvers for the Auction Winner
Determination problem.
Keywords: algorithm selection, algorithm portfolios, online learning, life-long learning,bandit problem,
expert advice, survival analysis, satisfiability, constraint programming.

1 Motivation

Most problems in AI can be solved by more than one algorithm. Most algorithms feature a number of
parameters that have to be set. Both choices can dramatically affect the quality of the solution, and the time
spent obtaining it. Algorithm Selection [62], orMeta-Learning[75] techniques, address these questions
in a machine learning setting. Based on a training set of performance data for a large number of problem
instances, a model is learned that maps (problem, algorithm) pairs to expected performance. The model
is later used to select and run, for each new problem, only thealgorithm that is expected to give the best
results.

A generalization of algorithm selection, inspired by theAlgorithm Portfolioparadigm [33], is to use
the model to select asubsetof the available algorithms, and run them in parallel until the fastest one solves
the problem. For some classes of algorithms, with a “heavy-tailed” runtime distribution, the execution of
multiple parallel runs differing only for the random seed, can actually have an advantage over a single run
[25]. In any case, only a fraction of the computation time will be spent on the fastest solver.

These approaches, though preferable to the far more popular“trial and error”, pose a number of prob-
lems:

1. Training set representativeness.Problem instances encountered during the training phase are as-
sumed to be statistically representative of successive ones. This hypothesis is practically unavoidable
for any model-based selection technique, if referred to a single instance.

2. Static selection.The actual algorithm performance on a given problem is assumed to be predictable
with sufficient precision before evenstarting the algorithm. This assumption is often violated by
stochastic algorithms, whose performance can exhibit large fluctuations across different runs (see,
e. g., Sect. 7.1, or [25]).

Technical Report No. IDSIA-02-07 2

3. Training cost. Generating the training data obviously requires solving each training problem repeat-
edly, at least once for each of the algorithms. The computational cost of this initial training phase is
neglected, even though it can be high enough to make algorithm selection impractical.

One common trait of the problems listed above, is that they can be related to the lack of feedback
information from the actual execution of the chosen algorithms. Such adynamicfeedback can be used to
update the model’s predictions, and adapt the computational resource allocation accordingly, allowing for
a finer distinction among problem instances (problem 2). It can also be used to guide the training phase
itself, avoiding exceedingly long runs of inefficient algorithm/problem combinations (problem 3).

A step in this direction can be taken using aDynamic Algorithm Portfolio(DAP) [16, 18, 58, 19].
Instead offirst choosing a portfolio andthen running it, a DAP iteratively allocates a time slice that is
shared among all the available algorithms, and updates the relative algorithm priorities, based on their
current state, in order to favor the most promising ones. To this aim, a model is needed to map (problem,
algorithm, current algorithm state) triples to theexpected timeto solve the problem.

To reduce training cost, the artificial boundary between training and usage should be dropped, adopting
anonline learning technique: after the first problem is solved, the model is updated, and used to guide the
solution of the next problem.

In previous work, we termed this approachAdaptive Online Time Allocation(AOTA). In [16], we
presented anoblivious time allocator, with no knowledge transfer across problem instances. Runtime
predictions, evaluated by extrapolating recent performance improvements, were mapped to time allocation
for the next time slice, based on a simple “ranking” heuristic. In [18] we proposed a method for learning
a probabilistic modelonline, while solving a problem sequence. The model was conditioned on features
of both the problems and the algorithms (parameter values, current state). The downside of introducing
knowledge transfer across problem instances was that the model would obviously be unreliable during
the initial portion of the problem sequence. Time was then allocated according to a modification of the
ranking heuristic: the first problem was solved with a uniform share, and the impact of the model on
the time allocation was gradually increased through the sequence of tasks, according to a fixed schedule,
independent of model performance.

In this work we keep the samedynamic onlinephilosophy, but we separate the two problems of allocat-
ing time based on runtime predictions, and grading the impact of model-based allocation, giving a sound
solution for both. In the following we briefly present some related work (Sect. 2), distinguishing between
static techniques, in which the selection is performed before runtime, anddynamicones, where the selec-
tion process is somehow adapted during the actual executionof the algorithms. We then introduce some
simple concepts from survival analysis, which are relevantto our method, and to algorithm performance
modeling in general. Section 4 describes an ideal implementation of a static portfolio, based on exact
knowledge of the runtime distributions of the algorithms, illustrating different optimality criteria to share
machine time among the algorithms. Section 5 introduces thedynamicextension, and the online learning
scheme, discussing the exploration-exploitation trade-off determined by the online setting. In Section 6,
we address this trade-off in the context of bandit problems [1], and present our new time allocator (TA)
GAMBLE TA. Sect. 7 analyzes experimental results on two challenging algorithm selection problems. In
the first set of experiments, a local search and a complete SATsolvers are controlled during the solution
of a sequence of random satisfiable and unsatisfiable problems. In the second, we compare with results
of a static algorithm selection approach [44], on a set of combinatorial Auction Winner Determination
problems. Sect. 8 discusses originality, limitations, andviable improvements of GAMBLE TA.

2 Related work

Many algorithm selection, or parameter tuning, techniques, are tailored to a specific algorithm, and often
present similar interesting solutions across different fields of research. We will give some examples of

Technical Report No. IDSIA-02-07 3

these, but we will keep our focus on “black box” techniques, that can be applied in more general settings.
We will first introduce some naming conventions. A first distinction needs to be made amongdecision

problems, in which a binary criterion for recognizing a solution is available; andoptimisationproblems,
in which different levels of solution quality can be attained, measured by anobjectivefunction [30]. A
decision problem can be viewed as an optimisation problem with a binary objective function; an optimi-
sation problem can be turned into a decision problem, if a reachable target value of performance can be
set in advance. Literature on algorithm selection is often focused on one of these two classes of prob-
lems. The selection is normally aimed at maximizing performance quality for optimisation problems; and
at minimizing solution time for decision problems.

The selection among different algorithms can be performed once for an entire set of problem instances
(per setselection, following the terminology of [34]); or repeatedfor each instance (per instanceselection).
A further independent distinction [58] can be made amongstaticalgorithm selection, in which any decision
on the allocation of resources precedes algorithm execution; anddynamic, or reactive, algorithm selection,
in which the allocation can be adapted during algorithm execution.

Another orthogonal feature is related to learning. Here we borrow from the machine learning termi-
nology, distinguishing betweenoffline or batch learning techniques, in which there is a separate training
phase, after which the selection criteria are kept fixed; andonline1 or life-long learning [61] techniques, in
which the criteria are updated at every instance solution.Obliviousalgorithm selection techniques do not
transfer any knowledge across different problem instances.

2.1 Static algorithm selection

A seminal paper in this field is [62], in which offline, per instance algorithm selection is first advocated, both
for decision and optimisation problems. More recently, similar concepts have been proposed, with different
terminology (algorithmrecommendation, ranking, model selection), by the Meta-Learningcommunity
[42, 15, 75, 23]. For example, in [69], different values for the kernel parameter of a Support Vector Machine
[74] are evaluated on different training data sets. Each data set is described through a set of features. For
an unseen data set, the features are first evaluated, and arankingof the kernel parameter values is induced,
using ak-nearest-neighbor estimate of performance, based on distance in feature space between the new
data set, and the ones used for training.

Usually, meta-learning research deals with optimisation problems, and is focused on maximizing solu-
tion quality, without taking into account the computational aspect. An interesting exception is offered by
landmarkingtechniques [60] in which the performances of fast base-learners, not included in the algorithm
set, are used as task features, in order to obtain a better discrimination of task difficulty.

Works onEmpirical Hardness Models[44, 56, 55, 45] are instead applied to decision problems, and
focus on obtaining accurate models of runtime performance,conditioned on numerous features of the
problem instances, as well as on parameters of the solvers [34, 35]. The models are used to analyze this
performance, or to generate harder benchmarks, but also to perform algorithm selection on a per instance
basis. Online selection is advocated in [34].

Literature on algorithm portfolios [33, 24, 59] is usually focused on choice criteria for building the set
of candidate solvers, such that their areas of good performance don’t overlap; and optimal static allocation
of computational resources among elements of the portfolio.2

Other interesting research areas, in which both solution quality and computational aspects are taken
into account, includeanytime algorithm scheduling[8], and time limited planning[32, 64, 65, 14]), in
which time is allocated sequentially to a set of planning primitives (e. g., finding the path to a goal) and

1In previous works [16, 18], the terms “offline” and “online” were used to distinguish among static and dynamic approaches, but
we found this nomenclature to be misleading, especially for the machine learning community.

2With the term algorithm portfolio, we always refer to the parallel execution of (a subset of) the members of the portfolio. In other
works (e. g., [44]), the term is also referred to the algorithm set from which single algorithm selection is performed.

Technical Report No. IDSIA-02-07 4

the subsequent actions exploiting the decisions taken (e. g., following the chosen path), in order to obtain a
good compromise between solution quality and time spent computing it.

Bandit problemsolvers (BPS) [6, 1], can in principle be applied to static per set algorithm selection,
considering each available algorithm as an arm and runtime as a loss, to be minimized (see also Sect. 2.2,
Sect. 6, [21, 17]). As an alternative, one can consider the use of a BPS to solve selection problems on a
per instance basis, in an oblivious setting, as in [11, 12, 72], where theMax K-armed bandit problemis
presented, and solvers for this game are used to maximize performance quality.

In [21], we presented an online method for learning a per set estimate of an optimal restart strategy
(GAMBLE R). The method consists in alternating the universal strategy of [50], and an estimated optimal
strategy, again based on [50]. The estimate is performed according to a model of runtime distribution on
the set of instances, updated at every solution. Here the bandit problem solver is used at an upper level, to
allocate runs of the two strategies: a similar approach willbe taken in this work, to weight the decisions of
different time allocators (Sect. 6).

The classification of Racing Algorithms [52, 7] as static or dynamic depends on the definition of a prob-
lem instance. In these works, the algorithm set contains different parametrizations of a given supervised
algorithm. Each is repeatedly run on a sequence of increasingly large leave-one-out training sets, which
can be seen as a sequence of related problems; after a problemis solved, badly performing algorithms
are discarded if statistically sufficient evidence is gathered against them, such that machine time is shared
among fewer algorithms on next problem.

Search in program space can also be formalized as an algorithm selection problem. For example,
the algorithm set of the Optimal Ordered Problem Solver [67]may include all programs of a universal
programming language. Time is allocated to these programs proportionally to a probability distribution
that is updated when a problem is solved. Other interesting program search techniques include Genetic
Programming [13] and Probabilistic Incremental Program Evolution [66].

2.2 Dynamic Algorithm Selection

A number of interesting dynamic exceptions to the static selection paradigm have been proposed recently.
In [31], algorithm performance modeling is based on the behavior of the candidate algorithms during
a predefined amount of time, called theobservational horizon. Each algorithm is run on each training
problem, with a high enough cutoff time, and features are extracted from the dynamic data recorded during
this initial period. Runs are distinguished as belonging totwo classes of “short” and “long” experiments,
using the median of runtimes as a decision threshold. A mapping is learned from the static and dynamic
features to the correct classification labels. The same approach is used in [40] to implement dynamic
context-sensitive restart policies for SAT solvers: the authors assume that the runtime distribution of their
algorithm is not known in advance, but belongs to a known finite set of distributions, from which the correct
one can be discriminated based on dynamic features.

Algorithmic chaining[9] executes a predetermined sequence of Constraint Programming solvers, using
an ad-hoc mechanism to decide when to switch to next algorithm, according to a prediction of “thrashing”
behavior, given the current state. This can be viewed as a dynamic portfolio, but all its components are
fixed, designed based on a-priori expertise.

In anytime algorithm monitoring[26], the dynamic performance profileof a planning technique is
updated according to its performance, in order to stop the planning phase when further improvements in
the planned action sequence are not worth the time spent evaluating them. Also in this case, both the quality
of a solution and its computational cost are taken into account.

In [70], the author presents a collection of ideas for solving sequences of time-limited optimisation
problems by searching in a space of problem solving techniques, allocating time to them according to their
probabilities, and updating the probabilities according to positive and negative results.

In a Reinforcement Learning [38] setting, algorithm selection can be formulated as a Markov Decision
Process: in [43], the algorithm set includes sequences of recursive algorithms, formed dynamically at

Technical Report No. IDSIA-02-07 5

run-time solving a sequential decision problem, and a variation of Q-learning is used to find a dynamic
algorithm selection policy; in [58, 57], from which we borrow some terminology, a set of deterministic
algorithms is considered, and, under some limitations, static and dynamic schedules are obtained, based on
dynamic programming. Success Story algorithms [68] can undo policy modifications that did not improve
the reward rate. A simple reinforcement learning feedback mechanism is used at runtime in [3] to adapt
the size of the prohibition list of a tabu-search algorithm.

Some dynamic selection methods areoblivious, i. e., are characterized by the absence of any knowledge
transfer across problem instances.

The “parameterless GA” [27] may be viewed as a specialized heuristic for dynamic selection. It consists
of a sequence of simple generational Genetic Algorithms [28], with exponentially spaced population sizes,
generated and executed according to a fixed interleaving schedule that assigns more runtime to smaller
populations. Once a small population converges, or a largerone achieves a higher average fitness, the
small one is discarded.

“Low-knowledge” approaches can be found in [4, 10], in whichvarious simple indicators of current
solution improvement are used for algorithm selection, in order to achieve the best solution quality within a
given time contract. In [4], all available algorithms are run for a fraction of the contract, and a performance
predictor is then used to select a single one for the remaining time. In [10], the selection process is iterated:
machine time shares are based on a recency-weighted averageof performance improvements. This latter
oblivious technique is actually a simple solver for time-varying bandit problems, here applied on a per
instance basis.

In [16] we adopted a similar approach. We considered algorithms with a scalar state, that had to reach
a target value. The time to solution was estimated based on a shifting-window linear extrapolation of the
learning curves: a recency-weighted average was tried at first, but its results were not competitive with the
comparison term [27].

3 Algorithm Survival Analysis

This paper is focused ondecisionproblems, in which a binary criterion for recognizing a solution is avail-
able. In this case, performance modeling aims at predictingtheruntime, i. e., the time to solve a problem.
More precisely, consider a randomized algorithm solving a given problem instance, or, equivalently, a
randomized or deterministic algorithm solving a randomly selected problem instance. In both cases, the
runtime spent before finding a solution can be treated as a random variableT , described by itscumulative
distribution function (CDF),F (t) = Pr{T ≤ t}, F : [0,∞) → [0, 1], representing the probability that a
solution is found within a timet. This function is referred to as theruntime distribution(RTD) in literature
about algorithm performance modeling (see, e. g., [30]).

A large corpus of research, known under the name ofsurvival analysis3 [37, 53], is devoted to the
modeling of events in time. In this section, we briefly reviewthe basic concepts and terminology in these
fields, and discuss their application to algorithm performance modeling.

We start by noting a difference between the events of interest in survival analysis, typically death, or
failure, and problem solution: the latter does not necessarily have to happen. This can be described by a
RTD with F (∞) < 1. The resultingprobability densityfunction (pdf), defined asf(t) = dF (t)/dt, is
improper, i. e., its integral over[0,∞) does not sum to1. In this situation, the expected runtime is∞, and
the usual formulation

E{T} =

∫ ∞

0

tf(t)dt (1)

3 This is the most widely used term, in medicine, biostatistics, biology, but different application fields use other terms. Engineers
modeling the duration of a device speak offailure analysis, or reliability theory. Actuaries setting premiums for insurance companies
use the termactuarial science.

Technical Report No. IDSIA-02-07 6

cannot be applied. Aquantiletα of the RTD, defined as the time at whichF intercepts the valueα, can
still be evaluated, solving the equation

tα = F−1(α), α ∈ [0, F (∞)]. (2)

Lifetime distributions are often described in terms of thesurvival function

S(t) = 1 − F (t), (3)

representing, in our case, the probability that the algorithm is still “alive” and running at timet.
Another ubiquitous concept in survival analysis is thehazardfunctionh(t), quantifying the instanta-

neous probability of occurrence of the event of interest at time t, given that it was not observed earlier:

h(t) = lim
∆t→0

Pr{T ≤ t + ∆t|T > t}
∆t

=
f(t)

1 − F (t)
=

f(t)

S(t)
, (4)

wheref(t)/S(t) = f(t|T > t) is the pdf conditioned on observed survival until timet.
The integral of (4) is termedcumulativehazard, and can be shown to have the following relationship

with the survival function:

H(t) =

∫ t

0

h(τ)dτ =

∫ t

0

dF (τ)

S(τ)
= − ln S(t), (5)

or S(t) = exp(−H(t)).

3.1 Censored sampling

A typical problem that survival analysts have to face is theincompletenessof the data. For example, in
biostatistics and medicine, patients might “drop-out” a group of study: in this case, only a lower bound on
their lifetime would be known. A sample containing incomplete data is referred to as acensoredsample.
In failure analysis [53], censoring is normally the result of experimenter’s decisions, aimed at reducing the
duration of an experiment. For example, in estimating a duration model of a newly produced light bulb,
an engineer could leave a large number of prototypes turned on for a predetermined period of time (type
I censored sampling): in this case the number of observed failures is a random variable, related to the
lifetime distribution of the bulbs. As an alternative, the experiment could end as soon as a predetermined
number of bulbs has gone off (type II censored sampling). In this case, the duration of the experiment is
a random variable. In both cases, only a lower bound on failure time would be available for the surviving
bulbs. Unless the engineer is willing to wait for years, or the new product is quite cheap, this incomplete
data will constitute a large portion of the collected sample. The precision of the model would clearly be
affected. In other words, there is atrade-off between the duration of the experiment, and the precision of
the obtained model: in any case, discarding incomplete datacan result in an extremely biased model.

In algorithm performance modeling, type I censoring is typically performed, imposing a threshold on
runtime. Also in this case there is a trade-off between training time and model precision. In the context
of algorithm selection techniques, this trade-off should rather be measured between training time and the
gain in performance resulting from the use of the learned model: in this sense, the required precision can
be much lower than expected. We give an example in [20] where this trade-off is analyzed in the context of
restart strategies, reporting the training times, and resulting performance, of model-based restart strategies,
learned with different levels of censoring.

The treatment of censored data differs in theparametricandnon-parametricsettings. When fitting a
parametric modelf(t|θ), a censored runtimetc can be taken into account by expressing the likelihood of
the parameterθ, given this piece of data, as the survival probability at time tc.

Technical Report No. IDSIA-02-07 7

Lc(tc|θ) =

∫ ∞

tc

f(τ |θ)dτ = [1 − F (tc|θ)] = S(tc|θ). (6)

In nonparametricmethods [71, 41], estimates are based solely on the data observed so far. The simplest
nonparametric method is the empirical CDF,

F̂ (t) =
∑

ti<t

1

n
. (7)

In this setting, censored samples can be taken into account by distinguishing between the number of events
recorded, and the number of individuals observed “at risk” (in our case: still running), at a timet. This is
the essence of the Kaplan-Meier estimator of the hazard function [39]:

ĥ(t) =

∑

ti=t,νi=1 1
∑

ti≥t 1
, (8)

whereνi is theevent indicator, and is1 for uncensored observations, and0 for censored ones.
In these and other nonparametric methods,F (t), S(t), H(t) are “stepwise” functions, that change only

at uncensored observations{ti|νi = 1}, and are defined until the largest one; whilef(t), h(t) are pulse
trains, i. e., are0 everywhere, but with a positive integral across the observation valuesti. For example, a
non-parametric hazard function can be represented ash(t) =

∑

i hiδ(t − ti), wherehi is the hazard (8) at
ti, and the corresponding cumulative hazard function isH(t) =

∑

ti<t hi. In order to obtain meaningful
predictions also fort /∈ {ti}, hazard or density estimates can besmoothed[76].

3.2 Conditional models

Conditionalestimates [5] take into accountcovariateor featurevaluesx for each individual. Ifdynamic
information about the algorithm is also available, this canbe treated as atime-varyingcovariate, orlongi-
tudinaldata [48, 54, 73], to update an estimated RTD. The simplest time-varying covariate is time itself: if
an algorithm is still running at a timey, the RTD for the rest of the run can be evaluated by simply shifting
and scaling the originalF

F (t|T > y) =
F (t) − F (y)

1 − F (y)
=

F (t) − F (y)

S(y)
, (9)

defined only fort > y. Given the definition of the hazard function (4), its formuladoes not change, while
the cumulative hazard becomes:

H(t|T > y) =

∫ t

y

h(τ)dτ. (10)

Both cases can be represented in the non-parametric setting, simply discarding hazard valueshi with ti ≤ y.
In the next section, we will apply the simple notions described here, to propose different optimisation

criteria for a static algorithm portfolio. Literature on survival analysis is obviously much richer than this.
Recent research is facing challenging applications, and developing advanced estimation techniques, with
Bayesian methods playing a major role [36]. For example, biostatisticians working on gene expression data
[49] have to deal withthousandsof time-varying covariates, and often very small and censored samples.
Both algorithm performance modeling, and model-based algorithm selection, can profit from this field of
research: for selection, also the computational complexity of modeling should be taken into account.

Technical Report No. IDSIA-02-07 8

4 Static algorithm portfolios

Consider now a portfolio ofK algorithmsA = {a1, a2, ..., aK}, solving the same problem instance in par-
allel, and sharing the computational resources of a single machine according to a shares = {s1, .., sK}, sk ≥
0,

∑K
i=1 sk = 1; i. e., for any amountt of machine time, a portiontk = skt will be allocated4 to ak. An

ak that can solve the problem in a timetk if run alone, will spend a timet = tk/sk if run with a sharesk.
If the runtime distributionFk(tk) of ak on the current problem is available, one can obtain the distribu-
tion Fk,sk

(t) of the event “ak solved the problem after a timet, using a sharesk”, by simply substituting
tk = skt in Fk:

Fk,sk
(t) = Fk(skt). (11)

If the execution of all the algorithms is stopped as soon as one of them solves the problem, as in
Type II censored sampling (Sect. 3), the resulting durationof the solution process is a random variable,
representing the runtime of the parallel portfolio. Its distribution FA,s(t) can be evaluated based on the
shares, and the{Fk}. The evaluation is more intuitive if we reason in terms of thesurvival distribution: at
a given timet, the probabilitySA,s(t) of nothaving obtained a solution is equal to the joint probabilitythat
no single algorithmak has obtained a solution within its time shareskt. Assuming that the solution events
are independent for eachai, this joint probability can be evaluated as the product of the individual survival
functionsSk(skt)

SA,s(t) =
K
∏

k=1

Sk(skt), (12)

or, in CDF form:

FA,s(t) = 1 −
K
∏

k=1

[1 − Fk(skt)]. (13)

Given (5), equation (12) has an elegant representation in terms of the cumulative hazard function5

HA,s(t) = − ln(SA,s(t)) =

K
∑

i=1

− ln(Sk(skt)) =

K
∑

i=1

Hk(skt). (14)

Algorithm selection can be represented in this framework bysetting a singlesk value to1, while a
uniform algorithm portfolio would haves = sU = (1/K, ..., 1/K). If the distributionsFk are available,
other alternatives can be implemented. One naive approach could consist in evaluating, for eachak, the
probability that it will be the fastest, and using this valueas the correspondingsk = Pr{Tk < Tj 6=k}.
This would only have a good performance if there is one algorithm in the set that greatly dominates the
others. Otherwise, this method would share resources amongsimilarly performing algorithms, resulting in
a poor performance. In [16, 18], we mapped runtime predictions tos values based on an heuristic “ranking”
approach, in which ther-th expected fastest solver would get a share2−r. Here we propose three different
analytic approaches, based on function optimisation.

1. Expected time. The expected runtime valueEA,s(t) =
∫ ∞

0
tfA,s(t)dt can be obtained, and mini-

mized with respect tos:

s = arg min
s

EA,s(t). (15)

4Here and in the following we assume an “ideal” machine, with no task switching overhead.
5 Apart form the termssk, (14) is the method used by engineers to evaluate the failure distribution of aseriessystem, which stops

working as soon as one of the components fail, based on the failure distribution for each single component.

Technical Report No. IDSIA-02-07 9

2. Contract. If an upper bound, orcontract, tu on execution time is imposed, one can instead use (13) to
pick thes that maximizes the probability of solution within the contractFA,s(tu) = Pr{TA,s ≤ tu}
(or, equivalently, maximizesHA,s(tu), or minimizesSA,s(tu)):

s = arg min
s

SA,s(tu). (16)

3. Quantile. In other applications, one could want to solve the problem with probability at leastα, and
minimize execution time. In this case, a quantiletA,s(α) = F−1

A,s(α) should be minimized:

s = arg min
s

F−1
A,s(α). (17)

If the Fk are parametric, a gradient of the above quantities could be computed analytically, depending
on the particular parametric form: otherwise, the optimisation can be performed numerically. Note that the
sharess resulting from these three optimisation processes could differ: in the last two cases, they could
also depend on the chosen values fortu andα respectively. In no case is there a guarantee of unimodality,
and it might be advisable to repeat the optimisation processmultiple times, with different random initial
values fors, in case of extreme multimodality.

A choice among the three alternatives, as well as the choice of the relative parameters, might be im-
posed by the particular application, or left open as a designdecision. We will postpone its discussion, and
conclude this section remarking that the methods describedhere all rely on the assumption of indepen-
dence of the runtime values among the different algorithms,which allows to express the joint probability
(12) as a product. This assumption is met only if theFk represent the runtime distributions of theak on
the particular probleminstancebeing solved. If instead the onlyFk available capture the behavior of the
algorithms on asetof instances, which includes the current one, independencecannot be assumed: in this
case, the methods presented should be viewed as approximations. In a less pessimistic scenario, one could
have access to modelsM of theFk conditioned on features, orcovariates, x of the current problem. In
such a case theconditionalindependence of the runtime values would be sufficient, and the resulting joint
survival probability could still be evaluated as a product

SA,s(t|x) =
K
∏

i=1

Sk(skt|x). (18)

In practice, such a model is usually not available, and has tobe estimated. The degree of approximation
implied by assumption (18) will depend on the fit of the model.

5 A continually learning dynamic portfolio

Let us now focus on the second of the issues mentioned in the introduction, namely, the difficulty of
static runtime predictions. It is intuitive that re-evaluatings periodically could improve the performance,
especially if the runtime values are spread on a large range.To be effective, this evaluation has to be based
on a modelM of the RTD conditioned also on the current statexk of each algorithm: in the simplest
setting, one can always consider the time spentyk as the current state information, updating eachFk as in
(9).

A dynamic algorithm portfolio (Alg. 1) can be implemented byre-evaluatings periodically, each time
based onFk conditioned on the current state information, and time already spent. Any of the three methods
presented in Section 4 could be used as atime allocatorTA to updates. An additional design decision
would be required to set the sequence of time intervals∆t. Note also that in (Alg. 1) it is assumed that, for
each incoming problem instance, there is at least oneak that can solve it.

Technical Report No. IDSIA-02-07 10

Algorithm 1 Dynamic Algorithm Portfolio

Algorithm setA = {a1, ..., aK}
ModelM
while problem not solveddo

updateFk(tk) := M(tk|xk, yk) for k = 1, ...,K
update∆t
updates := TA({Fk})
runA with shares for a maximum time∆t

end while

The conditional modelM is usually not available, and would have to be estimated fromexperimental
data. A straightforward application of the machine learning paradigm would require solving, with each
algorithm, the same sequence of “training” problem instances, in order to collect a sufficient amount of
runtime data. This approach would share the third issue mentioned in the introduction with other algorithm
selection techniques: a huge amount of time would be spent solving the same training problems over and
over again, in order to gather a sufficiently large amount of data.

A first idea for reducing training time is inspired by censored sampling techniques. As the engineers
do with the light bulbs, we could run our portfolio with a uniform sharesU = (1/K, 1/K, ..., 1/K) on
each training problem instance, and instead of waiting for all the algorithms to end, we could stop after the
first few solve the problem, and switch to the next. As said in Section 3, this would have an impact on the
accuracy of the model, but the uniform share would at least assure that the fastest algorithm(s) would not be
censored. In this way the model would be less accurate for less efficient algorithm/problem combinations.
The downside of the uniform share, is that it would still havea huge overhead on performance.6

Another speed-up could be obtained using a partially trained model to guide further training. There
might be good algorithm/problem combinations that are easyto learn, and bad ones that are easy to avoid.
Instead of keeping a uniformsU throughout the training sequence, we could periodically train the modelM
during the sequence, and run our static or dynamic portfolioof choice on the remaining training problems
“mixing” the output of the chosen time allocatorsM = TA(M), with the uniformsU , ass = pMsM +
(1 − pM)sU ; the mixing coefficientpM ∈ [0, 1] could be increased each time the model is updated. This
would be more dangerous, as we would loose the positive effect of sU , and risk of censoring the fastest
algorithm. It is intuitive that, ifpM is increased too quickly, and the initial portion of the training sequence
is somehow deceptive, an initially imprecise model could cause more time to be allocated to less efficient
algorithms, and the execution of the fastest algorithms to be censored, thus reinforcing its own mistakes.

We are facing a trade-off betweenexplorationof the performance of the variousak, andexploitation
of the model obtained so far. In [18], we addressed this trade-off heuristically, updating the model after
each task solution, and gradually shifting, through the problem sequence, from a uniform initial share to
a model-based share, again heuristically evaluated. In thefollowing section, we will treat this trade-off in
the context of bandit problems with expert advice.

6 Time allocation as a bandit problem

In its most basic form [63], themulti-armed banditproblem is faced by a gambler, playing a sequence of
trials against aK-armed slot machine. At each trial, the gambler chooses one of the available arms, whose
rewards are randomly generated from different stationary distributions. The gambler can then receive the
corresponding rewardrk, and, in thefull informationgame, observe the rewards that he would have gained

6If we wait for just one algorithm to terminate, andtI is the performance of the fastest, the resulting training cost will be KtI :
another uncensored sampletII would cost an additional(K − 1)(tII − tI), and so on.

Technical Report No. IDSIA-02-07 11

pulling any of the other arms. The aim of the game is to minimize the regretR, defined as the difference
between the cumulative reward of the best arm, and the one earned by the gamblerG

R = max
k

∑

j

xk(j) − G. (19)

A bandit problem solver (BPS) can be described as a mapping from the history of the observed rewards
rk ∈ [0, 1] for each armk, to a probability distributionp = (p1, ..., pK), from which the choice for the
successive trial will be picked.

In recent works, the original restricting assumptions havebeen progressively relaxed, allowing for
non-stationary reward distributions,partial information (only the reward for the pulled arm is observed),
and adversarialbandits, that can set their rewards in order to deceive the player. In [1], no statistical
assumptions are made about the process generating the rewards, which are allowed to be an arbitrary
function of the entire history of the game (non-obliviousadversarial setting). Based on these pessimistic
hypotheses, the authors describe probabilistic gambling strategies for the full and the partial information
games, proving interesting bounds on the expected value of the regret.

Assuming that allak can solve all problem instances, it is straightforward to describe static algorithm
selection in aK-armed bandit setting, where “pick armk” means “run algorithmak on next problem
instance”. The reward for this game could be set based on the runtime of the chosen algorithm, for example
asrk := 1/tk; alternatively, runtimetk could represent aloss, to be minimized. The information would
be partial: the runtime for other algorithms would not be available. The rewards would be generated by a
rather complex mechanism, i. e., the algorithmsak themselves, so the bandit problem would fall into the
adversarial setting. As BPS typically minimize the regret with respect to a single arm, this approach would
only allow to implementper setselection, of the overall best algorithm.

To avoid excessively longtk, machine time could be subdivided into arbitrarily small intervalsδt:
“pick arm k” would mean “resume algorithmak on current problem instance, for a timeδt, then pause
it”. Reward could be attributedrk := 1/tk as before,tk being thetotal runtime of the winning algorithm.
Information would again be partial: more precisely, in thiscase it would becensored, as a lower bound
on performance, and a corresponding upper bound on reward, would be available for the other algorithms.
The bandit would be a non-oblivious adversary, as the resultof each arm pull would depend on previous
pulls of the same arm.

On a large number of arm pulls, the expected value of time spent executingak would be proportional to
pk. And, typically, bounds on regret for a BPS are proved based on expected values. The game described
above is then equivalent to a static portfolio, using thep of the BPS as the share values, and updating
it after a problem instance is solved. Again, the resulting selection technique isstatic, per set, 7 only
profitable if one of the algorithms dominates the others on all problem instances.

A less restrictive, and more interesting hypothesis, is that there is one of a set oftime allocators, whose
performance dominates the others. At this higher level, onecould use a BPS to select among different
static time allocators, TA(1), TA(2),..., working on a same algorithm setA. In this case, “pick armn”
would mean “use time allocator TA(n) on A to solve next problem instance”. In the long term, the BPS
would allow to select, on aper setbasis, the TA(n) that is best at allocating time to algorithms inA on
a per instancebasis. If the BPS allows for time-varying reward distributions, it could also deal with time
allocators that arelearningto allocate time.

A more refined alternative is suggested by the bandit problemwith expert advice, as described in
[1, 2]. Two games are going on on parallel: at a lower level, a partial information game is played, based
on the probability distribution obtainedmixing the advice of differentexperts, represented as probability
distributions on theK available arms. The experts can be arbitrary functions, andgive a different advice
for each trial. At a higher level, afull informationgame is played, with theN experts playing the roles of
the different arms. The probability distributionp at this level is not used to pick a single expert, but to mix

7Obliviousper instance techniques could be based on different reward attributions, as in [10].

Technical Report No. IDSIA-02-07 12

their advices, in order to generate the distribution for thelower level game. In [1], Aueret al. propose an
algorithm called EXP4 (Alg. 2) to play this two-level game. EXP4 is a combination of the algorithms for
the full and the partial information setting. It features a fixed lower boundγ on the exploration probability,
which can be set, based on the total number of trialsM , in order to obtain a bound on theexpectedregret
relative to the performance of the bestexpert:

E(R) ≤ 2.63
√

MK lnN. (20)

Algorithm 2 EXP4(K,N,M) by Auer et al. [1]
1: K arms,N experts,M trials

2: setγ := min{1,
√

K ln N
(e−1)M }

3: initialize wn := 1 for n = 1, ...,K;
4: for each trialdo
5: get advice vectorss(n) ∈ [0, 1]K from expertsn = 1, ..., N

6: setpn := wn/
∑N

i=1 wi for n = 1, ..., N

7: pick armk with probabilitysk := (1 − γ)
∑N

n=1 pns
(n)
k + γ/K

8: observe rewardrk ∈ [0, 1]
9: setr̂k := rk/pk

10: updatewn := wn exp(γs
(n)
k r̂k/K) for n = 1, ..., N

11: end for

The original formulation is based on a finite upper bound on the cumulative reward of the best expert,
which is at mostM if each reward is in[0, 1]. A variant of the algorithm is proposed ifM is unknown, or
if the rewards are much smaller than1. Bound (20) requires that theuniformexperts = (1/K, ..., 1/K) is
included in the set.

In our case, the time allocators play the role of the experts,each suggesting a differents, on a per
instance basis; and the arms of the lower level game are theK algorithms, to be run in parallel with the
mixture share. Thepartial information on the reward at the lower level (based on the runtime of theak first
to solution) is translated intofull information at the upper level, based on thes

(n) proposed by each TA(n)

Before prosecuting, we need to decide how to attribute the rewards. Ideally, we would like EXP4 to
select the time allocator that is better at giving more time to the fastest algorithms. As we cannot know the
real fastest algorithm, one good idea could be to reward minimization of solution time, settingrk ∝ 1/tk.
One possible side effect of this choice could be that, for problem sequences on which runtimes vary of
different order of magnitudes, the rewards for the harder problems would be much lower than the ones for
the easy ones. We will then adopt a logarithmic reward attribution, as in [21]. As EXP4 requires normalized
rewards, we can set lower and upper boundstmin, tmax on runtime, and set the reward for the winning
algorithmak as

rk =
ln tmax − ln tk

ln tmax − ln tmin
. (21)

This reward will be then distributed by EXP4 to the time allocators, based on how much time they
allocated toak. The extension todynamictime allocators (Alg. 1) is straightforward: in this case the s

(n)

would depend, for each allocator, on the sequence of intervals ∆t(0),∆t(1), ..., and the correspondings
proposed during each interval, and the normalized value of

∑

j s
(n)(j)∆t(j) would be used in place of

s
(n) at line 10 of Alg. 2.

We can then use EXP4 to address the exploration-exploitation trade-off that we left open in the last
section. We can solve each problem in the training sequence mixing the uniformsU , and thesM evaluated
by the model-based allocator, using the current outputp of EXP4 as a mixing coefficient. In this way EXP4

Technical Report No. IDSIA-02-07 13

would detect when the model is ready to use, and starts gaining a better performance than the uniform
allocator. After each instance is solved, we can also updateEXP4.

The regret rate (20) is particularly interesting, as it depends on thelogarithmof the number of experts
N . We can exploit this fact to take the design decision that we left open in Section 4, namely, which
allocator function to use: we can leave this decision to EXP4, picking a redundant set of time allocators.
We can also try different values for the respective parameters. Note that all these allocators can share a
common modelM, so thecomputationaloverhead would depend on the cost of the time allocators alone.
The resulting “gambling” time allocator (GAMBLE TA) is described in Alg. 3.

Algorithm 3 GAMBLE TA Gambling Time Allocator
1: Algorithm setA with K algorithms
2: N time allocators, includingsU = (1/K, ..., 1/K)
3: M problem instances
4: initialize EXP4(K,N,M)
5: let EXP4 initializep ∈ [0, 1]N

6: initialized modelM
7: for each problemb1, b2, ..., bM do
8: while bm not solveddo
9: update∆t

10: for each time allocator TA(1), ..., TA(N) do
11: updates(n) = TA(n)(M), s(n) ∈ [0, 1]K

12: end for
13: evaluate mixs =

∑N
n=1 pns

(n)

14: runA with shares, for a maximum time∆t
15: end while
16: observe rewardrk for winnerak

17: update EXP4
18: let EXP4 updatep
19: updateM based on collected runtime data
20: end for

Using a non-uniform share, there is no guarantee that the winner algorithm will be the actual fastest, so
our reward scheme could be deceptive. The sequence of tasks can also be deceptive, and again cause the
model to reinforce its own mistakes. All this is allowed in the pessimistic settings of EXP4, which will still
guarantee that the expected regret, compared to the gain of the best time allocator, is bounded by (20).

This optimal regret is defined with respect to the bestallocator. Nothing can be said about the perfor-
mance w.r.t. the bestalgorithm. In a worst-case setting, if none of the time allocator learns anything, EXP4
will give most credit to the uniform share, which gains a reward r̂k/K at every trial. We will now see two
example applications on which the performance of GAMBLE TA is quite far from this pessimistic scenario.

7 Experiments

We present two experiments, both with very small algorithm sets (K = 2), but long, and challenging,
problem sequences. The first experiment features a completeand a local search SAT solver, dealing with a
mixed set of CNF3 SAT instances at the sat-unsat threshold. The second experiment features solvers for a
published Auction Winner Determination Problem (WDP) benchmark [44].

Before proceeding, we will describe the remaining details of our time allocation algorithm. As said,
we use EXP4 [1] at the top level, to mix the share decisionss

(n) of different time allocators TA(n) (Alg. 3).

Technical Report No. IDSIA-02-07 14

No care was put in selecting the set of time allocators, as EXP4 is better at this game. The set included (see
Sect. 4 for a description):

• the uniform time allocator, with shares = (1/K, ..., 1/K), required by EXP4.

• a set of9 quantile minimizers ,s = arg mins F−1
A,s(α), with equally spaced values for the parameter

α (0.1, 0.2, ..., 0.9).

• a “greedy” contract allocator, using the next time limit as acontract:
s = arg mins SA,s(∆t +

∑K
k=1 yk), yk being the time spent so far byak.

Each experiment was repeated using each one of the allocators, always accompanied by the uniform, but
none of them could improve on the performance of the ensemble. EXP4 preferred different time allocators
on the two benchmarks, but always discarded the quantile allocators withα ≥ 0.5.

The sequence of time intervals∆t employed by the dynamic portfolio was exponential, with base two.
(∆t0,2∆t0,4∆t0,...). We set the initial∆t0 to two different values for the two experiments. Alsotmin was
different for the two benchmarks, whiletmax was kept fixed at1010.

As a model, we used the conditional non-parametric hazard estimator (̂h(t|x)) by Wichert and Wilke
(WW in the following) [77]. This model is conceptually simple, and computationally efficient. As most
non-parametric methods, it stores all the training data(xi, ti): the time valuesti of censored and uncen-
sored events, and the covariatesxi, evaluating an empirical CDF (7)Fx(x) of the covariate valuex. In
order to predict the hazard function for an unseen valuex of the covariate, it first estimates its CDF value
Fx(x), by simply evaluating its rank in the sorted list of covariates. The probabilityFx(x) is then compared
to theFx(xi) of each sample (again obtained from the rank), through a kernel functionK, with bandwidth
parameterbn, and the value ofK((Fx(x) − Fx(xi))/bn) is used to weight the eventti. The weight values
are used in place of “1” in (8), to evaluate a Kaplan-Meier estimate of the hazard for the covariatex:

ĥ(t|x) =

∑

ti=t,νi=1 K(F (x)−F (xi)
bn

)
∑

ti≥t K(F (x)−F (xi)
bn

)
. (22)

If the covariates are multidimensional, the process is repeated for each dimension, and the products
of the resulting kernel distances are used as weights. In short, (22) performs a nearest neighbor estimate
of the hazard: the kernel distance is measured on thedistributionof covariate values, and is not sensitive
to scaling. The kernel functionK is required to be symmetric around0, and integrate to1. We used a
uniform kernel (0.5 on [−1, 1], and0 elsewhere), which is a common choice in non-parametric statistics.
The convergence proof for the estimator requires the bandwidth parameterbn to be set based on the size
n of the stored sample, asbn ∈ [n−1/2, n−1/4]. We present results forbn = n−1/4, which provides the
widest allowed kernel.

A separate model was learned for each algorithm, using a small set of problem specific features as
covariates.8 The only dynamic feature taken into account was the time spent yk, as in (9,10), which, in
the non-parametric setting, simply consists in discardinghazard valueshj with tj ≤ yk. The RTD of
the portfolio was evaluated based on the cumulative hazard9 form (14). The time allocators described in

8As the two algorithms are in both cases not related. For different parametrizations of the same algorithm, a single model can be
used, conditioned also on parameter values.

9The model (WW) outputs, for a given covariatex, two vectors, one of event times{ti}, one of the corresponding hazard estimates
{hi}. Based on this data, a vector of hazard values for the algorithm running with sharesk has first to be evaluated. Note that the
derivative ofH(skt) would beskh(skt), but in the nonparametric setting thehi are pulses, not point values: scaling them bysk

would not be correct. To see why, consider that the cumulativehazard atH(∞) should not vary by scaling time, so the integral
across the scaled time values must remain the same. Only time has tobe dilated, dividing the time valuesti by thesk chosen by
GAMBLE TA. Hazard values relative to different algorithms are then merged, sorting the resulting list according to time values. The
cumulative hazard (14) can finally be evaluated, as the cumulative sum of the resulting hazard values. This value is used by two
different functions, evaluating the quantile (3) and survival probability at the next contract (2), based on the survival function obtained
from (5). These last two functions are passed as arguments to the MATLAB functionfminbnd , to be minimized.

Technical Report No. IDSIA-02-07 15

Sect. 4 were evaluated numerically, using a line search routine (see note 9), careless of multimodality: on
runs that were monitored, we observed multimodality only for high levels of the parametersα or tu, for
which the performance of the time allocators was poor anyway.

We repeated both experiments50 times, each time with a different random reordering of the problem
instances, and a different random seed for the algorithms, if randomized. Unless otherwise stated, all results
reported are95% confidence bounds, evaluated on50 runs. For both experiments, the parallel execution
of the algorithms was simulated, using stored runtime data;10 the time values reported only include the
algorithm runtimes.11

We assess the performance of GAMBLE TA by comparing it with the uniform time allocatorsU =
(1/K, ..., 1/K) alone; and the one of anoracle, with foresight of the runtime values, which only executes,
for each problem instance, the algorithm that will be fastest. If tG(j) is the runtime of our time allocator
on problem instancej, tk(j) is the runtime of algorithmak, thentO(j) = mink{tk(j)} is the runtime of
the oracle, andtU = KtO is the runtime of the uniform share. We will describe the performance of the
allocator until taskm reporting thecumulative time

∑m
j=1 tG(j), and thecumulative overhead

∑m
j=1 tG(j) − tO(j)

∑m
j=1 tO(j)

, (23)

relative to the performance of the oracle. These are fair performance indicators, also for a per instance
selection technique, but do not capture the performance on asingle instance. Plotting this information
averaged on multiple runs is problematic, as the order of theinstances is different for every run, and in both
benchmarks the runtimes may differ of several orders of magnitude. We will then plot the performance on
eachinstance, and foreachrun, against the runtime of the oracle, and the uniform share. To underline the
improvement during the problem sequence, we will also report separate statistics for the first and second
halves of the two problem sequences.

7.1 Satisfiability problems

Satisfiability (SAT) problems [22] constitute a standard benchmark in AI. A conjunctive normal form
CNF(k,n,m) problem consists in finding an instantiation of a set ofn Boolean variables that simultaneously
satisfies a set ofm clauses, each being the logical OR ofk literals, chosen from the set of variables and their
negations. A problem instance is termedsatisfiable(SAT) is there exists at least one of such instantiations,
otherwise it isunsatisfiable(UNSAT). An instance is considered solved if a single solution is found, or if
unsatisfiability is proved. Withk = 3 the problem is NP-complete. Satisfiability of an instance depends
in probability on the clauses to variables ratio: aphase transition[51] can be observed atm/n ≈ 4.3, at

10Unfortunately, doing research on an online method does not have the benefits of just using one, as comparing with the performance
of an oracle requires the knowledge of all runtimes, which means that, for the first experiments, we also had to solve all satisfiable
problems with satz-rand.

11 Including the overhead of the quantile evaluations, the model update, etc., would not be fair, as all these operations areimple-
mented in unoptimized, and rather bloated, MATLAB code, while theak are written in C. WW, as other nonparametric methods,
has a very cheap learning phase, which consists in sorting independently the event times and thed dimensions of the covariates
x ∈ R

d. The cost of prediction isd searches on the sorted covariate data, and the cost of (22). Quantiles can also be evaluated just
by searching a value on a sorted list. To give a rough idea, we report the profile of a single run on the SAT-UNSAT benchmark: on
1899 problems,2 WW models were updated once per problem, for a total of4.6 seconds. The hazard generating function (22) was
called about280000 times in total, as each of the allocators uses it in the optimisation process (see note 9) : the cost was88 seconds.
An additional3 minutes was spent in merging and re-sorting hazard vectors, toevaluate the hazard of the portfolio. The total runtime
of the portfolio alone on the problem sequence would have been about24 minutes. These figures would obviously change passing
to a C implementation. Simple optimizations, like preserving order when merging two hazard vectors, would further improve the
situation. The fact that the data is sorted would allow for more advanced optimizations, based for example on balanced trees, with
a costO(log n), n being the number of samples, both for search and insertion. Regarding memory requirements, the model would
collectK samples for each solved task. On a modern machine, this amount of data would not cause any problem, even with long
task sequences, but once there is enough data one can start toreduce the number of stored samples, for example merging neighboring
hazards.

Technical Report No. IDSIA-02-07 16

which an instance is satisfiable with probability0.5. This probability quickly goes to0 for m/n above the
threshold, and to1 below.

SAT solvers can be broadly classified in two categories:completesolvers, that execute a backtrack
search on the tree of possible variable instantiations, andare guaranteed to determine the satisfiability of a
problem in a finite, but possibly unfeasibly high, amount of time; andlocal search(LS) solvers, that cannot
prove unsatisfiability, but are usually faster than complete solvers on satisfiable problems. In other words,
a local search solver can only be applied to satisfiable instances: at the threshold, there is a0.5 probability
that the solver will run forever. The RTD of a complete solverwill haveF (∞) = 1 with a finite1 quantile,
for any value ofm/n; while a local search solver has aF (∞) = 0.5 on instances at the4.3 threshold.
Users of LS interested in such benchmarks have then to first filter out unsatisfiable instances by running
a complete solver, in order to test the local search algorithm on SAT instances only. This means that, at
the phase transition, local search implies an additional cost, equal to the performance of a complete solver,
which obviously does not make it competitive for such problem instances.

Our first experiment was performed using a portfolio of two SAT solvers from the two categories above.
As a benchmark, we used the complete set ofuf-n-m anduuf-n-m instances from SATLIB [29]. These
are randomly generated instances at the phase transition, with n ranging from20 (resp.50 for the unsat)
to 250, 100 instances for each size, andm varying accordingly. The instances are subdivided in groups of
satisfiable (uf *) and unsatisfiable (uuf *) instances. We merged all groups in a single sequence, of1899
problems12 in total, that was randomly re-ordered for each run of the experiment.

As a complete solver we picked Satz-Rand [25], a version of Satz [46] in which random noise influences
the choice of the branching variable. Satz is a modified version of the complete DPLL procedure, in which
the choice of the variable on which to branch next follows an heuristic ordering, based on first and second
level unit propagation. Satz-Rand differs in that, after the list is formed, the next variable to branch on is
randomly picked among the toph fraction of the list. We present results with the heuristic starting from the
most constrained variables, as suggested also in [46], noise parameter set to0.4, and the restart mechanism
disabled, as the RTD of the algorithm does not display heavy-tailed behavior [25] for thisn/m ratio. As
a local search solver we used G2-WSAT [47]: for this algorithm, we set a high noise parameter (0.5), as
advisable for problems at the phase threshold, and the diversification probability at the default0.05. As
both solvers are randomized, we also used a different randomseed for each run.

As we needed a common measure of time, and the CPU runtime measures are quite inaccurate (see also
[30], p. 169), we modified the original code of the two algorithms adding a counter, that is incremented
at every loop in the code. The resulting time measure was consistent with the number of backtracks, for
Satz-Rand, and the number of flips, for G2-WSAT. All runtimes reported for this benchmark are expressed
in these loop cycles: on a2.4 GHz machine,109 cycles take about1 minute.

The only feature used for the model WW wasn, the number of variables in the SAT problem, as the
clauses-to-variable ratiom/n is practically constant.∆t0 and tmin where both set to104, the order of
magnitude of the initialization cost of both algorithms on the smallest problem size.

This algorithm set/problem set combination is quite interesting. G2-WSAT almost always dominates
the performance of Satz-Rand on satisfiable instances, while the latter is obviously the winner on all unsat-
isfiable ones, on which the runtime of G2-WSAT is infinite.

This situation is visualized in Figure 1 (a), which plots theempirical CDF of the runtimes for the two
solvers, resulting from an estimate for a single random seed, on the two sets of larger instances (uf-250 ,
uuf-250). One can clearly notice the advantage of G2-WSAT on satisfiable instances, represented by
the small lower quantiles (below106). From quantile0.5 on, the RTD remains flat, reflecting the fact that
half of the instances are unsatisfiable. Satz-Rand starts solving problems later, and is competitive with
G2-WSAT only on a small number of satisfiable instances, but isable to solve also all the unsatisfiable

12This odd number is due to the fact that instanceuuf-200-860 number100 is missing in the online archive. Note also that the
smallestn for the unsatisfiable instances is50, so there are1000 SAT and899 UNSAT instances in total, making the SAT probability
for the whole set slightly higher than0.5.

Technical Report No. IDSIA-02-07 17

10
5

10
10

0

0.2

0.4

0.6

0.8

1

time t [loop cycles]

F
(t

)

(a) CDF at t=0

Satz−Rand
G2−WSAT
Uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

share to Satz−Rand

S
(t

u)

(b) Contract TA at t=0

1e+06
1e+07
1e+08
1e+09

0 0.2 0.4 0.6 0.8 1
10

4

10
6

10
8

10
10

10
12

share to Satz−Rand

qu
an

til
e

[lo
op

 c
yc

le
s]

(c) Quantile TA at t=0

0.9
0.7
0.5
0.3
0.1

10
6

10
7

10
8

10
9

10
10

0

0.2

0.4

0.6

0.8

1

time t [loop cycles]

F
(t

)

(d) CDF at t=107

Satz−Rand
G2−WSAT
Uniform

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

share to Satz−Rand

S
(t

u)

(e) Contract TA at t=107

1e+06
1e+07
1e+08
1e+09

0 0.2 0.4 0.6 0.8 1
10

7

10
8

10
9

10
10

10
11

share to Satz−Rand

qu
an

til
e

[lo
op

 c
yc

le
s]

(f) Quantile TA at t=107

0.9
0.7
0.5
0.3
0.1

Figure 1: SAT-UNSAT problems. These plots illustrate the functioning of the Contract(2) and Quantile (3) time
allocators (Sect. 4), and are not generated from a run of GAMBLE TA, but from a RTD estimate on problems of size
n = 250 only. Left column: situation att = 0. Right column: after t = 107 of uniform parallel run (5 × 106 for
each algorithm).Top: RTD of the single algorithms, and of the uniform share.Middle: survival probabilitySA,s(tu)
(vertical axis) at a time contracttu, for different values of the shares1 assigned to Satz-Rand (horizontal axis), and
different values of the time contracttu (different lines). Bottom: quantiles of runtime for different values ofα (different
lines), and different values of time share allocated to Satz-Rand (horizontal axis). The minimum of each line in (b,c,e,f)
is the share allocation decided by the corresponding TA.

Technical Report No. IDSIA-02-07 18

ones, as indicated by the fact that the RTD reaches1, i. e., the quantilet1 is finite. The third line in the plot,
labeled “uniform”, represents the RTD of the uniform portfolio sU = (0.5, 0.5).

Algorithm selection would be easy in this case, if not for thefact that the satisfiability of an instance
cannotbe predicted in any way, before attempting solution. As G2-WSAT is incomplete, any sensible
single algorithm selection technique would select Satz-Rand on all problems. The performance of this
algorithm alone is better than the one of the uniform share, but obviously worse than the performance of
the oracle, as this latter can profit from its foresight, and solve SAT instances with G2-WSAT.

Figure 2 (a) displays the evolution of the cumulative time during the task sequence, comparing for each
taski the cumulative performance of GAMBLE TA

∑

j<i tG(j) to the cumulative performance of the oracle
∑

j<i tO(j), and of the uniform sharesU (K
∑

j<i tO(j)). The performance of Satz-Rand is also plotted,
as this algorithm can solve all the problems. Lines represent upperconfidence bounds, evaluated on50
runs.

Figure 2 (b) plots the cumulative overhead (23) of GAMBLE TA, during the problem sequence. Here the
dotted lines represent upper and lower95% confidence bounds. GAMBLE TA is quite quick in converging
to the final performance, and then seems to oscillate; averaged on50 runs, it ends the problem sequence
with a cumulative overhead of about14%. Note that this figure includes the performance at the beginning
of the sequence, when the model is still poorly trained.

Examining a single run, it can be observed that most of the allocators quickly learn to start solving
each problem using the local search algorithm, and later switch to Satz-Rand if no solution is found by
G2-WSAT.

As there are only two algorithms in the set, we can easily visualize the time allocators (see Section 4).
Using the same data from Figure 1(a), in Figure 1 (b), we plot the survival probabilitySA,s(tu) (vertical
axis) at a time contracttu, for different values of the shares1 assigned to Satz-Rand (horizontal axis),
and different values of the time contracttu (different lines). Fig. 1 (c) displays an analogous plot forthe
quantile minimization method: this time the ordinates report the logarithm of the quantiletA,s(α) for the
portfolio, and different lines correspond to different values of the required solution probabilityα.

You can notice that the optimum ofs varies according to the parameter of the time allocator (see
Sect. 4): for low values of the contracttu, and the quantileα, the optimum is ats1 = 0, which means that
only G2-WSAT is run, notwithstanding the0.5 survival probability at∞.

If both algorithms are run in parallel, for107 loops in total, without solving the problem, we get the
situation depicted in the right column of Fig. 1. The RTD of the two algorithms have been shifted and
scaled, as in (9), and the one of G2-WSAT has almost disappeared. Given the time already spent, there is
only a very small probability that G2-WSAT will solve the problem. This situation is reflected in the plots
of the contract (Fig. 1(e)) and quantile (Fig. 1(f)) allocators: now the optimum of the lines is ats1 = 1
for all values of the parameters, except the smallest, whichmeans that most allocators would only run
Satz-Rand.

During the course of a run, EXP4 gradually selects a mixture of three quantile allocators,with small
values forα (0.2, 0.3, 0.4). Note that the predictions of the WW model, and thus the decisions of the time
allocators, are solely based on previously observed runs. The view of the time allocators is similar to the
one in Figure 1: only, there200 samples for each algorithm are available, for the same covariate (n = 250),
and this results in a much smoother model than the one typically available during the initial part of the task
sequence. The surfaces (in this case lines) optimised by thetime allocators look smooth anyway, especially
for low values of the parameters, but the contract allocatortends to look flat for large intervals ofs1 values.

The simple tactic found by GAMBLE TA is not always effective, and can actually result in a performance
much worse than the uniform share, on a single instance. We show this in Fig. 2 (c,d), where the runtimes
of GAMBLE TA are scatter-plotted against the one of the oracle, forall the1899 instances, andall the50
runs. The two plots only distinguish among instances met during the first half of the sequence, and the
second: all other order information is lost. Note that, as the order of instances is picked randomly for
each run, a same instance can figure in both plots: but it wouldrepresent two different runs, with different
random seeds for theak, and would likely map to different points. We did not plot thediagonal, which

Technical Report No. IDSIA-02-07 19

0 500 1000 1500
0

1

2

3

4

5

6
x 10

10

Task sequence

C
um

ul
at

iv
e

tim
e

[lo
op

 c
yc

le
s]

(a) SAT−UNSAT cumulative time

GambleTA
Oracle
Uniform

0 500 1000 1500
0

0.2

0.4

0.6

0.8

1

Task sequence

C
um

ul
at

iv
e

ov
er

he
ad

(b) SAT−UNSAT cumulative overhead

Figure 2: SAT-UNSAT problems. (a): Cumulative time on the SAT-UNSAT problem set. Upper95% confidence
bounds on50 runs, with random reordering of the problems. GAMBLE TA is our time allocator. ORACLE is the
lower bound on performance. UNIFORM is the (0.5,0.5) share. SATZ-RAND is the single algorithm. (b): Cumulative
overhead (23) on the SAT-UNSAT problem set. Upper and lower confidence limits. Right column: Performance of
GAMBLE TA compared to the oracle, onall problems and for all runs.50×1899/2 = 47475 points per plot. (c): First
half of the sequence. (d): Second half. The diagonal (not marked) is the performance of ORACLE. Thecontinuous
line above the diagonal is the performance of UNIFORM. Note that this line is crossed by many runs, especially for
runtimes around106. The biggest improvements in the second part of the sequence can be seen on very easy and very
hard problems. See also Fig. 3, and Table 7.1.

Technical Report No. IDSIA-02-07 20

would be the performance of the oracle, as it would interferewith the data. The continuous line above the
diagonal represents the performance of the uniform sharetU = KtO. There are many points above this
line, which indicates a performance worse than uniform (WTU). The biggest improvement, from the first
half (Fig. 2 (c)) to the second (Fig. 2 (d)), seems to be on really easy and really hard instances, with low
and high runtimes respectively.

In order to further analyze this situation, in Fig. 3 we repeat the same scatter-plots using the same
data, but distinguishing among satisfiable and unsatisfiable instances. It is now clear that the cloud of
poor performance still visible in Fig. 2 (d) is entirely represented by satisfiable instances, on which the
runtime of the fastest algorithm (probably G2-WSAT) is between106 and107 loops. We can now make an
hypothesis: looking back at Fig. 1(a,d), we see that this is the time range on which the runtime distributions
of the two algorithms overlap (at least forn = 250 variables). In other words, the longest successful runs
of G2-WSAT and the shortest ones of Satz-Rand are in this range. The surfaces of the time allocators will
be similar to the ones in Figg. 1 (e,f).

First half Second half

SU GTA 1.46 × 1010 ± 2.14 × 108 1.42 × 1010 ± 2.11 × 108

OR 1.27 × 1010 ± 2.06 × 108 1.26 × 1010 ± 1.92 × 108

OVH 0.153 ± 0.0058 0.124 ± 0.0034

WTU 0.0739 ± 0.00296 0.0576 ± 0.00269

S GTA 8.07 × 108 ± 4.64 × 107 8.47 × 108 ± 4.58 × 107

OR 3.05 × 108 ± 1.47 × 107 2.99 × 108 ± 1.32 × 107

OVH 1.66 ± 0.127 1.86 ± 0.143

WTU 0.119 ± 0.0044 0.109 ± 0.0050

U GTA 1.37 × 1010 ± 2.01 × 108 1.35 × 1010 ± 2.15 × 108

OR 1.23 × 1010 ± 2.01 × 108 1.24 × 1010 ± 1.88 × 108

OVH 0.117 ± 0.00481 0.0822 ± 0.0029

WTU 0.024 ± 0.0037 0.0003 ± 0.0002

WDP GTA 5.72 × 107 ± 6.48 × 105 5.51 × 107 ± 6.57 × 105

OR 5.45 × 107 ± 6.44 × 105 5.37 × 107 ± 6.44 × 105

OVH 0.0502 ± 0.0022 0.026 ± 0.0016

WTU 0.176 ± 0.0014 0.148 ± 0.0025

Table 1:Various performance indicators for GAMBLE TA, evaluated over the first and second halves of each problem
sequence, averaging over50 runs.95% confidence intervals. SU: SAT-UNSAT benchmark. S: SAT instances,filtered
from SU. U: UNSAT instances, filtered from SU. Note that these two do notrefer to separate experiments, but are
extracted from the results on the SAT-UNSAT problem sequence. WDP: Winner Determination Problem. Indicators:
GTA: cumulative performance of GAMBLE TA. OR: cumulative performance of the ORACLE. OVH: cumulative over-
head of GAMBLE TA, with respect to the ORACLE (23). WTU: fraction of problems on which GAMBLE TA is worse
than UNIFORM (tU = KtO).

In Table 7.1 we display a few performance statistics, separately for the two halves of the task sequence.
GTA labels the cumulative time of GAMBLE TA, OR the one of the oracle. OVH represents the cumulative
overhead (23), evaluated only on the respective half. WTU stands for “worse than uniform”. It measures

Technical Report No. IDSIA-02-07 21

Figure 3:SAT-UNSAT problems. Performance of GAMBLE TA compared to the oracle, onall problems and for all
runs, separated for SAT (left column: 50×1000/2 = 25000 points per plot) and UNSAT (right column: 50×899/2 =
22475 points per plot) problems.Top: first half of the sequence.Bottom: second half. Note that this distinction is
unavailable to the algorithm: the data was filtereda-posteriorifrom the data of Figure 2(c,d), and refers to the same
experiment, with SAT and UNSAT instances randomly mixed. The order ofproblem instances is different for every
run, so the same instance might be met at different stages of the learning process. The diagonal (not marked) is the
performance of ORACLE. Thecontinuous lineabove the diagonal is the performance of UNIFORM. Note that this line
is crossed by many runs, especially for SAT instances, for runtimes above106.

Technical Report No. IDSIA-02-07 22

the fraction of task instances on which the performance is worse than the uniformtU = KtO.
The first block in the table (SU) refers to the full set of instances, as solved by GAMBLE TA. The second

(S) and third (U) respectively refer to the satisfiable and unsatisfiable instances alone. We can see that, in
terms of the number of instances, only on11% of satisfiable instances a WTU performance is observed, but
this is enough to give a very high overhead value: the overhead is actually slightly worse in the second half
of the sequence. But we have to bear in mind that this situation results from a6% of the total number of
problems, on which the runtime of G2-WSAT is unusually long. GAMBLE TA is willing to pay this price,
in order to avoid running G2-WSAT for too long on a potentiallyunsatisfiable instance.

The performance is much better on the unsatisfiable instances, as they are characterized by much longer
runtime values, and the overhead of trying G2-WSAT first is low. Here the WTU instances go down to less
than one on a thousand, and the overhead at less than9%. On the whole set, the performance for the second
half is a13% overhead, and less than7% WTU. Due to the difficulty of the task, we do not expect more
than a marginal improvement in the performance from the use of more sophisticated modeling techniques,
or more features.

7.2 Winner Determination Problem

The Auction Winner Determination Problem (WDP) [44] is an interesting combinatorial optimisation prob-
lem, where a set of agents allocate money onn bids overm goods, and the winning subset of bids, that
maximizes the sum of the amounts bidden, must be determined.The agents have limited amounts of money,
and are allowed to specify XOR constraints over the bidden goods, and the selected winning subset has
also to satisfy these constraints. The problem is NP-hard.

In [44], to which we refer for more details and references, the hardness of randomly generated WDP
instances is modeled, describing the performance of a Linear Programming software (CPLEX), and an
ad-hoc solver (CASS). The runtime of these solvers is related to 28 instance features, including the size
(n,m), and serves as an input for a regression routine aimed at learning a predictive model of runtime value,
conditioned on instance features. The performance of the models is assessed using mean squared error on
the logarithm of predicted values, which suggests a parametric assumption of the run-time distribution
being log-normal. Censored runtimes (“capped” runs in the terminology of the paper) are treated as the
uncensored, and it is argued that the impact of this approximation on model precision is low. The resulting
models are actually quite precise in terms of the proposed error measure. The performance of CPLEX
dominates CASS, but on about1/4 of the instances this situation is inverted. In such a case, aper set
selection technique would always select CPLEX. As an interesting example application of these models,
the authors propose a per instance algorithm selection technique, in which the expected fastest algorithm
is picked based on the model’s predictions. In the original paper, the model is trained on runtime data
obtained by solving a large number of instances, censoring runs that exceed a predetermined threshold of
12 hours for CASS. On a test set of unseen instances, the model performs efficient selection, detecting the
instances on which CASS is faster, and allowing the portfolio to improve on the performance of CPLEX
alone. The overhead (23) compared to the performance of the oracle, is reported to be8%, excluding a
small additional factor due to the cost of computing features.

The runtime data for the two algorithms were obtained online13. The data consists of various small
fixed size problem sets, and one large variable size set. After discarding a few instances, for which the time
values were censored for both algorithms, the variable sizeset has7145 instances, and the fixed size sets
sum to3519, for a total of10664 problems. On these, CASS dominates on2278, while CPLEX is faster on
the remaining8386. None of the two algorithms could solve all the problems before capping. The runtimes
of the whole data set sum to almost nine years.

We repeated the experiment with GAMBLE TA, solving the whole set of instances. As the solvers are
not randomized, here the only difference among runs is the random ordering of problem instances. The

13http://www.cs.ubc.ca/ ˜ kevinlb/downloads/db-data.zip

Technical Report No. IDSIA-02-07 23

runtimes in the data set are reported in seconds. Some runs were indicated with a0 runtime, which means
that they were too fast for the granularity of the clock (0.01). In these cases, we replaced the0 value with
0.001. We then settmin to 0.001, and lefttmax at 1010, which is oversized in this case, as the maximum
runtime value in the set is5 × 105. The initial time interval was set as∆t0 = 0.01. The model was
allowed only two covariate values, the number of bids and thenumber of goods, representing the size of
the problems.

Figure 4 (a), (b) report the cumulative time during the task sequence, and the cumulative overhead,
again comparing with the ideal performance of the oracle (23). The last block of Table 7.1 reports the same
performance indicators described in the previous subsection. The cumulative overhead during the second
part of the problem sequence was less than3%, while WTU performance was observed for about15% of
the problem instances. Figure 4 (c), (d) display a scatter-plot of the runtime of GAMBLE TA against the one
of the oracle, on all runs, again distinguishing among the first and second half of the problem sequence.
Examining the latter, one can notice that the instances for which the runtime of GAMBLE TA was worse
than UNIFORM (represented by points above the line) can mostly be solved in less than10 seconds. In
other words, GAMBLE TA is less precise for instances that have a minor impact on the cumulative runtime,
which in this case is very close to the one of the ORACLE. For this benchmark, EXP4 favored a mixture
of two quantile allocators (α = 0.2, 0.3), and the greedy contract allocator, which was discarded onthe
previous benchmark.

8 Discussion

The experiments gave quite impressive results. In the first case, thedynamictime allocator GAMBLE TA
managed to solve an algorithm selection problem that cannotbe solved in a similar way by any static tech-
nique. In the second case, performance was competitive withthe one of a static offline selection technique,
built based on advanced knowledge of the problem domain, including dozens of problem-specific features,
and which required quite a long training time. On this latterpoint we have to remark that in [44] no attempt
was made at reducing the training cost, the interest of the authors being more focused on the precision of
the estimated models.

The idea of performing algorithm selection based on runtimeinteraction with the algorithms is not at
all new (see Sect.2). Most fully dynamic methods are oblivious, i. e., with no knowledge transfer from one
problem to the next; in most non-oblivious methods, the model is trained off-line, at a prohibitively high
computational cost, as there is no principled method to decide when to stop the training phase. GAMBLE TA
takes the best of both worlds: the model allows to retain knowledge from past experiments, but is trained
online, with a negligible overhead. The bandit problem solver EXP4 guarantees the optimal amount of
exploration: the model is exploited as soon as it allows to improve on the uniform share. At this stage,
the model is visibly rough, but can already serve the purposeof algorithm selection. Time allocation
is fully dynamic, and shares can be updated an arbitrary number of times. To our knowledge, the most
closely related approaches are [43, 58]. In the former, reinforcement learning, which can be seen as a
generalization of bandit problems, is used, but at the algorithm level. The resulting method shares many of
the positive features of GAMBLE TA, as it is also online, and dynamic. In the dynamic method described in
[58, 57], the algorithm priorities are updated repeatedly,but the dynamic sharing schedule is decided per
set, and offline. In [40], the dynamic selection is only basedon the initial evolution of the state, and the
probability distributions are assumed to belong to a finite set, known a priori: also in this case the model
is learned offline. In [10], an oblivious technique is presented, based on a contract on execution time, but
with no knowledge transfer across problem instances. In [11, 12, 72], a bandit problem solver is used, but
at a lower level, to perform oblivious per-instance algorithm selection. Compared to our previous work
[18, 19], this article replaced the heuristic aspects, bothin mapping model predictions to time allocation
shares (Sect. 4), and in controlling the exploration-exploitation balance (Sect. 6).

At its upper level, the method is practically parameter-less. The bandit problem solver can set its only

Technical Report No. IDSIA-02-07 24

0 2000 4000 6000 8000 10000
0

0.5

1

1.5

2

2.5
x 10

8

Task sequence

C
um

ul
at

iv
e

tim
e

[s
]

(a) WDP cumulative time

GambleTA
Oracle
Uniform

0 2000 4000 6000 8000 10000
0

0.2

0.4

0.6

0.8

1

Task sequence

C
um

ul
at

iv
e

ov
er

he
ad

(b) WDP cumulative overhead

Figure 4:WDP problems. (a): Cumulative time on the problem set. Upper95% confidence bounds on50 runs, with
random reordering of the problems. GAMBLE TA is our time allocator. ORACLE is the lower bound on performance.
UNIFORM is the (0.5,0.5) share. (b): Cumulative overhead (23) on the WDP problem set. Upper and lower confidence
bounds. The overall final performance is4%: in the second part only, the cumulative overhead is less than3% (see
Table 7.1). Right column: Performance of GAMBLE TA compared to the oracle, onall problems and for all runs.
50 × 10664/2 = 266600 points per plot. (c) First half of the sequence. (d) Second half. The vertical lines reflect
the fact that the algorithms are deterministic: runs differ only in the randomorder of the instances. The diagonal (not
marked) would be the performance of ORACLE. Thecontinuous lineabove the diagonal would be the performance of
UNIFORM. Note that this line is crossed by many runs. See also Table 7.1.

Technical Report No. IDSIA-02-07 25

parameter optimally, based on the length of the task sequence. If the latter is not known, an initial estimate
can be used, and periodically updated [1, 2]. In this case theoptimal regret (20) is guaranteed with respect
to the actual cumulative reward of the best expert. This modification was already tested, with analogous
results. Different values of∆t0 can only affect the performance with a logarithmic factor. The use of
a logarithm for rewarding the algorithms allows to settmin and tmax, respectively, to a very small and
a very large value, such that only the knowledge of a very loose bound on execution time is required.
Design decisions, including the choice of the time allocators, and model(s) to use, as well as the relative
parameters, can be taken with a redundant approach, and their refinement can be left to EXP4. In the
presented experiments we used a non-parametric model, which is slower to converge than a parametric
one, but can converge to an arbitrary distribution, so it does not require anya-priori hypothesis about the
runtime distributions of the algorithms. If such hypothesis are available, but unsure, an additional copy of
each time allocator, based on the parametric model, can be added, and EXP4 will decide which model to
use, with a

√
ln 2 impact on its regret. At the lowest level, the choice of the algorithms composingA, as

well as the relative parameters, is still left to the user.
The amount of prior knowledge required by the experiments was quite low: the only inputs used for the

model where one or two features, representing the size of theproblems, andtime. GAMBLE TA has ablack-
boxview of the algorithms, and can be applied to any decision problem solver. Optimisation problems can
be treated, if a target on performance can be set in advance.

With respect to the previous parametric model [18, 19], the nonparametric method used here also allows
to greatly reduce the modeling overhead, which is now negligible. According to [77], WW suffers from the
curse of dimensionality, so it should be replaced in order toprofit from a larger set of features. Including
time-varying covariates, to condition the prediction alsoon the dynamic state of the algorithms, will also
require more advanced models [48, 54, 73]: the approximation used in [18, 19] was abandoned. The regret
of EXP4 will scale well with the number of algorithmsK, and the number of time allocatorsN , with order
O(

√
K lnN). The time allocators perform an optimisation in[0, 1]K , constrained to a space of sizeK−1,

ass has to sum to one. As there are no guarantees of unimodality, they will all suffer from the curse of
dimensionality, so, for much larger algorithm sets, some approximations should be introduced.

GAMBLE TA is highly modular. On the higher level, different bandit problem solvers could be com-
pared, possibly starting from the variations described in [2]. On a level below, the model based time allo-
cators could be replaced, or combined, with any other algorithm selection technique. It would be enough
to express its decision as a share vectors. In the simplest case, one could add an additional fixed allocator
for each algorithm in the set, to quickly detect situations in which a single algorithm dominates the others.
Also oblivious techniques, as the ones in [10, 16], could be easily integrated.

Section 4 is based on a single machine. In future research we plan to address a more realistic sce-
nario, in which aclusterof machines has to be allocated, one algorithm per machine. Another alternative
implementation could be based on setting the priorities of the algorithms through the operating system.

If we go back to the initial section, and look at the list of issues of a typical model-based algorithm
selection technique, we realize that at least two of them do not hold for GAMBLE TA. It never solves the
same problem twice. And the simple fact of looking at the runtime of the algorithms allows it to improve
its initial time allocation decisions. The first problem remains open: one feature that is still lacking is that
the method cannot react to a misprediction of the model during a single task, which could be caused by an
“outlier” problem instance, on which the behavior of the algorithms is radically different from what seen
so far in the problem sequence. We will focus on this issue in our future research.

AcknowledgementsWe would like to thank Faustino Gomez, for his invaluable support during writing;
Alexey Chernov and Jan Poland, for the always useful brainstorming; Yannet Interian, and Laura Spierdijk,
for their expert advice; and Kevin Leyton-Brown, for kind assistance with the WDP data.

Technical Report No. IDSIA-02-07 26

References

[1] Peter Auer, Nicol̀o Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. Gambling in a rigged casino:
the adversarial multi-armed bandit problem. InProceedings of the 36th Annual Symposium on Foun-
dations of Computer Science, pages 322–331. IEEE Computer Society Press, Los Alamitos,CA,
1995.

[2] Peter Auer, Nicol̀o Cesa-Bianchi, Yoav Freund, and Robert E. Schapire. The nonstochastic multi-
armed bandit problem.SIAM J. Comput., 32(1):48–77, 2002.

[3] Roberto Battiti and Marco Protasi. Reactive search, a history-sensitive heuristic for max-sat.ACM
Journal of Experimental Algorithms, 2:2, 1997.

[4] Christopher J. Beck and Eugene C. Freuder. Simple rules for low-knowledge algorithm selection. In
Jean-Charles Ŕegin and Michel Rueher, editors,Integration of AI and OR Techniques in Constraint
Programming for Combinatorial Optimization Problems, First International Conference, CPAIOR
2004, volume 3011 ofLecture Notes in Computer Science, pages 50–64. Springer, 2004.

[5] R. Beran. Nonparametric regression with randomly censored survival data. Technical report, Univer-
sity of California, Berkeley, 1981.

[6] D. A. Berry and B. Fristedt.Bandit Problems: Sequential Allocation of Experiments. Chapman and
Hall, London, 1985.

[7] M. Birattari, T. Sẗutzle, L. Paquete, and K. Varrentrapp. A racing algorithm for configuring meta-
heuristics. In W. Langdon et al., editors,GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference, pages 11–18. Morgan Kaufmann Publishers, 2002.

[8] Mark Boddy and Thomas L. Dean. Deliberation scheduling for problem solving in time-constrained
environments.Artificial Intelligence, 67(2):245–285, 1994.

[9] J. E. Borrett, Edward P. K. Tsang, and N. R. Walsh. Adaptive constraint satisfaction: The quickest first
principle. In Wolfgang Wahlster, editor,Proceedings of the 12th European Conference on Artificial
Intelligence, pages 160–164, Chichester, 1996. John Wiley and Sons.

[10] T. Carchrae and J. C. Beck. Applying machine learning tolow knowledge control of optimization
algorithms.Computational Intelligence, 21(4):373–387, 2005.

[11] Vincent A. Cicirello and Stephen F. Smith. Heuristic selection for stochastic search optimization:
Modeling solution quality by extreme value theory. In Mark Wallace, editor,Principles and Practice
of Constraint Programming - CP 2004, volume 3258 ofLecture Notes in Computer Science, pages
197–211. Springer, 2004.

[12] Vincent A. Cicirello and Stephen F. Smith. The max k-armed bandit: A new model of exploration
applied to search heuristic selection. In Manuela M. Velosoand Subbarao Kambhampati, editors,
Proceedings, The Twentieth National Conference on Artificial Intelligence and the Seventeenth Inno-
vative Applications of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania,
USA, pages 1355–1361, 2005.

[13] N. L. Cramer. A representation for the adaptive generation of simple sequential programs. In J.J.
Grefenstette, editor,Proceedings of an International Conference on Genetic Algorithms and Their
Applications, Carnegie-Mellon University, July 24-26, 1985, Hillsdale NJ, 1985. Lawrence Erlbaum
Associates.

Technical Report No. IDSIA-02-07 27

[14] O. Etzioni. Embedding decision-analytic control in a learning architecture.Artificial Intelligence,
49(1-3):129–159, January 1991.

[15] Johannes F̈urnkranz. On-line bibliography on meta-learning, 2001. EUESPRIT METAL Project
(26.357): A Meta-Learning Assistant for Providing User Support in Machine Learning Mining —
Http://faculty.cs.byu.edu/˜cgc/Research/MetalearningBiblio/metal-bib.html.

[16] M. Gagliolo, V. Zhumatiy, and J. Schmidhuber. Adaptiveonline time allocation to search algorithms.
In J. F. Boulicaut et al., editors,Machine Learning: ECML 2004. Proceedings of the 15th European
Conference on Machine Learning., pages 134–143. Springer, 2004. — Extended tech. report available
at http://www.idsia.ch/idsiareport/IDSIA-23-04.ps.gz.

[17] Matteo Gagliolo and J̈urgen Schmidhuber. Gambling in a computationally expensive casino: Algo-
rithm selection as a bandit problem. Paper presented at the NIPS 2006 Workshop on Online Trading
of Exploration and Exploitation.

[18] Matteo Gagliolo and J̈urgen Schmidhuber. A neural network model for inter-problem adaptive online
time allocation. In Włodzisław Duch et al., editors,Artificial Neural Networks: Formal Models and
Their Applications - ICANN 2005, Proceedings, Part 2, volume 3697 ofLecture Notes in Computer
Science, pages 7–12. Springer, 2005.

[19] Matteo Gagliolo and J̈urgen Schmidhuber. Dynamic algorithm portfolios. Paper presented at the
Ninth International Symposium on Artificial Intelligence and Mathematics, 2006.

[20] Matteo Gagliolo and J̈urgen Schmidhuber. Impact of censored sampling on the performance of restart
strategies. In Fŕed́eric Benhamou, editor,Principles and Practice of Constraint Programming - CP
2006, volume 4204 ofLecture Notes in Computer Science, pages 167–181. Springer, 2006.

[21] Matteo Gagliolo and J̈urgen Schmidhuber. Learning restart strategies. In M. Veloso, editor,IJCAI
2007 — Twentieth International Joint Conference on Artificial Intelligence, 2007. To appear.

[22] I. Gent and T. Walsh. The search for satisfaction. Technical report, Dept. of Computer Science,
University of Strathclyde, 1999.

[23] Christophe Giraud-Carrier, Ricardo Vilalta, and Pavel Brazdil. Introduction to the special issue on
meta-learning.Machine Learning, 54(3):187–193, 2004.

[24] Carla P. Gomes and Bart Selman. Algorithm portfolios.Artificial Intelligence, 126(1–2):43–62, 2001.

[25] Carla P. Gomes, Bart Selman, Nuno Crato, and Henry Kautz. Heavy-tailed phenomena in satisfiability
and constraint satisfaction problems.J. Autom. Reason., 24(1-2):67–100, 2000.

[26] Eric A. Hansen and Shlomo Zilberstein. Monitoring and control of anytime algorithms: A dynamic
programming approach.Artificial Intelligence, 126(1–2):139–157, 2001.

[27] G. R. Harick and F. G. Lobo. A parameter-less genetic algorithm. In Wolfgang Banzhaf et al., editors,
Proceedings of the Genetic and Evolutionary Computation Conference, volume 2, pages 1867–1875.
Morgan Kaufmann, 1999.

[28] J. H. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press, Ann
Arbor, 1975.

[29] H. H. Hoos and T. Sẗutzle. SATLIB: An Online Resource for Research on SAT. In T. Walsh I.P.Gent,
H.v.Maaren, editor,SAT 2000, pages 283–292. IOS press, 2000. Http://www.satlib.org.

Technical Report No. IDSIA-02-07 28

[30] Holger Hoos and Thomas Stützle. Stochastic Local Search: Foundations & Applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2004.

[31] Eric Horvitz, Yongshao Ruan, Carla P. Gomes, Henry A. Kautz, Bart Selman, and David Maxwell
Chickering. A bayesian approach to tackling hard computational problems. In Jack S. Breese and
Daphne Koller, editors,UAI ’01: Proceedings of the 17th Conference in Uncertainty in Artificial
Intelligence, pages 235–244. Morgan Kaufmann Publishers Inc., 2001.

[32] Eric J. Horvitz and Shlomo Zilberstein. Computationaltradeoffs under bounded resources (editorial).
Artificial Intelligence, 126(1–2):1–4, 2001. Special Issue.

[33] B. A. Huberman, R. M. Lukose, and T. Hogg. An economic approach to hard computational problems.
Science, 275:51–54, 1997.

[34] Frank Hutter and Youssef Hamadi. Parameter adjustmentbased on performance prediction: Towards
an instance-aware problem solver. Technical Report MSR-TR-2005-125, Microsoft Research, Cam-
bridge, UK, December 2005.

[35] Frank Hutter, Youssef Hamadi, Holger H. Hoos, and KevinLeyton-Brown. Performance predic-
tion and automated tuning of randomized and parametric algorithms. In Fŕed́eric Benhamou, editor,
Principles and Practice of Constraint Programming - CP 2006, volume 4204 ofLecture Notes in
Computer Science, pages 213–228. Springer, 2006.

[36] J. G. Ibrahim, Ming-Hui Chen, and Debajyoti Sinha.Bayesian Survival Analysis. Springer, 2001.

[37] David W. Hosmer Jr. and Stanley Lemeshow.Applied Survival Analysis: Regression Modeling of
Time to Event Data. Wiley, 1999.

[38] L.P. Kaelbling, M.L. Littman, and A.W. Moore. Reinforcement learning: a survey.Journal of AI
research, 4:237–285, 1996.

[39] E.L. Kaplan and P. Meyer. Nonparametric estimation from incomplete samples.Journal of the
American Statistical Association, 73:457–481, 1958.

[40] Henry A. Kautz, Eric Horvitz, Yongshao Ruan, Carla P. Gomes, and Bart Selman. Dynamic restart
policies. InProceedings of the Eighteenth National Conference on Artificial Intelligence and Four-
teenth Conference on Innovative Applications of ArtificialIntelligence (AAAI/IAAI), pages 674–681,
2002.

[41] I. Van Keilegom, M.G. Akritas, and N. Veraverbeke. Estimation of the conditional distribution in
regression with censored data : a comparative study.Comput. Statist. Data Anal., 35:487–500, 2001.

[42] J. Keller and C. Giraud-Carrier. ECML 2000 workshop on meta-learning: Building automatic advice
strategies for model selection and method combination, 2000.

[43] Michail G. Lagoudakis and Michael L. Littman. Algorithm selection using reinforcement learning. In
Pat Langley, editor,Proceedings of the Seventeenth International Conference on Machine Learning
(ICML 2000), pages 511–518. Morgan Kaufmann, 2000.

[44] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham.Learning the empirical hardness of opti-
mization problems: The case of combinatorial auctions. In Pascal Van Hentenryck, editor,Principles
and Practice of Constraint Programming - CP 2002, volume 2470 ofLecture Notes in Computer
Science. Springer, 2002.

Technical Report No. IDSIA-02-07 29

[45] Kevin Leyton-Brown, Eugene Nudelman, and Yoav Shoham.Empirical hardness models: Methodol-
ogy and a case study on combinatorial auctions.Journal of the ACM, 2005. Submitted.

[46] Chu-Min Li and Anbulagan. Heuristics based on unit propagation for satisfiability problems. In
Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence, IJCAI 97, vol-
ume 1, pages 366–371. Morgan Kaufmann, 1997.

[47] Chu Min Li and Wenqi Huang. Diversification and determinism in local search for satisfiability.
In Fahiem Bacchus and Toby Walsh, editors,Theory and Applications of Satisfiability Testing, 8th
International Conference, SAT 2005, volume 3569 ofLecture Notes in Computer Science, pages
158–172. Springer, 2005.

[48] G. Li and H. Doss. An approach to nonparametric regression for life history data using local linear
fitting. Annals of Statistics, 23:787–823, 1995.

[49] Hongzhe Li. Censored data regression in high dimensionand low sample size settings for genomic
applications. Technical Report 9, University of Pennsylvania, 2006.

[50] Michael Luby, Alistair Sinclair, and David Zuckerman.Optimal speedup of las vegas algorithms.Inf.
Process. Lett., 47(4):173–180, 1993.

[51] D. Mitchell, B. Selman, and H. Levesque. Hard and easy distributions of sat problems.In Proc. 10-th
National Conf. on Artificial Intelligence, pages 459–465, 1992.

[52] A. W. Moore and M. S. Lee. Efficient algorithms for minimizing cross validation error. In William W.
Cohen and Haym Hirsh, editors,Machine Learning, Proceedings of the Eleventh International Con-
ference (ICML), pages 190–198. Morgan Kaufmann, 1994.

[53] Wayne Nelson.Applied Life Data Analysis. John Wiley, New York, 1982.

[54] J.P. Nielsen and O.B. Linton. Kernel estimation in a nonparametric marker dependent hazard model.
Annals of Statistics, 23:1735–1748, 1995.

[55] Eugene Nudelman.Empirical approach to the complexity of hard problems. PhD thesis, Stanford
University, CA, 2005.

[56] Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav Shoham. Under-
standing random sat: Beyond the clauses-to-variables ratio. In Mark Wallace, editor,Principles and
Practice of Constraint Programming - CP 2004, volume 3258 ofLecture Notes in Computer Science,
pages 438–452. Springer, 2004.

[57] Marek Petrik. Learning parallel portfolios of algorithms. Master’s thesis, Comenius University, 2005.

[58] Marek Petrik. Statistically optimal combination of algorithms. Paper presented at SOFSEM 2005 -
31st Annual Conference on Current Trends in Theory and Practice of Informatics, 2005.

[59] Marek Petrik and Shlomo Zilberstein. Learning static parallel portfolios of algorithms. Paper pre-
sented at the Ninth International Symposium on Artificial Intelligence and Mathematics., 2006.

[60] Bernhard Pfahringer, Hilan Bensusan, and Christophe Giraud-Carrier. Meta-learning by landmarking
various learning algorithms. In Pat Langley, editor,Proceedings of the Seventeenth International
Conference on Machine Learning (ICML 2000), pages 743–750. Morgan Kaufmann, June 2000.

[61] Lorien Pratt and Sebastian Thrun. Guest editors’ introduction.Machine Learning, 28:5, 1997. Special
Issue on Inductive Transfer.

Technical Report No. IDSIA-02-07 30

[62] J. R. Rice. The algorithm selection problem. In Morris Rubinoff and Marshall C. Yovits, editors,
Advances in computers, volume 15, pages 65–118. Academic Press, New York, 1976.

[63] H. Robbins. Some aspects of the sequential design of experiments.Bulletin of the AMS, 58:527–535,
1952.

[64] S. J. Russell and S. Zilberstein. Anytime sensing, planning, and action: A practical model for robot
control. In Ruzena Bajcsy, editor,Proceedings of the International Conference on Artificial Intel-
ligence (IJCAI-93), pages 1402–1407, Chambéry, France, August 29–September 3 1993. Morgan
Kaufmann publishers Inc.

[65] Stuart J. Russell and Eric H. Wefald. Principles of metareasoning. Artificial Intelligence, 49(1–
3):361–395, May 1991.

[66] R. P. Sałustowicz and J. Schmidhuber. Probabilistic incremental program evolution.Evolutionary
Computation, 5(2):123–141, 1997.

[67] J. Schmidhuber. Optimal ordered problem solver.Machine Learning, 54:211–254, 2004. Short
version inNIPS 15, p. 1571–1578, 2003.

[68] J. Schmidhuber, J. Zhao, and M. Wiering. Shifting inductive bias with success-story algorithm, adap-
tive Levin search, and incremental self-improvement.Machine Learning, 28:105–130, 1997. —
Based on: Simple principles of metalearning. TR IDSIA-69-96, 1996.

[69] Carlos Soares, Pavel B. Brazdil, and Petr Kuba. A meta-learning method to select the kernel width in
support vector regression.Mach. Learn., 54(3):195–209, 2004.

[70] Ray J. Solomonoff. Progress in incremental machine learning. Technical Report IDSIA-16-03, ID-
SIA, 2003.

[71] Laura Spierdijk. Nonparametric conditional hazard rate estimation: a local linear approach. Technical
Report TW Memorandum, University of Twente, 2005.

[72] Matthew J. Streeter and Stephen F. Smith. An asymptotically optimal algorithm for the max k-armed
bandit problem. InProceedings, The Twenty-First National Conference on Artificial Intelligence
and the Eighteenth Innovative Applications of Artificial Intelligence Conference (AAAI/IAAI). AAAI
Press, 2006.

[73] Mark J. van der Laan and James M. Robins.Unified methods for censored longitudinal data and
causality. Springer, 2003.

[74] V. Vapnik. The Nature of Statistical Learning Theory. Springer, New York, 1995.

[75] Ricardo Vilalta and Youssef Drissi. A perspective viewand survey of meta-learning.Artif. Intell.
Rev., 18(2):77–95, 2002.

[76] J. L. Wang. Smoothing hazard rate. In P. Armitage et al.,editors,Encyclopedia of Biostatistics, 2nd
Edition, volume 7, pages 4986–4997. Wiley, 2005.

[77] Laura Wichert and Ralf A. Wilke. Application of a simplenonparametric conditional quantile func-
tion estimator in unemployment duration analysis. Technical Report ZEW Discussion Paper No.
05-67, Centre for European Economic Research, 2005.

