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Abstract

Algorithm selection can be performed using a model of runtime distribuganned during a prelim-
inary training phase. There is a trade-off between the performanteadél-based algorithm selection,
and the cost of learning the model. In this paper, we treat this trade-thiicontext of bandit problems.
We propose a fully dynamic and online algorithm selection technique, witepearate training phase: all
candidate algorithms are run in parallel, while a model incrementally leaetrsrtintime distributions.
A redundant set ofime allocatorsuses the partially trained model to propose machine time shares for
the algorithms. A bandit problem solver mixes the model-based sharea wiifiorm share, gradually
increasing the impact of the best time allocators as the model improveprésfent experiments with a
set of SAT solvers on a mixed SAT-UNSAT benchmark; and with a seplers for the Auction Winner
Determination problem.

Keywords: algorithm selection, algorithm portfolios, online learning, life-long learnbamdit problem,
expert advice, survival analysis, satisfiability, constraint programgm

1 Motivation

Most problems in Al can be solved by more than one algorithnostvalgorithms feature a number of
parameters that have to be set. Both choices can dramptdigtt the quality of the solution, and the time
spent obtaining it. Algorithm Selection [62], dfieta-Learning[75] techniques, address these questions
in a machine learning setting. Based on a training set obpaiince data for a large number of problem
instances, a model is learned that map®Iiflem algorithm) pairs to expected performance. The model
is later used to select and run, for each new problem, onlhaldperithm that is expected to give the best
results.

A generalization of algorithm selection, inspired by #igorithm Portfolioparadigm [33], is to use
the model to select subsebf the available algorithms, and run them in parallel uhi@ fastest one solves
the problem. For some classes of algorithms, with a “heailgd” runtime distribution, the execution of
multiple parallel runs differing only for the random seedn@ctually have an advantage over a single run
[25]. In any case, only a fraction of the computation time @ spent on the fastest solver.

These approaches, though preferable to the far more pdjpuddiand error”, pose a humber of prob-
lems:

1. Training set representativeness.Problem instances encountered during the training pha&sasar
sumed to be statistically representative of successive. difés hypothesis is practically unavoidable
for any model-based selection technique, if referred tmglsiinstance.

2. Static selection.The actual algorithm performance on a given problem is assitmbe predictable
with sufficient precision before evestarting the algorithm. This assumption is often violated by
stochastic algorithms, whose performance can exhibielfitgctuations across different runs (see,
e.g., Sect. 7.1, or [25]).
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3. Training cost. Generating the training data obviously requires solvircheéeaining problem repeat-
edly, at least once for each of the algorithms. The compartaticost of this initial training phase is
neglected, even though it can be high enough to make algos#iection impractical.

One common trait of the problems listed above, is that theylmrelated to the lack of feedback
information from the actual execution of the chosen algong. Such aynamicfeedback can be used to
update the model’s predictions, and adapt the computdtiesaurce allocation accordingly, allowing for
a finer distinction among problem instances (problem 2).ait also be used to guide the training phase
itself, avoiding exceedingly long runs of inefficient algbm/problem combinations (problem 3).

A step in this direction can be taken usinddgnamic Algorithm Portfolio DAP) [16, 18, 58, 19].
Instead offirst choosing a portfolio anthenrunning it, a DAP iteratively allocates a time slice that is
shared among all the available algorithms, and updateselaéve algorithm priorities, based on their
current state, in order to favor the most promising ones.hi®aim, a model is needed to mapdblem
algorithm, current algorithm statktriples to theexpected tim&o solve the problem.

To reduce training cost, the artificial boundary betweeinitng and usage should be dropped, adopting
anonlinelearning technique: after the first problem is solved, theleh@s updated, and used to guide the
solution of the next problem.

In previous work, we termed this approagldaptive Online Time AllocatiofAOTA). In [16], we
presented amblivioustime allocator, with no knowledge transfer across problestances. Runtime
predictions, evaluated by extrapolating recent perfoceamprovements, were mapped to time allocation
for the next time slice, based on a simple “ranking” heuristn [18] we proposed a method for learning
a probabilistic modebnline while solving a problem sequence. The model was conditimrefeatures
of both the problems and the algorithms (parameter valugsermt state). The downside of introducing
knowledge transfer across problem instances was that thielmwould obviously be unreliable during
the initial portion of the problem sequence. Time was thémcated according to a modification of the
ranking heuristic: the first problem was solved with a unifoshare, and the impact of the model on
the time allocation was gradually increased through theeece of tasks, according to a fixed schedule,
independent of model performance.

In this work we keep the santyynamic onlingohilosophy, but we separate the two problems of allocat-
ing time based on runtime predictions, and grading the impamodel-based allocation, giving a sound
solution for both. In the following we briefly present som&ted work (Sect. 2), distinguishing between
statictechniques, in which the selection is performed beforeimatanddynamicones, where the selec-
tion process is somehow adapted during the actual execotitre algorithms. We then introduce some
simple concepts from survival analysis, which are relevardur method, and to algorithm performance
modeling in general. Section 4 describes an ideal impleatient of a static portfolio, based on exact
knowledge of the runtime distributions of the algorithmisistrating different optimality criteria to share
machine time among the algorithms. Section 5 introduceslyneamicextension, and the online learning
scheme, discussing the exploration-exploitation traffleletermined by the online setting. In Section 6,
we address this trade-off in the context of bandit probleijsgnd present our new time allocator (TA)
GAMBLETA. Sect. 7 analyzes experimental results on two challepglgorithm selection problems. In
the first set of experiments, a local search and a completeseAErs are controlled during the solution
of a sequence of random satisfiable and unsatisfiable preblémthe second, we compare with results
of a static algorithm selection approach [44], on a set of woatorial Auction Winner Determination
problems. Sect. 8 discusses originality, limitations, wiadhle improvements of GVBLE TA.

2 Related work

Many algorithm selection, or parameter tuning, technigaes tailored to a specific algorithm, and often
present similar interesting solutions across differeti$ief research. We will give some examples of
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these, but we will keep our focus on “black box” techniquisaf tan be applied in more general settings.

We will first introduce some naming conventions. A first distion needs to be made amoadegcision
problems, in which a binary criterion for recognizing a smn is available; an@ptimisationproblems,
in which different levels of solution quality can be attaineneasured by aabjectivefunction [30]. A
decision problem can be viewed as an optimisation probletin avbinary objective function; an optimi-
sation problem can be turned into a decision problem, if ahable target value of performance can be
set in advance. Literature on algorithm selection is ofteru$ed on one of these two classes of prob-
lems. The selection is normally aimed at maximizing perfange quality for optimisation problems; and
at minimizing solution time for decision problems.

The selection among different algorithms can be perfornme dor an entire set of problem instances
(per setselection, following the terminology of [34]); or repeatied each instanceper instanceselection).

A further independent distinction [58] can be made amstagicalgorithm selection, in which any decision
on the allocation of resources precedes algorithm exeguioddynamic or reactive algorithm selection,
in which the allocation can be adapted during algorithm etien.

Another orthogonal feature is related to learning. Here wedw from the machine learning termi-
nology, distinguishing betweeoffline or batchlearning techniques, in which there is a separate training
phase, after which the selection criteria are kept fixed;aniithe' or life-long learning [61] techniques, in
which the criteria are updated at every instance solut@nliviousalgorithm selection techniques do not
transfer any knowledge across different problem instances

2.1 Static algorithm selection

A seminal paper in this field is [62], in which offline, per iaate algorithm selection is first advocated, both
for decision and optimisation problems. More recently,isintoncepts have been proposed, with different
terminology (algorithmrecommendationranking model selection by the Meta-Learningcommunity
[42, 15,75, 23]. For example, in [69], different values foe kernel parameter of a Support Vector Machine
[74] are evaluated on different training data sets. Each set is described through a set of features. For
an unseen data set, the features are first evaluated,ran#ling of the kernel parameter values is induced,
using ak-nearest-neighbor estimate of performance, based omdesia feature space between the new
data set, and the ones used for training.

Usually, meta-learning research deals with optimisatiabems, and is focused on maximizing solu-
tion quality, without taking into account the computatibagpect. An interesting exception is offered by
landmarkingtechniques [60] in which the performances of fast basexar not included in the algorithm
set, are used as task features, in order to obtain a bettgindiisation of task difficulty.

Works onEmpirical Hardness Modelgt4, 56, 55, 45] are instead applied to decision problemd, an
focus on obtaining accurate models of runtime performanoeditioned on numerous features of the
problem instances, as well as on parameters of the solvér853. The models are used to analyze this
performance, or to generate harder benchmarks, but alsertorm algorithm selection on a per instance
basis. Online selection is advocated in [34].

Literature on algorithm portfolios [33, 24, 59] is usualfyctised on choice criteria for building the set
of candidate solvers, such that their areas of good perfacendon't overlap; and optimal static allocation
of computational resources among elements of the portfolio

Other interesting research areas, in which both solutialityuand computational aspects are taken
into account, includeanytime algorithm scheduling8], andtime limited planning32, 64, 65, 14]), in
which time is allocated sequentially to a set of planningnitives (e. g., finding the path to a goal) and

LIn previous works [16, 18], the terms “offline” and “online” veeused to distinguish among static and dynamic approaches, bu
we found this nomenclature to be misleading, especially fentiachine learning community.

2with the term algorithm portfolio, we always refer to the @l execution of (a subset of) the members of the portfotimther
works (e. g., [44]), the term is also referred to the alganitbet from which single algorithm selection is performed.



Technical Report No. IDSIA-02-07 4

the subsequent actions exploiting the decisions taken,(®llgwing the chosen path), in order to obtain a
good compromise between solution quality and time spenpecimyg it.

Bandit problemsolvers (BPS) [6, 1], can in principle be applied to static gt algorithm selection,
considering each available algorithm as an arm and runtgreelass, to be minimized (see also Sect. 2.2,
Sect. 6, [21, 17]). As an alternative, one can consider tleeofig BPS to solve selection problems on a
per instance basis, in an oblivious setting, as in [11, 12, WRBere theMax K -armed bandit problenis
presented, and solvers for this game are used to maximif&rpamce quality.

In [21], we presented an online method for learning a per sémate of an optimal restart strategy
(GAaMBLER). The method consists in alternating the universal giyaté [50], and an estimated optimal
strategy, again based on [50]. The estimate is performeat@iog to a model of runtime distribution on
the set of instances, updated at every solution. Here thditqanoblem solver is used at an upper level, to
allocate runs of the two strategies: a similar approachbeiltaken in this work, to weight the decisions of
different time allocators (Sect. 6).

The classification of Racing Algorithms [52, 7] as static gyna@mic depends on the definition of a prob-
lem instance. In these works, the algorithm set contairfsréifit parametrizations of a given supervised
algorithm. Each is repeatedly run on a sequence of incrglgsiarge leave-one-out training sets, which
can be seen as a sequence of related problems; after a prighbtmived, badly performing algorithms
are discarded if statistically sufficient evidence is gegbdeagainst them, such that machine time is shared
among fewer algorithms on next problem.

Search in program space can also be formalized as an algosighection problem. For example,
the algorithm set of the Optimal Ordered Problem Solver [®3)y include all programs of a universal
programming language. Time is allocated to these prograoyoptionally to a probability distribution
that is updated when a problem is solved. Other interestingrpm search techniques include Genetic
Programming [13] and Probabilistic Incremental Prograrol&ion [66].

2.2 Dynamic Algorithm Selection

A number of interesting dynamic exceptions to the statied@n paradigm have been proposed recently.
In [31], algorithm performance modeling is based on the hienaof the candidate algorithms during
a predefined amount of time, called thbservational horizon Each algorithm is run on each training
problem, with a high enough cutoff time, and features areaettd from the dynamic data recorded during
this initial period. Runs are distinguished as belongingno classes of “short” and “long” experiments,
using the median of runtimes as a decision threshold. A mmgpigilearned from the static and dynamic
features to the correct classification labels. The sameoappris used in [40] to implement dynamic
context-sensitive restart policies for SAT solvers: ththats assume that the runtime distribution of their
algorithm is not known in advance, but belongs to a knowndisét of distributions, from which the correct
one can be discriminated based on dynamic features.

Algorithmic chaining9] executes a predetermined sequence of Constraint Fnogjreg solvers, using
an ad-hoc mechanism to decide when to switch to next algoyidttcording to a prediction of “thrashing”
behavior, given the current state. This can be viewed as andignportfolio, but all its components are
fixed, designed based on a-priori expertise.

In anytime algorithm monitoring26], the dynamic performance profilef a planning technique is
updated according to its performance, in order to stop taerphg phase when further improvements in
the planned action sequence are not worth the time speniagivaj them. Also in this case, both the quality
of a solution and its computational cost are taken into agtou

In [70], the author presents a collection of ideas for s@véequences of time-limited optimisation
problems by searching in a space of problem solving teclesicallocating time to them according to their
probabilities, and updating the probabilities accordmgadsitive and negative results.

In a Reinforcement Learning [38] setting, algorithm setattan be formulated as a Markov Decision
Process: in [43], the algorithm set includes sequencesaifrsive algorithms, formed dynamically at
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run-time solving a sequential decision problem, and a tiariaof Q-learning is used to find a dynamic
algorithm selection policy; in [58, 57], from which we bowsome terminology, a set of deterministic
algorithms is considered, and, under some limitationsicstad dynamic schedules are obtained, based on
dynamic programming. Success Story algorithms [68] cammypudicy modifications that did not improve
the reward rate. A simple reinforcement learning feedbaekhanism is used at runtime in [3] to adapt
the size of the prohibition list of a tabu-search algorithm.

Some dynamic selection methods aldivious i. e., are characterized by the absence of any knowledge
transfer across problem instances.

The “parameterless GA’ [27] may be viewed as a specializedste for dynamic selection. It consists
of a sequence of simple generational Genetic Algorithm§ [28h exponentially spaced population sizes,
generated and executed according to a fixed interleavingdsibd that assigns more runtime to smaller
populations. Once a small population converges, or a lavgerachieves a higher average fitness, the
small one is discarded.

“Low-knowledge” approaches can be found in [4, 10], in whietious simple indicators of current
solution improvement are used for algorithm selectionydeoto achieve the best solution quality within a
given time contract. In [4], all available algorithms are for a fraction of the contract, and a performance
predictor is then used to select a single one for the remgiimime. In [10], the selection process is iterated:
machine time shares are based on a recency-weighted awrpgdormance improvements. This latter
oblivious technique is actually a simple solver for timeyiag bandit problems, here applied on a per
instance basis.

In [16] we adopted a similar approach. We considered algmstwith a scalar state, that had to reach
a target value. The time to solution was estimated based bifteng-window linear extrapolation of the
learning curves: a recency-weighted average was triedsatlint its results were not competitive with the
comparison term [27].

3 Algorithm Survival Analysis

This paper is focused aecisionproblems, in which a binary criterion for recognizing a s$iwo is avail-
able. In this case, performance modeling aims at predi¢ttiaguntime i. e., the time to solve a problem.
More precisely, consider a randomized algorithm solvingverg problem instance, or, equivalently, a
randomized or deterministic algorithm solving a randondiested problem instance. In both cases, the
runtime spent before finding a solution can be treated asdorawvariablel’, described by iteumulative
distributionfunction (CDF),F(t) = Pr{T < t}, F : [0,00) — [0, 1], representing the probability that a
solution is found within a time. This function is referred to as tmantime distribution(RTD) in literature
about algorithm performance modeling (see, e. g., [30]).

A large corpus of research, known under the namsuwfival analysid [37, 53], is devoted to the
modeling of events in time. In this section, we briefly revigng basic concepts and terminology in these
fields, and discuss their application to algorithm perfamogamodeling.

We start by noting a difference between the events of intémesurvival analysis, typically death, or
failure, and problem solution: the latter does not necdgdaave to happen. This can be described by a
RTD with F'(oco) < 1. The resultingprobability densityfunction (pdf), defined ag(¢t) = dF(t)/dt, is
improper i. e., its integral ovef0, oo) does not sum ta. In this situation, the expected runtimeds, and
the usual formulation

B(r) = [ &)

0

3 This is the most widely used term, in medicine, biostatistiasiplyy, but different application fields use other terms. irgrs
modeling the duration of a device speakfaifure analysis or reliability theory. Actuaries setting premiums for insurance companies
use the ternactuarial science
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cannot be applied. Auantilet,, of the RTD, defined as the time at whié¢hintercepts the value, can
still be evaluated, solving the equation
ta = F"'(a), a €0, F(co)]. (2

Lifetime distributions are often described in terms of sluevival function

S(t)=1—F(t), )

representing, in our case, the probability that the algoriis still “alive” and running at time.
Another ubiquitous concept in survival analysis is taardfunction i(t¢), quantifying the instanta-
neous probability of occurrence of the event of interesinae t, given that it was not observed earlier:

L P{T <t+ AT >t} f(t)  f(t)
h(t) = lim, At S1oF@ - S@)
wheref(t)/S(t) = f(t|T > t) is the pdf conditioned on observed survival until titne

The integral of (4) is termedumulativehazard, and can be shown to have the following relationship
with the survival function:

(4)

H(t) = /0 h(r)dr = /0 diig) = —InS(t), (5)

or S(t) = exp(—H(t)).

3.1 Censored sampling

A typical problem that survival analysts have to face isitittompletenessf the data. For example, in
biostatistics and medicine, patients might “drop-out” augr of study: in this case, only a lower bound on
their lifetime would be known. A sample containing inconplédata is referred to asa@nsoredsample.

In failure analysis [53], censoring is normally the resdlerperimenter’s decisions, aimed at reducing the
duration of an experiment. For example, in estimating atthwanodel of a newly produced light bulb,
an engineer could leave a large number of prototypes turneidrca predetermined period of timgype

I censored sampling): in this case the number of observedrdailis a random variable, related to the
lifetime distribution of the bulbs. As an alternative, thgeriment could end as soon as a predetermined
number of bulbs has gone offype Il censored sampling). In this case, the duration of the exyri is

a random variable. In both cases, only a lower bound on faiinne would be available for the surviving
bulbs. Unless the engineer is willing to wait for years, a trew product is quite cheap, this incomplete
data will constitute a large portion of the collected samflae precision of the model would clearly be
affected. In other words, there igrade-off between the duration of the experiment, and the precision of
the obtained model: in any case, discarding incompleteaataesult in an extremely biased model.

In algorithm performance modeling, type | censoring is ¢ty performed, imposing a threshold on
runtime. Also in this case there is a trade-off between itngitime and model precision. In the context
of algorithm selection techniques, this trade-off shoalther be measured between training time and the
gain in performance resulting from the use of the learnedehad this sense, the required precision can
be much lower than expected. We give an example in [20] winserade-off is analyzed in the context of
restart strategies, reporting the training times, andtiagyperformance, of model-based restart strategies,
learned with different levels of censoring.

The treatment of censored data differs in gaametricandnon-parametricsettings. When fitting a
parametric modef (¢|0), a censored runtim&. can be taken into account by expressing the likelihood of
the parameted, given this piece of data, as the survival probability attim
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.(el0) = | " r0)dr = [1— F(t10)] = S(t.]6). 6)

In nonparametrianethods [71, 41], estimates are based solely on the datavelsso far. The simplest
nonparametric method is the empirical CDF,

A 1
Fit)y=Y -—.
H=> - Y
t; <t
In this setting, censored samples can be taken into accgutistinguishing between the number of events
recorded, and the number of individuals observed “at rigk'd(r case: still running), at a time This is
the essence of the Kaplan-Meier estimator of the hazardiumf39]:

iL o Zti:t,uizl 1
(t) = —<="7—
2ozl

wherey; is theevent indicatoyand isl for uncensored observations, ahtbr censored ones.

In these and other nonparametric methddg,), S(t), H(t) are “stepwise” functions, that change only
at uncensored observatiofis|v; = 1}, and are defined until the largest one; whilg), h(t) are pulse
trains, i. e., aré) everywhere, but with a positive integral across the obsevaaluest;. For example, a
non-parametric hazard function can be representédts= >, h;d(t — t;), whereh; is the hazard (8) at
t;, and the corresponding cumulative hazard functioH {¢) = _, _, h;. In order to obtain meaningful
predictions also fot ¢ {t;}, hazard or density estimates candmeoothed76].

(8)

3.2 Conditional models

Conditionalestimates [5] take into accouobvariateor featurevaluesx for each individual. Ifdynamic
information about the algorithm is also available, this bartreated as tame-varyingcovariate, otongi-
tudinal data [48, 54, 73], to update an estimated RTD. The simplagt-tiarying covariate is time itself: if
an algorithm is still running at a timg the RTD for the rest of the run can be evaluated by simplytiskif
and scaling the original’

Fit)—-F(y) _ F(t) - F(y)
F@|T >y) = = , 9
T >9) 1—F(y) S(y) ©)
defined only fort > y. Given the definition of the hazard function (4), its formdtzes not change, while
the cumulative hazard becomes:

HMT>y%i/hﬁMr (10)

Both cases can be represented in the non-parametric seitimgly discarding hazard valugswith ¢; < y.

In the next section, we will apply the simple notions desadilnere, to propose different optimisation
criteria for a static algorithm portfolio. Literature onrsival analysis is obviously much richer than this.
Recent research is facing challenging applications, amdldging advanced estimation techniques, with
Bayesian methods playing a major role [36]. For examplesthidsticians working on gene expression data
[49] have to deal withhousandf time-varying covariates, and often very small and ceed@amples.
Both algorithm performance modeling, and model-basedrégo selection, can profit from this field of
research: for selection, also the computational compl@fimodeling should be taken into account.
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4  Static algorithm portfolios

Consider now a portfolio oi” algorithmsA = {ay, as, ..., ax }, solving the same problem instance in par-
allel, and sharing the computational resources of a singlghine according to a shayve= {s1, .., sx }, s >

0, Zfil s, = 1; i. e., for any amount of machine time, a portioty, = st will be allocated to a;.. An

a, that can solve the problem in a timgif run alone, will spend a timeé = ¢, /s, if run with a sharesy.

If the runtime distributionF, (¢x) of a; on the current problem is available, one can obtain theilolistr
tion Fy, 5, (t) of the event &;, solved the problem after a tinteusing a share;,”, by simply substituting

tr = sptin Fy,:

Fy 5, (t) = Fi(skt). (11)

If the execution of all the algorithms is stopped as soon as afnthem solves the problem, as in
Type Il censored sampling (Sect. 3), the resulting duratibthe solution process is a random variable,
representing the runtime of the parallel portfolio. Itstdigition F 4 s(¢) can be evaluated based on the
shares, and the{ F}, }. The evaluation is more intuitive if we reason in terms ofshevival distribution: at
a given timet, the probabilityS 4 s (¢) of nothaving obtained a solution is equal to the joint probabilitgt
no single algorithmu, has obtained a solution within its time shagg. Assuming that the solution events
are independent for eaeh, this joint probability can be evaluated as the product efitidividual survival
functionsSy, (sxt)

K
Sas(t) H (skt), (12)
or, in CDF form:
K
Fas(t)=1— ][] - Fulsit))- (13)
k=1

Given (5), equation (12) has an elegant representationmmstef the cumulative hazard function

K
Has(t) = —In(Sas(t) = > —In(Sk(skt)) ZHk (sit). (14)
i=1
Algorithm selection can be represented in this frameworlebtynng a singles;, value to1, while a
uniform algorithm portfolio would have = s;; = (1/K,...,1/K). If the distributionsF}, are available,
other alternatives can be implemented. One naive appraadd consist in evaluating, for eaeh,, the
probability that it will be the fastest, and using this valagethe corresponding, = Pr{T}, < T;.x}.
This would only have a good performance if there is one allgoriin the set that greatly dominates the
others. Otherwise, this method would share resources asionilgrly performing algorithms, resulting in
a poor performance. In [16, 18], we mapped runtime predistios values based on an heuristic “ranking”
approach, in which the-th expected fastest solver would get a sttaré. Here we propose three different
analytic approaches, based on function optimisation.

1. Expected time. The expected runtime valu€ () = [, tfa,s(t)dt can be obtained, and mini-
mized with respect te:

s = argmin F 4 s(t). (15)

“Here and in the following we assume an “ideal” machine, withask switching overhead.
5 Apart form the terms,, (14) is the method used by engineers to evaluate the failstébition of aseriessystem, which stops
working as soon as one of the components fail, based on thedalistribution for each single component.
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2. Contract. If an upper bound, azontract ¢,, on execution time is imposed, one can instead use (13) to
pick thes that maximizes the probability of solution within the cautF 4 s(t,) = Pr{T 1 s < t,}
(or, equivalently, maximize# 4 s(t,,), or minimizesS 4 s(t.,)):

s =argmin S s(ty). (16)

3. Quantile. In other applications, one could want to solve the probleth wiobability at leasty, and
minimize execution time. In this case, a quantiles (o) = F;}S(a) should be minimized:

s = arg min Fjls(a). a7
. ;

If the F}, are parametric, a gradient of the above quantities couldb®pated analytically, depending
on the particular parametric form: otherwise, the optitiigacan be performed numerically. Note that the
sharess resulting from these three optimisation processes codfdrdiin the last two cases, they could
also depend on the chosen valuestfpanda respectively. In no case is there a guarantee of unimogdality
and it might be advisable to repeat the optimisation prooadsiple times, with different random initial
values fors, in case of extreme multimodality.

A choice among the three alternatives, as well as the chditeeaelative parameters, might be im-
posed by the particular application, or left open as a dedégision. We will postpone its discussion, and
conclude this section remarking that the methods desctileeel all rely on the assumption of indepen-
dence of the runtime values among the different algorithwinsch allows to express the joint probability
(12) as a product. This assumption is met only if fierepresent the runtime distributions of thg on
the particular problenmstancebeing solved. If instead the onll, available capture the behavior of the
algorithms on aetof instances, which includes the current one, independegiteot be assumed: in this
case, the methods presented should be viewed as approdsdti a less pessimistic scenario, one could
have access to modelst of the F;, conditioned on features, @ovariates x of the current problem. In
such a case theonditionalindependence of the runtime values would be sufficient, haddsulting joint
survival probability could still be evaluated as a product

K
Sas(thx) =[] Sk(sutlx). (18)
i=1

In practice, such a model is usually not available, and has &stimated. The degree of approximation
implied by assumption (18) will depend on the fit of the model.

5 A continually learning dynamic portfolio

Let us now focus on the second of the issues mentioned in thedirction, namely, the difficulty of
staticruntime predictions. It is intuitive that re-evaluatingperiodically could improve the performance,
especially if the runtime values are spread on a large rargbe effective, this evaluation has to be based
on a modelM of the RTD conditioned also on the current stajeof each algorithm: in the simplest
setting, one can always consider the time spgrds the current state information, updating e&glas in
(9).

A dynamic algorithm portfolio (Alg. 1) can be implemented igyevaluating periodically, each time
based orf}, conditioned on the current state information, and timeaalyespent. Any of the three methods
presented in Section 4 could be used dsree allocatorTA to updates. An additional design decision
would be required to set the sequence of time interdalsNote also that in (Alg. 1) it is assumed that, for
each incoming problem instance, there is at leastaqribat can solve it.



Technical Report No. IDSIA-02-07 10

Algorithm 1 Dynamic Algorithm Portfolio
Algorithm setA = {a1, ...,ax }
Model M
while problem not solvedo
updateFk(tk) = M(tk|Xk,yk) for k = 1,..., K
updateAt
updates := TA({F:})
run A with shares for a maximum timeAt¢
end while

The conditional modeM is usually not available, and would have to be estimated ®egperimental
data. A straightforward application of the machine leagniaradigm would require solving, with each
algorithm, the same sequence of “training” problem instanén order to collect a sufficient amount of
runtime data. This approach would share the third issueioresd in the introduction with other algorithm
selection techniques: a huge amount of time would be spérihgdhe same training problems over and
over again, in order to gather a sufficiently large amountadéd

A first idea for reducing training time is inspired by censbeampling techniques. As the engineers
do with the light bulbs, we could run our portfolio with a umifn shares;, = (1/K,1/K,...,1/K) on
each training problem instance, and instead of waiting lfdhe algorithms to end, we could stop after the
first few solve the problem, and switch to the next. As saident®n 3, this would have an impact on the
accuracy of the model, but the uniform share would at leastraghat the fastest algorithm(s) would not be
censored. In this way the model would be less accurate fergffigient algorithm/problem combinations.
The downside of the uniform share, is that it would still haveuge overhead on performarfce.

Another speed-up could be obtained using a partially tchimedel to guide further training. There
might be good algorithm/problem combinations that are ¢éa$yarn, and bad ones that are easy to avoid.
Instead of keeping a uniforsy, throughout the training sequence, we could periodicadiyntthe mode/M
during the sequence, and run our static or dynamic portédlichoice on the remaining training problems
“mixing” the output of the chosen time allocatex, = TA(M), with the uniforms;;, ass = pysam +
(1 — pa)sy; the mixing coefficienp g € [0, 1] could be increased each time the model is updated. This
would be more dangerous, as we would loose the positivetedfe;,, and risk of censoring the fastest
algorithm. It is intuitive that, ifp o, is increased too quickly, and the initial portion of the hiag sequence
is somehow deceptive, an initially imprecise model couldseamore time to be allocated to less efficient
algorithms, and the execution of the fastest algorithmstodmsored, thus reinforcing its own mistakes.

We are facing a trade-off betweenplorationof the performance of the various, andexploitation
of the model obtained so far. In [18], we addressed this tadfibeuristically, updating the model after
each task solution, and gradually shifting, through thébjfenm sequence, from a uniform initial share to
a model-based share, again heuristically evaluated. Ifotlosving section, we will treat this trade-off in
the context of bandit problems with expert advice.

6 Time allocation as a bandit problem

In its most basic form [63], thenulti-armed bandiproblem is faced by a gambler, playing a sequence of
trials against d(-armed slot machine. At each trial, the gambler chooses bt @vailable arms, whose
rewards are randomly generated from different stationatyildutions. The gambler can then receive the
corresponding reward,, and, in theull informationgame, observe the rewards that he would have gained

61f we wait for just one algorithm to terminate, and is the performance of the fastest, the resulting training wilsbe Kt;:
another uncensored samplg would cost an additiondl’X’ — 1)(¢;; — t7), and so on.
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pulling any of the other arms. The aim of the game is to mingmie regrei?, defined as the difference
between the cumulative reward of the best arm, and the oneeéay the gamblef

Rzm}gmexk(j) —G. (29)
J

A bandit problem solver (BPS) can be described as a mappingtiie history of the observed rewards
ri € [0,1] for each armk, to a probability distributiorp = (p1, ..., px), from which the choice for the
successive trial will be picked.

In recent works, the original restricting assumptions hagen progressively relaxed, allowing for
non-stationary reward distributiongartial information (only the reward for the pulled arm is obseryed)
and adversarialbandits, that can set their rewards in order to deceive thgepl In [1], no statistical
assumptions are made about the process generating thedsewdrich are allowed to be an arbitrary
function of the entire history of the gamegn-obliviousadversarial setting). Based on these pessimistic
hypotheses, the authors describe probabilistic gambtiagegjies for the full and the partial information
games, proving interesting bounds on the expected valleatgret.

Assuming that all;, can solve all problem instances, it is straightforward tectiée static algorithm
selection in aK-armed bandit setting, where “pick arki means “run algorithnu, on next problem
instance”. The reward for this game could be set based ontttene of the chosen algorithm, for example
asry := 1/t;; alternatively, runtime,, could represent bss to be minimized. The information would
be partial: the runtime for other algorithms would not beilabde. The rewards would be generated by a
rather complex mechanism, i. e., the algorithipghemselves, so the bandit problem would fall into the
adversarial setting. As BPS typically minimize the regréghwespect to a single arm, this approach would
only allow to implemenper setselection, of the overall best algorithm.

To avoid excessively long,, machine time could be subdivided into arbitrarily smatkeiwals dt:
“pick arm k" would mean “resume algorithmy, on current problem instance, for a timg then pause
it”. Reward could be attributed, := 1/¢; as beforet, being thetotal runtime of the winning algorithm.
Information would again be partial: more precisely, in tbése it would beensoredas a lower bound
on performance, and a corresponding upper bound on rewarddvwe available for the other algorithms.
The bandit would be a non-oblivious adversary, as the resuach arm pull would depend on previous
pulls of the same arm.

On alarge number of arm pulls, the expected value of timetspetutingz;, would be proportional to
pr- And, typically, bounds on regret for a BPS are proved baseexpected values. The game described
above is then equivalent to a static portfolio, using phef the BPS as the share valsgeand updating
it after a problem instance is solved. Again, the resultia@ation technique istatic, per set ’ only
profitable if one of the algorithms dominates the others bprablem instances.

A less restrictive, and more interesting hypothesis, istthere is one of a set dime allocators whose
performance dominates the others. At this higher level, anéd use a BPS to select among different
statictime allocators TA(Y), TA() ..., working on a same algorithm sgt In this case, “pick arm”
would mean “use time allocator TA' on A to solve next problem instance”. In the long term, the BPS
would allow to select, on ger setbasis, the TA” that is best at allocating time to algorithms.ition
aper instancebasis. If the BPS allows for time-varying reward distrilomis, it could also deal with time
allocators that arkearningto allocate time.

A more refined alternative is suggested by the bandit prohiétim expert advice, as described in
[1, 2]. Two games are going on on parallel: at a lower leveladial information game is played, based
on the probability distribution obtainedixing the advice of differenexperts represented as probability
distributions on theéx available arms. The experts can be arbitrary functions,givela different advice
for each trial. At a higher level, full informationgame is played, with th&’ experts playing the roles of
the different arms. The probability distributignat this level is not used to pick a single expert, but to mix

"Obliviousper instance techniques could be based on different rewtitlldions, as in [10].
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their advices, in order to generate the distribution forltveer level game. In [1], Aueet al. propose an
algorithm called &pP4 (Alg. 2) to play this two-level game. X4 is a combination of the algorithms for
the full and the partial information setting. It featuresxa@€ lower boundy on the exploration probability,
which can be set, based on the total number of tddlsin order to obtain a bound on tlexpectedegret
relative to the performance of the besipert

E(R) <2.63VMKInN. (20)

Algorithm 2 Exp4(K, N, M) by Auer et al. [1]

1. K arms,N experts,M trials

: sety := min{1, ,/ (5—1?)]1\\//1

. initialize w, :=1forn=1, ..., K;

. for each trialdo

get advice vectors™ ¢ [0,1]% from expertsr = 1,..., N
setp,, = wn/Zf\Ll w;forn=1,..., N

pick armk with probability sy, := (1 — ) zlepns;’” +v/K
observe reward;, € [0, 1]

setry, = Tk/pk

updatew,, := w, exp('ysg")fk/K) forn=1,..,.N

: end for

XN Q2 arDN

R
[

The original formulation is based on a finite upper bound @ndinmulative reward of the best expert,
which is at most\/ if each reward is if0, 1]. A variant of the algorithm is proposed M is unknown, or
if the rewards are much smaller thanBound (20) requires that theniformexperts = (1/K, ..., 1/K) is
included in the set.

In our case, the time allocators play the role of the expedsh suggesting a different on a per
instance basis; and the arms of the lower level game aré&th&orithms, to be run in parallel with the
mixture share. Thpartial information on the reward at the lower level (based on thémanof theay, first
to solution) is translated intfull information at the upper level, based on & proposed by each T&

Before prosecuting, we need to decide how to attribute thanes. Ideally, we would like Er4 to
select the time allocator that is better at giving more timthe fastest algorithms. As we cannot know the
real fastest algorithm, one good idea could be to rewardmizaition of solution time, setting, oc 1/t.
One possible side effect of this choice could be that, foblenm sequences on which runtimes vary of
different order of magnitudes, the rewards for the hardeblegms would be much lower than the ones for
the easy ones. We will then adopt a logarithmic reward attioh, as in [21]. As P4 requires normalized
rewards, we can set lower and upper boutyds,, t,,.. On runtime, and set the reward for the winning

algorithma,, as

Int,ee — Inty
(21)

" trmas — 1N tmin

This reward will be then distributed byxe4 to the time allocators, based on how much time they
allocated taz;,. The extension tdynamictime allocators (Alg. 1) is straightforward: in this case #v*)
would depend, for each allocator, on the sequence of ingetvg0), At(1), ..., and the corresponding
proposed during each interval, and the normalized vaIuEQfs(") (7)At(j) would be used in place of
s(") at line 10 of Alg. 2.

We can then use 4 to address the exploration-exploitation trade-off thatleft open in the last
section. We can solve each problem in the training sequendegithe uniforms;,, and thes », evaluated
by the model-based allocator, using the current ouppaft ExP4 as a mixing coefficient. In this wayxe4
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would detect when the model is ready to use, and starts gpaipetter performance than the uniform
allocator. After each instance is solved, we can also upeate!.

The regret rate (20) is particularly interesting, as it defseon thdogarithmof the number of experts
N. We can exploit this fact to take the design decision that efedpen in Section 4, namely, which
allocator function to use: we can leave this decision x®£, picking a redundant set of time allocators.
We can also try different values for the respective pararaetdote that all these allocators can share a
common modelM, so thecomputationabverhead would depend on the cost of the time allocatorsalon
The resulting “gambling” time allocator (@1BLE TA) is described in Alg. 3.

Algorithm 3 GAMBLE TA Gambling Time Allocator
1: Algorithm setA4 with K algorithms

2: N time allocators, including;, = (1/K,...,1/K)
3. M problem instances

4: initialize EXP4(K, N, M)

5: let ExP4 initialize p € [0, 1]

6: initialized modelM

7: for each problend, b, ..., by do

8:  while b,,, not solveddo

9: updateAt

10: for each time allocator T®, ..., TA®Y) do
11 updates™ = TA(™ (M), s(™ e [0,1]K
12: end for

13: evaluate mix = >N p,s("

14: run A with shares, for a maximum timeA¢
15:  end while

16: observe reward, for winnera;

17:  update KP4

18: let ExP4 updatep

19: updateM based on collected runtime data
20: end for

Using a non-uniform share, there is no guarantee that theewagorithm will be the actual fastest, so
our reward scheme could be deceptive. The sequence of taskalso be deceptive, and again cause the
model to reinforce its own mistakes. All this is allowed i thessimistic settings of¥®4, which will still
guarantee that the expected regret, compared to the gdie bEst time allocator, is bounded by (20).

This optimal regret is defined with respect to the tadkicator. Nothing can be said about the perfor-
mance w.r.t. the bestigorithm In a worst-case setting, if none of the time allocator leamything, P4
will give most credit to the uniform share, which gains a resv, / K at every trial. We will now see two
example applications on which the performance aiMBLE TA is quite far from this pessimistic scenario.

7 Experiments

We present two experiments, both with very small algorittets ¢ = 2), but long, and challenging,
problem sequences. The first experiment features a congpidta local search SAT solver, dealing with a
mixed set of CNF3 SAT instances at the sat-unsat threshdle s€cond experiment features solvers for a
published Auction Winner Determination Problem (WDP) benark [44].

Before proceeding, we will describe the remaining detdilsw time allocation algorithm. As said,
we use KP4 [1] at the top level, to mix the share decisia® of different time allocators TAY (Alg. 3).
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No care was put in selecting the set of time allocators,ags better at this game. The set included (see
Sect. 4 for a description):

e the uniform time allocator, with shake= (1/K,...,1/K), required by Kpr4.

e a set ofd quantile minimizers s = arg ming F;}S(a), with equally spaced values for the parameter
«(0.1,0.2,...,0.9).

e a “greedy” contract allocator, using the next time limit asoatract:
s = argming S 4 s(At + Zle yk), yr being the time spent so far hy,.

Each experiment was repeated using each one of the allecateways accompanied by the uniform, but
none of them could improve on the performance of the enserilxle4 preferred different time allocators
on the two benchmarks, but always discarded the quantdeathrs withoe > 0.5.

The sequence of time intervalst employed by the dynamic portfolio was exponential, witheb&ago.
(Atg,2Atg,4At0,...). We set the initial\¢, to two different values for the two experiments. Alsg;,, was
different for the two benchmarks, whilg, ... was kept fixed at0'°.

As a model, we used the conditional non-parametric hazaiha@®r (:(¢|2)) by Wichert and Wilke
(WW in the following) [77]. This model is conceptually simplend computationally efficient. As most
non-parametric methods, it stores all the training datat;): the time values; of censored and uncen-
sored events, and the covariates evaluating an empirical CDF (#,,(z) of the covariate value. In
order to predict the hazard function for an unseen valoéthe covariate, it first estimates its CDF value
F,.(z), by simply evaluating its rank in the sorted list of coveemtThe probability,. (x) is then compared
to the F,(x;) of each sample (again obtained from the rank), through eekéunction K, with bandwidth
parameteb,,, and the value of( ((F..(z) — Fi(z;))/b,) is used to weight the event The weight values
are used in place ofl” in (8), to evaluate a Kaplan-Meier estimate of the hazardHe covariater:

F(x)—F(x;
h(tfe) = St I;(%) (22)
Zﬁﬁ]{(%@%))

n

If the covariates are multidimensional, the process isatguefor each dimension, and the products
of the resulting kernel distances are used as weights. Ini,4B8@) performs a nearest neighbor estimate
of the hazard: the kernel distance is measured omigteibution of covariate values, and is not sensitive
to scaling. The kernel functio& is required to be symmetric aroutil and integrate td. We used a
uniform kernel 0.5 on [—1, 1], and0 elsewhere), which is a common choice in non-parametri¢stit.
The convergence proof for the estimator requires the batttvparameteb,, to be set based on the size
n of the stored sample, & € [n~'/2,n~'/4]. We present results fdr, = n—'/%, which provides the
widest allowed kernel.

A separate model was learned for each algorithm, using al s@iabf problem specific features as
covariate$. The only dynamic feature taken into account was the timetspgras in (9,10), which, in
the non-parametric setting, simply consists in discardiagard values; with t; < y,. The RTD of
the portfolio was evaluated based on the cumulative hazéotn (14). The time allocators described in

8As the two algorithms are in both cases not related. For @iffeparametrizations of the same algorithm, a single model can be
used, conditioned also on parameter values.

9The model (WW) outputs, for a given covariatgtwo vectors, one of event timgs; }, one of the corresponding hazard estimates
{h;}. Based on this data, a vector of hazard values for the ahgonitinning with share,, has first to be evaluated. Note that the
derivative of H (s t) would besgh(skt), but in the nonparametric setting the are pulses, not point values: scaling themshy
would not be correct. To see why, consider that the cumuldiazard atH (co) should not vary by scaling time, so the integral
across the scaled time values must remain the same. Only time bagditated, dividing the time values by the s; chosen by
GAMBLE TA. Hazard values relative to different algorithms are themgee, sorting the resulting list according to time valuese Th
cumulative hazard (14) can finally be evaluated, as the cuivellatim of the resulting hazard values. This value is usedmoy t
different functions, evaluating the quantile (3) and swa/probability at the next contract (2), based on the sahfiinction obtained
from (5). These last two functions are passed as argumeriie tdATLAB functionfminbnd , to be minimized.
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Sect. 4 were evaluated numerically, using a line searclin@(see note 9), careless of multimodality: on
runs that were monitored, we observed multimodality onlyHigh levels of the parametetsor ¢,,, for
which the performance of the time allocators was poor anyway

We repeated both experimeri$ times, each time with a different random reordering of thabfm
instances, and a different random seed for the algoritfmandomized. Unless otherwise stated, all results
reported aré)5% confidence bounds, evaluated &hruns. For both experiments, the parallel execution
of the algorithms was simulated, using stored runtime #athg time values reported only include the
algorithm runtimes?

We assess the performance oAMBLE TA by comparing it with the uniform time allocatay, =
(1/K,...,1/K) alone; and the one of aracle with foresight of the runtime values, which only executes,
for each problem instance, the algorithm that will be fastist () is the runtime of our time allocator
on problem instancg, ¢ (j) is the runtime of algorithna,, thento (j) = ming{tx(j)} is the runtime of
the oracle, and,;, = Kt is the runtime of the uniform share. We will describe the perfance of the
allocator until taskn reporting thecumulative timeZ}":1 t(j), and thecumulative overhead

S ta(i) — to())
Z;'nzl to (]) 7

relative to the performance of the oracle. These are faifiopaance indicators, also for a per instance
selection technique, but do not capture the performance singhe instance. Plotting this information
averaged on multiple runs is problematic, as the order afigtances is different for every run, and in both
benchmarks the runtimes may differ of several orders of ritad@. \We will then plot the performance on
eachinstance, and foeachrun, against the runtime of the oracle, and the uniform shBseinderline the
improvement during the problem sequence, we will also rtepeparate statistics for the first and second
halves of the two problem sequences.

(23)

7.1 Satisfiability problems

Satisfiability (SAT) problems [22] constitute a standardhdienark in Al. A conjunctive normal form
CNF(%,n,m) problem consists in finding an instantiation of a set &oolean variables that simultaneously
satisfies a set of: clauses, each being the logical ORkditerals, chosen from the set of variables and their
negations. A problem instance is ternsadisfiable(SAT) is there exists at least one of such instantiations,
otherwise it isunsatisfiablfUNSAT). An instance is considered solved if a single soluis found, or if
unsatisfiability is proved. Witttk = 3 the problem is NP-complete. Satisfiability of an instancpeaels

in probability on the clauses to variables ratioptzase transitiorj51] can be observed at/n ~ 4.3, at

10ynfortunately, doing research on an online method does metth@ benefits of just using one, as comparing with the perfiocma
of an oracle requires the knowledge of all runtimes, which reehat, for the first experiments, we also had to solve all f&zitie
problems with satz-rand.

11 Including the overhead of the quantile evaluations, the hopeate, etc., would not be fair, as all these operationsnapée-
mented in unoptimized, and rather bloateda™AB code, while thea;, are written in C. WW, as other nonparametric methods,
has a very cheap learning phase, which consists in sortiaependently the event times and thelimensions of the covariates
x € R%. The cost of prediction ig searches on the sorted covariate data, and the cost of (22nti@s can also be evaluated just
by searching a value on a sorted list. To give a rough ideagypert the profile of a single run on the SAT-UNSAT benchmark: on
1899 problems2 WW models were updated once per problem, for a total.6fseconds. The hazard generating function (22) was
called abou280000 times in total, as each of the allocators uses it in the optimis@rocess (see note 9) : the cost Ba8seconds.

An additional3 minutes was spent in merging and re-sorting hazard vectoesalaate the hazard of the portfolio. The total runtime
of the portfolio alone on the problem sequence would have lbeeut24 minutes. These figures would obviously change passing
to a C implementation. Simple optimizations, like preservindeoiwhen merging two hazard vectors, would further improve the
situation. The fact that the data is sorted would allow for enadvanced optimizations, based for example on balanced wehbs

a costO(logn), n being the number of samples, both for search and insertionarRieg memory requirements, the model would
collect K samples for each solved task. On a modern machine, this amouateofwbuld not cause any problem, even with long
task sequences, but once there is enough data one can seatite the number of stored samples, for example merging neiggbo
hazards.
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which an instance is satisfiable with probability. This probability quickly goes t6 for m /n above the
threshold, and ta below.

SAT solvers can be broadly classified in two categori@smpletesolvers, that execute a backtrack
search on the tree of possible variable instantiationsagamgduaranteed to determine the satisfiability of a
problem in a finite, but possibly unfeasibly high, amountiofe; andlocal search(LS) solvers, that cannot
prove unsatisfiability, but are usually faster than congpgetlvers on satisfiable problems. In other words,
a local search solver can only be applied to satisfiablenigsta at the threshold, there i9.& probability
that the solver will run forever. The RTD of a complete sol@h have F'(co) = 1 with a finite1 quantile,
for any value ofm/n; while a local search solver hasi&oo) = 0.5 on instances at thé.3 threshold.
Users of LS interested in such benchmarks have then to filest filit unsatisfiable instances by running
a complete solver, in order to test the local search alguorith SAT instances only. This means that, at
the phase transition, local search implies an additionst, @mual to the performance of a complete solver,
which obviously does not make it competitive for such prablastances.

Our first experiment was performed using a portfolio of twd'Salvers from the two categories above.
As a benchmark, we used the complete setfai-m anduuf-n-m instances from SATLIB [29]. These
are randomly generated instances at the phase transititnpwanging from20 (resp. 50 for the unsat)
to 250, 100 instances for each size, andvarying accordingly. The instances are subdivided in gsafp
satisfiable (f ) and unsatisfiableuQf *) instances. We merged all groups in a single sequenci96f
problems? in total, that was randomly re-ordered for each run of theseirpent.

As a complete solver we picked Satz-Rand [25], a version txf[8&] in which random noise influences
the choice of the branching variable. Satz is a modified garsf the complete DPLL procedure, in which
the choice of the variable on which to branch next follows aarfstic ordering, based on first and second
level unit propagation. Satz-Rand differs in that, afte libt is formed, the next variable to branch on is
randomly picked among the tdpfraction of the list. We present results with the heuristégting from the
most constrained variables, as suggested also in [46k paismeter set t@4, and the restart mechanism
disabled, as the RTD of the algorithm does not display heaigd behavior [25] for thig./m ratio. As
a local search solver we used G2-WSAT [47]: for this algoritwve set a high noise parametéry), as
advisable for problems at the phase threshold, and thesification probability at the default.05. As
both solvers are randomized, we also used a different rarsg@uh for each run.

As we needed a common measure of time, and the CPU runtimeiresase quite inaccurate (see also
[30], p. 169), we modified the original code of the two algamits adding a counter, that is incremented
at every loop in the code. The resulting time measure wasistens with the number of backtracks, for
Satz-Rand, and the number of flips, for G2-WSAT. All runtimegarted for this benchmark are expressed
in these loop cycles: on&a4 GHz machine]10? cycles take about minute.

The only feature used for the model WW wasthe number of variables in the SAT problem, as the
clauses-to-variable ratio/n is practically constantAt, andt,,;, where both set ta0*, the order of
magnitude of the initialization cost of both algorithms e smallest problem size.

This algorithm set/problem set combination is quite irgérg. G2-WSAT almost always dominates
the performance of Satz-Rand on satisfiable instancese wiellatter is obviously the winner on all unsat-
isfiable ones, on which the runtime of G2-WSAT is infinite.

This situation is visualized in Figure 1 (a), which plots #mapirical CDF of the runtimes for the two
solvers, resulting from an estimate for a single random ,seethe two sets of larger instances-250 ,
uuf-250 ). One can clearly notice the advantage of G2-WSAT on satlsfiaistances, represented by
the small lower quantiles (belowd®). From quantiled.5 on, the RTD remains flat, reflecting the fact that
half of the instances are unsatisfiable. Satz-Rand stalitsmggroblems later, and is competitive with
G2-WSAT only on a small number of satisfiable instances, bable to solve also all the unsatisfiable

12This odd number is due to the fact that instana&200-860  number100 is missing in the online archive. Note also that the
smallestn for the unsatisfiable instancesi8, so there aré000 SAT and899 UNSAT instances in total, making the SAT probability
for the whole set slightly higher than5.
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(d) CDF at t=10"
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Figure 1: SAT-UNSAT problems. These plots illustrate the functioning of the Con{@cand Quantile (3) time
allocators (Sect. 4), and are not generated from a run/figa e TA, but from a RTD estimate on problems of size
n = 250 only. Left column situation att = 0. Right column aftert = 107 of uniform parallel run § x 10° for
each algorithm)Top RTD of the single algorithms, and of the uniform shaiddle: survival probabilitySa s(¢.)
(vertical axig at a time contract,,, for different values of the sharg assigned to Satz-Rantdrizontal axi$, and
different values of the time contratt (different line$. Bottom quantiles of runtime for different values af(different
lines), and different values of time share allocated to Satz-RaadzZontal axi$. The minimum of each line ifc,e,f)

is the share allocation decided by the corresponding TA.
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ones, as indicated by the fact that the RTD readhé<., the quantilé, is finite. The third line in the plot,
labeled “uniform”, represents the RTD of the uniform politics;, = (0.5, 0.5).

Algorithm selection would be easy in this case, if not for thet that the satisfiability of an instance
cannotbe predicted in any way, before attempting solution. As G2AIV& incomplete, any sensible
single algorithm selection technique would select SatmeRaen all problems. The performance of this
algorithm alone is better than the one of the uniform shauepbviously worse than the performance of
the oracle, as this latter can profit from its foresight, anldes SAT instances with G2-WSAT.

Figure 2 (a) displays the evolution of the cumulative timemythe task sequence, comparing for each
taski the cumulative performance ofMBLETA >, _, t(j) to the cumulative performance of the oracle
> j<ito(j), and of the uniform share, (K >_,_;to(j)). The performance of Satz-Rand is also plotted,
as this algorithm can solve all the problems. Lines reprtespper confidence bounds, evaluated &h
runs.

Figure 2 (b) plots the cumulative overhead (23) efMBLE TA, during the problem sequence. Here the
dotted lines represent upper and loWaf, confidence bounds. A1BLE TA is quite quick in converging
to the final performance, and then seems to oscillate; agdrag50 runs, it ends the problem sequence
with a cumulative overhead of abolt%. Note that this figure includes the performance at the béggnn
of the sequence, when the model is still poorly trained.

Examining a single run, it can be observed that most of thecalbrs quickly learn to start solving
each problem using the local search algorithm, and lateickwid Satz-Rand if no solution is found by
G2-WSAT.

As there are only two algorithms in the set, we can easilyaliza the time allocators (see Section 4).
Using the same data from Figure 1(a), in Figure 1 (b), we pletdurvival probabilityS4 s(t,,) (vertical
axis) at a time contraat,, for different values of the sharg assigned to Satz-Rand (horizontal axis),
and different values of the time contragt (different lines). Fig. 1 (c) displays an analogous plottfoe
quantile minimization method: this time the ordinates répiwe logarithm of the quantiles s(«) for the
portfolio, and different lines correspond to differentwes of the required solution probability

You can notice that the optimum @&fvaries according to the parameter of the time allocator (see
Sect. 4): for low values of the contraft, and the quantiler, the optimum is at; = 0, which means that
only G2-WSAT is run, notwithstanding ttie5 survival probability at.

If both algorithms are run in parallel, fd07 loops in total, without solving the problem, we get the
situation depicted in the right column of Fig. 1. The RTD oé tlvo algorithms have been shifted and
scaled, as in (9), and the one of G2-WSAT has almost disapghe@igen the time already spent, there is
only a very small probability that G2-WSAT will solve the ptem. This situation is reflected in the plots
of the contract (Fig. 1(e)) and quantile (Fig. 1(f)) allawat now the optimum of the linesis at = 1
for all values of the parameters, except the smallest, witiens that most allocators would only run
Satz-Rand.

During the course of a run,>®4 gradually selects a mixture of three quantile allocataity small
values fora (0.2, 0.3,0.4). Note that the predictions of the WW model, and thus the dmwssof the time
allocators, are solely based on previously observed ruhse.view of the time allocators is similar to the
one in Figure 1: only, therg00 samples for each algorithm are available, for the same iztegn = 250),
and this results in a much smoother model than the one typ@ailable during the initial part of the task
sequence. The surfaces (in this case lines) optimised hinleellocators look smooth anyway, especially
for low values of the parameters, but the contract allodatads to look flat for large intervals of values.

The simple tactic found by @vBLE TA is not always effective, and can actually result in a perfance
much worse than the uniform share, on a single instance. e ghs in Fig. 2 (c,d), where the runtimes
of GAMBLE TA are scatter-plotted against the one of the oraclealiothe 1899 instances, andll the 50
runs. The two plots only distinguish among instances menduhe first half of the sequence, and the
second: all other order information is lost. Note that, as dhder of instances is picked randomly for
each run, a same instance can figure in both plots: but it wegldesent two different runs, with different
random seeds for the,, and would likely map to different points. We did not plot thiegonal, which
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Figure 2: SAT-UNSAT problems. &): Cumulative time on the SAT-UNSAT problem set. Up9&f% confidence
bounds on50 runs, with random reordering of the problems.AMBLE TA is our time allocator. @ACLE is the
lower bound on performance.NUFORM is the (0.5,0.5) share. &Tz-RAND is the single algorithm.k): Cumulative
overhead (23) on the SAT-UNSAT problem set. Upper and lower cendie limits. Right column: Performance of
GAMBLE TA compared to the oracle, @il problems and for all run$0 x 1899/2 = 47475 points per plot. €): First
half of the sequenced): Second half. The diagonah@t markedl is the performance of ®AcLE. Thecontinuous
line above the diagonal is the performance ofiBORM. Note that this line is crossed by many runs, especially for
runtimes around0°. The biggest improvements in the second part of the sequence casrbersvery easy and very
hard problems. See also Fig. 3, and Table 7.1.
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would be the performance of the oracle, as it would interfeith the data. The continuous line above the
diagonal represents the performance of the uniform share Kto. There are many points above this
line, which indicates a performance worse than uniform (W.TIe biggest improvement, from the first
half (Fig. 2 (c)) to the second (Fig. 2 (d)), seems to be onyessy and really hard instances, with low
and high runtimes respectively.

In order to further analyze this situation, in Fig. 3 we repts@ same scatter-plots using the same
data, but distinguishing among satisfiable and unsatisfisdstances. It is now clear that the cloud of
poor performance still visible in Fig. 2 (d) is entirely regented by satisfiable instances, on which the
runtime of the fastest algorithm (probably G2-WSAT) is beaw#0® and107 loops. We can now make an
hypothesis: looking back at Fig. 1(a,d), we see that thisagitne range on which the runtime distributions
of the two algorithms overlap (at least for= 250 variables). In other words, the longest successful runs
of G2-WSAT and the shortest ones of Satz-Rand are in this rarfgesurfaces of the time allocators will
be similar to the ones in Figg. 1 (e,f).

‘ ‘ First half Second half
SU | GTA | 1.46 x 1010 £2.14 x 108 1.42 x 1010 £2.11 x 108
OR | 1.27 x 10'° +2.06 x 108 1.26 x 1010 £1.92 x 108
OVH 0.153 £ 0.0058 0.124 4 0.0034
WTU 0.0739 4 0.00296 0.0576 4 0.00269
S| GTA 8.07 x 108 +4.64 x 107 8.47 x 108 £ 4.58 x 107
OR 3.05 x 108 £ 1.47 x 107 2.99 x 108 £ 1.32 x 107
OVH 1.66 4 0.127 1.86 4 0.143
WTU 0.119 £ 0.0044 0.109 + 0.0050
U | GTA 1.37 x 1010 £2.01 x 108 1.35 x 1010 £2.15 x 108
OR | 1.23 x10'° +2.01 x 108 1.24 x 1010 £1.88 x 108
OVH 0.117 £ 0.00481 0.0822 =+ 0.0029
WTU 0.024 =+ 0.0037 0.0003 =+ 0.0002
WDP | GTA 5.72 x 107 £ 6.48 x 10° 5.51 x 107 £ 6.57 x 10°
OR 5.45 x 107 4 6.44 x 10° 5.37 x 107 4 6.44 x 10
OVH 0.0502 £ 0.0022 0.026 4+ 0.0016
WTU 0.176 4 0.0014 0.148 4+ 0.0025

Table 1:Various performance indicators fora®BLE TA, evaluated over the first and second halves of each problem
sequence, averaging oV runs.95% confidence intervals. SU: SAT-UNSAT benchmark. S: SAT instarfidessed
from SU. U: UNSAT instances, filtered from SU. Note that these two dorefetr to separate experiments, but are
extracted from the results on the SAT-UNSAT problem sequence. WDihaNDetermination Problem. Indicators:
GTA: cumulative performance of @1BLE TA. OR: cumulative performance of theR&cLE. OVH: cumulative over-
head of ’MBLE TA, with respect to the ®AcLE (23). WTU: fraction of problems on which &18LE TA is worse
than INIFORM (ty = Kto).

In Table 7.1 we display a few performance statistics, seplgréor the two halves of the task sequence.
GTA labels the cumulative time of @1BLE TA, OR the one of the oracle. OVH represents the cumulative
overhead (23), evaluated only on the respective half. WThdstdor “worse than uniform”. It measures



Technical Report No. IDSIA-02-07 21

(a) SAT instances: all runs, first half (c) UNSAT: all runs, first half
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Figure 3: SAT-UNSAT problems. Performance ofA®BLE TA compared to the oracle, all problems and for all
runs, separated for SATeft column 50 x 1000/2 = 25000 points per plot) and UNSATright column 50 x 899/2 =
22475 points per plot) problemsTop first half of the sequenceBottom second half. Note that this distinction is
unavailable to the algorithm: the data was filteeedosteriorifrom the data of Figure 2(d), and refers to the same
experiment, with SAT and UNSAT instances randomly mixed. The orderaflem instances is different for every
run, so the same instance might be met at different stages of the lggmuicess. The diagonabdt marked is the
performance of @ACLE. Thecontinuous linebove the diagonal is the performance ofiIBorRM. Note that this line
is crossed by many runs, especially for SAT instances, for runtinmsed®.



Technical Report No. IDSIA-02-07 22

the fraction of task instances on which the performance is&than the uniformy, = Kto.

The first block in the table (SU) refers to the full set of imgtes, as solved by 818LE TA. The second
(S) and third (U) respectively refer to the satisfiable ansiatisfiable instances alone. We can see that, in
terms of the number of instances, only b of satisfiable instances a WTU performance is observed, but
this is enough to give a very high overhead value: the overfeactually slightly worse in the second half
of the sequence. But we have to bear in mind that this sitnaieults from &% of the total number of
problems, on which the runtime of G2-WSAT is unusually longaMBLE TA is willing to pay this price,
in order to avoid running G2-WSAT for too long on a potentiallysatisfiable instance.

The performance is much better on the unsatisfiable instanse¢hey are characterized by much longer
runtime values, and the overhead of trying G2-WSAT first is IeMere the WTU instances go down to less
than one on a thousand, and the overhead at les9%a®n the whole set, the performance for the second
half is a13% overhead, and less thafitc WTU. Due to the difficulty of the task, we do not expect more
than a marginal improvement in the performance from the éisgooe sophisticated modeling techniques,
or more features.

7.2 Winner Determination Problem

The Auction Winner Determination Problem (WDP) [44] is arengisting combinatorial optimisation prob-
lem, where a set of agents allocate moneyndnids overm goods, and the winning subset of bids, that
maximizes the sum of the amounts bidden, must be determitedagents have limited amounts of money,
and are allowed to specify XOR constraints over the biddesdgpand the selected winning subset has
also to satisfy these constraints. The problem is NP-hard.

In [44], to which we refer for more details and references, ltardness of randomly generated WDP
instances is modeled, describing the performance of a LiReagramming software (CPLEX), and an
ad-hoc solver (CASS). The runtime of these solvers is rél&e8 instance features, including the size
(n,m), and serves as an input for a regression routine aimedratregea predictive model of runtime value,
conditioned on instance features. The performance of thadetads assessed using mean squared error on
the logarithm of predicted values, which suggests a par@retsumption of the run-time distribution
being log-normal. Censored runtimes (“capped” runs in &meninology of the paper) are treated as the
uncensored, and it is argued that the impact of this appratiém on model precision is low. The resulting
models are actually quite precise in terms of the proposext ereasure. The performance of CPLEX
dominates CASS, but on abouf4 of the instances this situation is inverted. In such a cagmraset
selection technique would always select CPLEX. As an istarg example application of these models,
the authors propose a per instance algorithm selectiomigpad, in which the expected fastest algorithm
is picked based on the model’s predictions. In the origiregdgy, the model is trained on runtime data
obtained by solving a large number of instances, censoung that exceed a predetermined threshold of
12 hours for CASS. On a test set of unseen instances, the modetps efficient selection, detecting the
instances on which CASS is faster, and allowing the podftdiimprove on the performance of CPLEX
alone. The overhead (23) compared to the performance ofrdweg is reported to bg&%, excluding a
small additional factor due to the cost of computing feagure

The runtime data for the two algorithms were obtained offindhe data consists of various small
fixed size problem sets, and one large variable size setr ditiearding a few instances, for which the time
values were censored for both algorithms, the variablesrdasr145 instances, and the fixed size sets
sum to3519, for a total 0f10664 problems. On these, CASS dominate20ii8, while CPLEX is faster on
the remainin@386. None of the two algorithms could solve all the problems bet@pping. The runtimes
of the whole data set sum to almost nine years.

We repeated the experiment withA@BLE TA, solving the whole set of instances. As the solvers are
not randomized, here the only difference among runs is théamm ordering of problem instances. The

L3http://www.cs.ubc.ca/ ~ kevinlb/downloads/db-data.zip
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runtimes in the data set are reported in seconds. Some ruesndécated with & runtime, which means
that they were too fast for the granularity of the clo6k0(). In these cases, we replaced thealue with
0.001. We then set,,;,, to 0.001, and leftt,, ., at 10'°, which is oversized in this case, as the maximum
runtime value in the set is x 10°. The initial time interval was set a&t, = 0.01. The model was
allowed only two covariate values, the number of bids andntlmaber of goods, representing the size of
the problems.

Figure 4 (a), (b) report the cumulative time during the tasjuence, and the cumulative overhead,
again comparing with the ideal performance of the oraclg. (PBe last block of Table 7.1 reports the same
performance indicators described in the previous sulseciihe cumulative overhead during the second
part of the problem sequence was less thizn while WTU performance was observed for abobi# of
the problem instances. Figure 4 (c), (d) display a scattarghthe runtime of @QMBLE TA against the one
of the oracle, on all runs, again distinguishing among tret &ind second half of the problem sequence.
Examining the latter, one can notice that the instances faclwthe runtime of @MBLE TA was worse
than WNIFORM (represented by points above the line) can mostly be solvéelss thanl0 seconds. In
other words, @QMBLE TA is less precise for instances that have a minor impact ecdimulative runtime,
which in this case is very close to the one of thrA@LE. For this benchmark, ¥4 favored a mixture
of two quantile allocatorso{ = 0.2,0.3), and the greedy contract allocator, which was discardethen
previous benchmark.

8 Discussion

The experiments gave quite impressive results. In the fase cthedynamictime allocator @QMBLE TA
managed to solve an algorithm selection problem that cadmeblved in a similar way by any static tech-
nique. In the second case, performance was competitivetgtbne of a static offline selection technique,
built based on advanced knowledge of the problem domailydirtgy dozens of problem-specific features,
and which required quite a long training time. On this lapieint we have to remark that in [44] no attempt
was made at reducing the training cost, the interest of tkieoasibeing more focused on the precision of
the estimated models.

The idea of performing algorithm selection based on runfimeraction with the algorithms is not at
all new (see Sec®). Most fully dynamic methods are oblivious, i. e., with nakviedge transfer from one
problem to the next; in most non-oblivious methods, the rhadeained off-line, at a prohibitively high
computational cost, as there is no principled method toddawhen to stop the training phaseai@LE TA
takes the best of both worlds: the model allows to retain kadge from past experiments, but is trained
online, with a negligible overhead. The bandit problem splkExpP4 guarantees the optimal amount of
exploration: the model is exploited as soon as it allows tprowe on the uniform share. At this stage,
the model is visibly rough, but can already serve the purmdsagorithm selection. Time allocation
is fully dynamic, and shares can be updated an arbitrary pummbtimes. To our knowledge, the most
closely related approaches are [43, 58]. In the formerfogtement learning, which can be seen as a
generalization of bandit problems, is used, but at the dlgarlevel. The resulting method shares many of
the positive features of @MBLE TA, as itis also online, and dynamic. In the dynamic methagtdbed in
[58, 57], the algorithm priorities are updated repeatehily,the dynamic sharing schedule is decided per
set, and offline. In [40], the dynamic selection is only basedhe initial evolution of the state, and the
probability distributions are assumed to belong to a fingte known a priori: also in this case the model
is learned offline. In [10], an oblivious technique is prasenbased on a contract on execution time, but
with no knowledge transfer across problem instances. InJ2172], a bandit problem solver is used, but
at a lower level, to perform oblivious per-instance alduritselection. Compared to our previous work
[18, 19], this article replaced the heuristic aspects, lotimapping model predictions to time allocation
shares (Sect. 4), and in controlling the exploration-exgtion balance (Sect. 6).

At its upper level, the method is practically parameteslekhe bandit problem solver can set its only
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Figure 4:WDP problems. §): Cumulative time on the problem set. Up@8i% confidence bounds ds0 runs, with
random reordering of the problems A@BLE TA is our time allocator. @ACLE is the lower bound on performance.
UNIFORM is the (0.5,0.5) share. p): Cumulative overhead (23) on the WDP problem set. Upper and loovdidence
bounds. The overall final performancedi%: in the second part only, the cumulative overhead is less ifalisee
Table 7.1). Right column Performance of GMmBLE TA compared to the oracle, aall problems and for all runs.
50 x 10664/2 = 266600 points per plot. €) First half of the sequenced) Second half. The vertical lines reflect
the fact that the algorithms are deterministic: runs differ only in the ranolater of the instances. The diagonab{
marked would be the performance offCLE. Thecontinuous lineabove the diagonal would be the performance of
UNIFORM. Note that this line is crossed by many runs. See also Table 7.1.
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parameter optimally, based on the length of the task seguéitie latter is not known, an initial estimate
can be used, and periodically updated [1, 2]. In this caseptienal regret (20) is guaranteed with respect
to the actual cumulative reward of the best expert. This fizadion was already tested, with analogous
results. Different values of\t, can only affect the performance with a logarithmic factoheTuse of

a logarithm for rewarding the algorithms allows to sgt,, andt,,.., respectively, to a very small and
a very large value, such that only the knowledge of a veryddasund on execution time is required.
Design decisions, including the choice of the time allocgtand model(s) to use, as well as the relative
parameters, can be taken with a redundant approach, amdd¢fiaement can be left toXP4. In the
presented experiments we used a non-parametric modelhwhilower to converge than a parametric
one, but can converge to an arbitrary distribution, so itsdo@ require anya-priori hypothesis about the
runtime distributions of the algorithms. If such hypottsesie available, but unsure, an additional copy of
each time allocator, based on the parametric model, candedadnd KP4 will decide which model to
use, with a/In 2 impact on its regret. At the lowest level, the choice of trgogithms composingd, as
well as the relative parameters, is still left to the user.

The amount of prior knowledge required by the experimentsquate low: the only inputs used for the
model where one or two features, representing the size girtidems, andime. GAMBLE TA has ablack-
boxview of the algorithms, and can be applied to any decisioblpra solver. Optimisation problems can
be treated, if a target on performance can be set in advance.

With respect to the previous parametric model [18, 19], thrgogarametric method used here also allows
to greatly reduce the modeling overhead, which is now nixégAccording to [77], WW suffers from the
curse of dimensionality, so it should be replaced in ordegartdit from a larger set of features. Including
time-varying covariates, to condition the prediction adsothe dynamic state of the algorithms, will also
require more advanced models [48, 54, 73]: the approximatsed in [18, 19] was abandoned. The regret
of ExP4 will scale well with the number of algorithn?s, and the number of time allocatohs, with order
O(VK In N). The time allocators perform an optimisationdn1]*, constrained to a space of sike— 1,
ass has to sum to one. As there are no guarantees of unimodalgy,vill all suffer from the curse of
dimensionality, so, for much larger algorithm sets, som@aymations should be introduced.

GAMBLETA is highly modular. On the higher level, different bandibplem solvers could be com-
pared, possibly starting from the variations describe@]n Qn a level below, the model based time allo-
cators could be replaced, or combined, with any other glgyorselection technique. It would be enough
to express its decision as a share vestdn the simplest case, one could add an additional fixed atitwc
for each algorithm in the set, to quickly detect situatians/hich a single algorithm dominates the others.
Also oblivious techniques, as the ones in [10, 16], coulddmlg integrated.

Section 4 is based on a single machine. In future researchiamet@ address a more realistic sce-
nario, in which aclusterof machines has to be allocated, one algorithm per machineth&r alternative
implementation could be based on setting the prioritiebefalgorithms through the operating system.

If we go back to the initial section, and look at the list ofuies of a typical model-based algorithm
selection technique, we realize that at least two of themaldald for GAMBLE TA. It never solves the
same problem twice. And the simple fact of looking at theimatof the algorithms allows it to improve
its initial time allocation decisions. The first problem r&ms open: one feature that is still lacking is that
the method cannot react to a misprediction of the model duisingle task, which could be caused by an
“outlier” problem instance, on which the behavior of thealthms is radically different from what seen
so far in the problem sequence. We will focus on this issuaiirfuture research.
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