
Adaptive Clause Weight Redistribution

Abdelraouf Ishtaiwi1,2, John Thornton1,2, Anbulagan3, Abdul Sattar1,2, and
Duc Nghia Pham1,2

1 IIIS, Griffith University, QLD, Australia
2 DisPRR, National ICT Australia Ltd, QLD, Australia

3 Logic and Computation Program, National ICT Australia Ltd, Canberra, Australia
{a.ishtaiwi,j.thornton,anbulagan,abdul.sattar,duc-nghia.pham}@nicta.com.au

Abstract. In recent years, dynamic local search (DLS) clause weighting
algorithms have emerged as the local search state-of-the-art for solving
propositional satisfiability problems. However, most DLS algorithms re-
quire the tuning of domain dependent parameters before their perfor-
mance becomes competitive. If manual parameter tuning is impractical
then various mechanisms have been developed that can automatically
adjust a parameter value during the search. To date, the most effec-
tive adaptive clause weighting algorithm is RSAPS. However, RSAPS is
unable to convincingly outperform the best non-weighting adaptive al-
gorithm AdaptNovelty+, even though manually tuned clause weighting
algorithms can routinely outperform the Novelty+ heuristic on which
AdaptNovelty+ is based.
In this study we introduce R+DDFW+, an enhanced version of the
DDFW clause weighting algorithm developed in 2005, that not only
adapts the total amount of weight according to the degree of stagna-
tion in the search, but also incorporates the latest resolution-based pre-
processing approach used by the winner of the 2005 SAT competition
(R+AdaptNovelty+). In an empirical study we show R+DDFW+ im-
proves on DDFW and outperforms the other leading adaptive (R+Adapt-
Novelty+, R+RSAPS) and non-adaptive (R+G2WSAT) local search solv-
ers over a range of random and structured benchmark problems.

1 Introduction

Since the development of the Breakout heuristic [1], clause weighting dynamic lo-
cal search (DLS) algorithms for SAT have been intensively investigated, and con-
tinually improved [2, 3]. However, the performance of these algorithms remained
inferior to their non-weighting counterparts (e.g. [4]), until the more recent de-
velopment of weight smoothing heuristics [5–8]). Such algorithms now represent
the state-of-the-art for stochastic local search (SLS) methods on SAT problems.
Interestingly, the most successful DLS algorithms (i.e. DLM [5], SAPS [7] and
PAWS [8]) have converged on the same underlying weighting strategy: increasing
weights on false clauses in a local minimum, then periodically reducing weights
according to a problem specific parameter setting. DLM mainly differs from
PAWS by incorporating a plateau searching heuristic and PAWS mainly differs
from SAPS by performing additive rather than multiplicative weight updates.

However, a key weakness of these approaches is that their performance de-
pends on problem specific parameter tuning. This issue was partly addressed in
the development of a reactive version of SAPS (RSAPS [7]) which used a similar
adaptive noise mechanism to that used in AdaptNovelty+ [9]. Nevertheless, as
the 2005 International SAT competition (SAT2005) has shown, DLS algorithms,
including RSAPS, have not proved competitive with the best SLS techniques
when they are constrained to use fixed parameter values. This is explained by
the sensitivity of the control parameters and by the lack of a sufficiently effective
adaptive mechanism to adjust these parameters to specific problem instances.

In 2005, a new approach to clause weighting was developed, known as Divide
and Distribute Fixed Weight (DDFW) [10]. DDFW’s approach is to redistribute
weight from satisfied to unsatisfied clauses in each local minimum, unifying the
increase and decrease phases of weight control into a single action. This means
there is no requirement for a problem specific parameter to decide when weight is
to be reduced. In addition, DDFW only alters weights on those clauses that are
false in a local minimum and an equal number of satisfied clauses. This makes
it more efficient than earlier weight smoothing algorithms that also performed
smoothing at each local minimum, but did so by adjusting weight on all the
clauses in the problem (e.g. SDF [11]). However, DDFW still has a parameter
(Winit) whose setting can effect performance by varying the amount of weight
that is initially given to each clause. In the earlier empirical evaluation of DDFW
this initial weight was fixed. However, the existence of such a parameter implies
that DDFW could benefit from an adaptive mechanism to vary the amount of
weight that is distributed according to the dynamic search conditions.

Also in 2005, it was shown that the performance of various SLS techniques
can be significantly improved by the addition of a resolution-based preprocessing
phase [12]. This work initially produced the winning algorithm in the SAT2005
satisfiable random problem category, R+AdaptNovelty+. However, in the subse-
quent paper [12], the largest performance gains were obtained for clause weight-
ing algorithms solving structured problem instances. Here R+AdaptNovelty+

was convincingly outperformed by a R+RSAPS and a tuned version of R+PAWS
on a range of quasigroup existence problems and standard structured SAT bench-
marks.

The question we address in the current paper is which SLS SAT algorithm
should be preferred in situations where parameter tuning is impractical and we
have no other information that could guide us in choosing a particular approach.
As this is exactly the situation we would expect to find in many real world appli-
cations, we take the relevance and importance of this question to be self evident.
While the initial work on DDFW [10] showed that a fixed parameter version was
able to outperform AdaptNovelty+ and RSAPS on a range of random and struc-
tured SAT benchmarks, the question still remains whether the performance of
DDFW can be further improved by incorporating a similar adaptive mechanism
to that used by AdaptNovelty+ and RSAPS to control the Winit parameter.

It also remains unanswered whether such an adaptive version of DDFW could
derive enough benefit from resolution-based preprocessing to outperform the ex-

isting resolution-based versions of R+AdaptNovelty+ or R+RSAPS. In addi-
tion, in SAT2005 a new SLS algorithm was introduced, G2WSAT [13], which
went on to win the silver medal in the random category of the competition.
This algorithm has subsequently been improved and it too has yet incorporate
a resolution-based preprocessor.

As a result of these considerations, our specific aim in the remainder of the
paper is to introduce an adaptive resolution-incorporating version of DDFW
(called R+DDFW+) and to compare it with the three other most promising
general purpose SLS SAT solvers, namely R+AdaptNovelty+, R+RSAPS and
an enhanced R+G2WSAT. On the basis of an empirical study that covers a range
of problems from SAT2005, the quasigroup existence domain and the SATLIB
benchmark library, we conclude that R+DDFW+ has the best overall perfor-
mance of these methods, and that it derives significant benefits from its new
adaptive mechanism.

2 Clause Weighting for SAT

Clause weighting local search algorithms for SAT follow the basic procedure
of repeatedly flipping single literals that produce the greatest reduction in the
sum of false clause weights. Typically, all literals are randomly initialized, and
all clauses are given a fixed initial weight. The search then continues until no
further cost reduction is possible, at which point the weight on all unsatisfied
clauses is increased, and the search is resumed, punctuated with periodic weight
reductions.

Existing clause weighting algorithms differ primarily in the schemes used to
control the clause weights, and in the definition of the points where weight should
be adjusted. Multiplicative methods, such as SAPS, generally adjust weights
when no further improving moves are available in the local neighbourhood. This
can be when all possible flips lead to a worse cost, or when no flip will improve
cost, but some flips will lead to equal cost solutions. As multiplicative real-valued
weights have much finer granularity, the presence of equal cost flips is much more
unlikely than for an additive approach (such as DLM or PAWS), where weight is
adjusted in integer units. This means that additive approaches frequently have
the choice between adjusting weight when no improving move is available, or
taking an equal cost (flat) move.

Despite these differences, the three most well-known clause weighting algo-
rithms (DLM [5], SAPS [7] and PAWS [8]) share a similar structure in the way
that weights are updated:4 Firstly, a point is reached where no further improve-
ment in cost appears likely. The precise definition of this point depends on the
algorithm, with DLM expending the greatest effort in searching plateau areas

4 Additionally, a fourth clause weighting algorithm, GLSSAT [14], uses a similar weight
update scheme, additively increasing weights on the least weighted unsatisfied clauses
and multiplicatively reducing weights whenever the weight on any one clause exceeds
a predefined threshold.

of equal cost moves, and SAPS expending the least by only accepting cost im-
proving moves. Then all three methods converge on increasing weights on the
currently false clauses (DLM and PAWS by adding one to each clause and SAPS
by multiplying the clause weight by a problem specific parameter α > 1). Each
method continues this cycle of searching and increasing weight, until, after a cer-
tain number of weight increases, clause weights are reduced (DLM and PAWS
by subtracting one from all clauses with weight > 1 and SAPS by multiply-
ing all clause weights by a problem specific parameter ρ < 1). SAPS is further
distinguished by reducing weights probabilistically (according to a parameter
Psmooth), whereas DLM and PAWS reduce weights after a fixed number of in-
creases (again controlled by parameter). PAWS is mainly distinguished from
DLM in being less likely to take equal cost or flat moves. DLM will take up to
θ1 consecutive flat moves, unless all available flat moves have already been used
in the last θ2 moves. PAWS does away with these parameters, taking flat moves
with a fixed probability of 15%, otherwise it will increase weight.

However, as we have stressed in the introduction, the performance of these
clause weighting algorithms remains very sensitive to the settings of their prob-
lem specific parameters (this has been shown in detail in [15]). While this sensi-
tivity is also a problem for the non-weighting algorithms of the WalkSAT family,
it has been somewhat counteracted by the use of heuristics that adapt parameter
settings during the course of the search. The most successful of these algorithms,
AdaptNovelty+, works by adapting a noise parameter that controls whether a
move is selected randomly or deterministically [9]. In simplified terms, the like-
lihood of making a random choice is increased the longer the search continues
without achieving an improvement in the objective function. A similar scheme
was added to SAPS, producing reactive SAPS or RSAPS [7]. However, adapting
SAPS was not as successful as adapting Novelty, for, while a tuned SAPS gener-
ally produces better performance than a tuned Novelty+, RSAPS has not been
able to reach the consistent performance AdaptNovelty+ in the recent SAT com-
petitions. One reason for this may be that SAPS requires the setting of three
parameters to achieve its best performance, while RSAPS only adapts one of
these parameters. Similarly, DLM requires the setting of at least three param-
eters before producing its best performance. In contrast, PAWS (like Novelty)
only requires the tuning of a single parameter, but to date no successful heuristic
has been discovered that can automatically adapt this value.

More recently, work has concentrated on learning empirical hardness models
in order to predict the best parameter settings for SAPS [16]. This approach
requires a set of training instances that are repeatedly solved by SAPS using
different parameter settings. After this training phase, parameter settings can
be generated for previously unseen instances taken from the same problem class.
Results from this work are encouraging and could be generally applied to other
local search algorithms. However, the weakness is that training is required on a
representative test set before good predictions can be produced. It remains to be
seen whether a general model can be devised that can predict good parameter
settings for the SAT domain as a whole. In the meantime, if we are limited

to solving problems from an undisclosed problem distribution and if manual
parameter tuning is ruled out of court, then the best available clause weighting
algorithm is probably RSAPS (discounting DDFW for the moment).

3 Divide and Distribute Fixed Weights

DDFW introduces two ideas into the area of clause weighting algorithms for
SAT. Firstly, it evenly distributes a fixed quantity of weight across all clauses
at the start of the search, and then escapes local minima by transferring weight
from satisfied to unsatisfied clauses. The other existing state-of-the-art clause
weighting algorithms have all divided the weighting process into two distinct
steps: i) increasing weights on false clauses in local minima and ii) decreasing
or normalising weights on all clauses after a series of increases, so that weight
growth does not spiral out of control. DDFW combines this process into a single
step of weight transfer, thereby dispensing with the need to decide when to re-
duce or normalise weight. In this respect, DDFW is similar to the predecessors of
SAPS (SDF [6] and ESG [11]), which both adjust and normalise the weight dis-
tribution in each local minimum. Because these methods adjust weight across all
clauses, they are considerably less efficient than SAPS, which normalises weight
after visiting a series of local minima.5 DDFW escapes the inefficiencies of SDF
and ESG by only transferring weights between pairs of clauses, rather than nor-
malising weight on all clauses. This transfer involves selecting a single satisfied
clause for each currently unsatisfied clause in a local minimum, reducing the
weight on the satisfied clause by an integer amount and adding that amount to
the weight on the unsatisfied clause. Hence DDFW retains the additive (inte-
ger) weighting approach of DLM and PAWS, and combines this with an efficient
method of weight redistribution, i.e. one that keeps all weight reasonably nor-
malised without repeatedly adjusting weights on all clauses.

DDFW’s weight transfer approach also bears similarities to the operations
research subgradient optimisation techniques discussed in [11]. In these ap-
proaches, Lagrangian multipliers, analogous to the clause weights used in SAT,
are associated with problem constraints, and are adjusted in local minima so that
multipliers on unsatisfied constraints are increased and multipliers on satisfied
constraints are reduced. This symmetrical treatment of satisfied and unsatisfied
constraints is mirrored in DDFW, but not in the other SAT clause weighting
approaches (which increase weights and then adjust). However, DDFW differs
from subgradient optimisation in that weight is only transferred between pairs
of clauses and not across the board, meaning less computation is required.

3.1 Exploiting Neighbourhood Structure

The second and more original idea developed in DDFW, is the exploitation
of neighbourhood relationships between clauses when deciding which pairs of
clauses will exchange weight.
5 Increasing weight on false clauses in a local minimum is efficient because only a small

proportion of the total clauses will be false at any one time.

Algorithm 1 DDFW+(F)
1: randomly instantiate each literal in F ;
2: set the weight wa of each clause ca ∈ F to two;
3: set the minimum m to the number of false clauses cf ∈ F ;
4: set counter i to zero and boolean b to false;
5: while solution is not found and not timeout do
6: calculate the list L of literals causing the greatest reduction in weighted cost ∆w when flipped;
7: if (∆w < 0) or (∆w = 0 and probability ≤ 15%) then
8: randomly flip a literal in L;
9: if number of false clauses < m then

10: set counter i to zero and minimum m to the number of false clauses;
11: else
12: increment counter i by one;
13: if i ≥ number of literals in F then
14: set counter i to zero;
15: if b is false then
16: increase the weight wa of each clause ca ∈ F by one;
17: set boolean b to true;
18: else
19: set the weight ws of each satisfied clause cs ∈ F to two;
20: set the weight wf of each false clause cf ∈ F to three;
21: set boolean b to false;
22: end if
23: end if
24: end if
25: else
26: for each false clause cf ∈ F do
27: select a satisfied same sign neighbouring clause cn with maximum weight wn;
28: if wn < 2 then
29: randomly select a clause cn with weight wn ≥ 2;
30: end if
31: if wn > 2 then
32: transfer a weight of two from cn to cf ;
33: else
34: transfer a weight of one from cn to cf ;
35: end if
36: end for
37: end if
38: end while

We term clause ci to be a neighbour of clause cj , if there exists at least one
literal lim ∈ ci and a second literal ljn ∈ cj such that lim = ljn. Furthermore, we
term ci to be a same sign neighbour of cj if the sign of any lim ∈ ci is equal to the
sign of any ljn ∈ cj where lim = ljn. From this it follows that each literal lim ∈ ci

will have a set of same sign neighbouring clauses Clim . Now, if ci is false, this
implies all literals lim ∈ ci evaluate to false. Hence flipping any lim will cause it
to become true in ci, and also to become true in all the same sign neighbouring
clauses of lim, i.e. Clim . Therefore, flipping lim will help all the clauses in Clim ,
i.e. it will increase the number of true literals, thereby increasing the overall
level of satisfaction for those clauses. Conversely, lim has a corresponding set of
opposite sign clauses that would be damaged when lim is flipped.

The reasoning behind the DDFW neighbourhood weighting heuristic pro-
ceeds as follows: if a clause ci is false in a local minimum, it needs extra weight
in order to encourage the search to satisfy it. If we are to pick a neighbouring
clause cj that will donate weight to ci, we should pick the clause that is most able
to pay. Hence, the clause should firstly already be satisfied. Secondly, it should
be a same sign neighbour of ci, as when ci is eventually satisfied by flipping

lim, this will also raise the level of satisfaction of lim’s same sign neighbours.
However, taking weight from cj only increases the chance that cj will be helped
when ci is satisfied, i.e. not all literals in ci are necessarily shared as same sign
literals in cj , and a non-shared literal may be subsequently flipped to satisfy ci.
The third criteria is that the donating clause should also have the largest store
of weight within the set of satisfied same sign neighbours of ci

The intuition behind the DDFW heuristic is that clauses that share same sign
literals should form alliances, because a flip that benefits one of these clauses
will always benefit some other member(s) of the group. Hence, clauses that are
connected in this way will form groups that tend towards keeping each other
satisfied. However, these groups are not closed, as each clause will have clauses
within its own group that are connected by other literals to other groups. Weight
is therefore able to move between groups as necessary, rather than being uni-
formly smoothed (as in existing methods).

3.2 Adapting DDFW

The new feature introduced in this study is the development of an adaptive mech-
anism that alters the total amount of weight that DDFW distributes according
to the degree of stagnation in the search. This DDFW+ heuristic is detailed in
lines 9-24 of Algorithm 1. Previously DDFW would have initialised the weight
of each clause to Winit (which was fixed at 8 in [10]). Now this initialisation
value is set at two in line 2 of Algorithm 1, but can be altered during the search
as follows: if the search executes a consecutive series of i flips without reducing
the total number of false clauses, where i is equal to the number of literals in
the problem, then the amount of weight on each clause is increased by one in
the first instance. However, if after increasing weights, the search enters another
consecutive series of i flips without improvement, then it will reset the weight
on each satisfied clause back to two and on each false clause back to three. The
search then continues to follow each increase with a reset and each reset with an
increase. In this way a long period of stagnation will produce oscillating phases
of weight increase and reduction, such that the total weight can never exceed 3
times the total number of clauses ca ∈ F plus the total number of false clauses
cf ∈ F .

The reasoning behind this adaptive heuristic is based on our observation
that manually adjusting DDFW’s original parameter Winit has a noticeable ef-
fect runtime performance, and that on several problems the default value of eight
was not optimal. This is illustrated in Figure 1, which shows that on problem
(a) Winit = 8 is near optimal whereas on problem (b) Winit = 2 is the better
choice (if we consider the underlying trend). We conjectured that we could cir-
cumvent the need to initialise the clauses with more weight at the start of the
search by allowing context sensitive weight increases during the search. Hence
we developed a stagnation measure, much like the measures used in AdaptNov-
elty and RSAPS, that injects extra weight when no cost improvement occurs
and made the frequency of this injection depend on the size of the problem. The
unusual feature of the DDFW+ heuristic is that the search will only effect one

increase after which, if stagnation is observed again, the weights are reset. This
reset mechanism was adopted after a series of empirical trials that tested various
combinations of weight increase and decrease phases. Our main difficulty was to
keep the weight growth within bounds and we could find no decrease scheme
that worked well across a wide range of problems without requiring a further
problem dependent parameter (which would obviously defeat the purpose of the
study). We therefore settled on a simple reset strategy that places a strict limit
on weight growth and avoids adding an additional parameter.

 5
 50

 100

 10

 15

 150

 200

 20

 25

 250

 300

 30

 0

 35

 5

 40

 10 0 15 5 20 10 25 15 30 20 35 25 40

M
ea

n
fli

ps
 x

 1
00

00

M
ea

n
fli

ps
 x

 1
00

00
0

WWinit init

b. bw_large.da. flat200−hard

Fig. 1. Flip performance of DDFW for various settings of the Winit parameter

4 Resolution Based Preprocessing

As discussed in the introduction, significant performance benefits have been
gained by preprocessing a problem using resolution before starting a search. This
result is already well-known in the complete search community, where Satz [17]
uses a restricted resolution procedure, adding resolvents of length ≤ 3, as a pre-
processor before running the complete backtrack search. The same procedure
has now been added to AdaptNovelty+, PAWS, RSAPS and WalkSAT [12], and
there is empirical evidence to suggest that clause weighting algorithms in par-
ticular benefit from this approach when solving structured real-world problems.

Resolution itself is a rule of inference widely used in automated deduction [18–
20]. In the present study, as in [12], we implement the Satz resolution process (see
Algorithm 2) as follows: when two clauses of a CNF formula have the property
that some variable xi occurs positively in one and negatively in the other, the
resolvent of the clauses is a disjunction of all the literals occurring in the clauses
except xi and xi. For example, the clause (x2 ∨ x3 ∨ x4) is the resolvent for the
clauses (x1 ∨x2 ∨x3) and (x1 ∨x2 ∨x4) and is added to the clause set. The new
clauses, provided they are of length ≤ 3, can in turn be used to produce other
resolvents. The process is repeated until saturation. Duplicate and subsumed

Algorithm 2 ComputeResolvents(F)
1: for each clause c1 of length ≤ 3 in F do
2: for each literal l of c1 do
3: for each clause c2 of length ≤ 3 in F s.t. l̄ ∈ c2 do
4: Compute resolvent r = (c1\{l}) ∪ (c2\{l̄});
5: if r is empty then
6: return ”unsatisfiable”;
7: else
8: if r is of length ≤ 3 then
9: F := F ∪ {r};

10: end if
11: end if
12: end for
13: end for
14: end for

clauses are deleted, as are tautologies and any duplicate literals in a clause. It is
worth noting that this resolution phase takes polynomial time.

5 Experimental Evaluation

As the resolution process is encapsulated in a preprocessing phase, it can be
added to an existing SAT solver as a separate module, leaving the original
solver unaltered. In our experimental study we added this preprocessing phase
(as defined in Algorithm 2) to DDFW, DDFW+, RSAPS, AdaptNovelty+ and
G2WSAT, producing R+DDFW, R+DDFW+, R+RSAPS, R+AdaptNovelty+

and R+G2-WSAT. Of these algorithms, R+RSAPS and R+AdaptNovelty+ have
already been entered into SAT2005 and reported in [12].6 However, R+DDFW,
R+DDFW+ and R+G2WSAT are new algorithms whose performance has yet
to be reported.7 We chose to compare DDFW with R+AdaptNovelty+ and
R+G2WSAT because these two algorithms were the gold and silver medal win-
ners in the SAT2005 satisfiable random category competition and achieved the
best overall local search results in terms of the number of problems solved. We
chose R+RSAPS because it was the best performing clause weighting algorithm
in the competition. Together, therefore, these three algorithms can lay claim
to being the state-of-the-art for general purpose local search SAT solving when
manual parameter tuning is disallowed.

To evaluate the relative performance of these algorithms we divided our em-
pirical study into four areas: firstly, we attempted to reproduce a reduced prob-
lem set similar to that used in the random category of the SAT competition
(as this is the domain where local search techniques have dominated). To do
this we selected the 50 satisfiable k3 problems from the SAT2004 competition

6 AdaptNovelty+ and RSAPS are available as part of the UBCSAT solver from
http://www.satlib.org/ubcsat/

7 G2WSAT is available at http://www.laria.u-picardie.fr/%7Ecli/g2wsat2005.c. This
latest version is described by the authors as generally more than 50% faster than
the version entered in SAT2005.

benchmark. Secondly, we obtained the 10 SATLIB quasigroup existence prob-
lems used in [12]. These problems are relevant because they exhibit a balance
between randomness and structure, while also producing clause sets to which
resolution can be applied effectively. Thirdly, we obtained the structured prob-
lem set used to originally evaluate SAPS [7]. These problems have been widely
used to evaluate clause weighting algorithms (e.g. in [8]) and contain a represen-
tative cross-section taken from the DIMACS and SATLIB libraries. In this set
we also included 4 of the well-known DIMACS 16-bit parity learning problems.
Finally, we used the 16 ferry planning problems from the SAT2005 competition
that our local search techniques were able to solve. This was to give an indication
of relative performance on the SAT2005 industrial problems.

Overall, the problem set is designed to show how R+DDFW+ compares in
absolute terms to the other algorithms and to examine the relative effect of the
adaptive mechanism on differing problem classes. For this reason we also include
the results for R+DDFW (i.e. without the adaptive mechanism). All experiments
were performed on a Dell machine with 3.1GHz CPU and 1GB memory, except
for the quasigroup problems which were run on a Sun supercomputer with 8 ×
Sun Fire V880 servers, each with 8 × UltraSPARC-III 900MHz CPU and 8GB
memory per node. Cut-offs for the various algorithms were set as follows: first
R+DDFW was given 10 trials on each problem with a flip cut-off of 1,000,000.
If it was unable to solve any trial then the cut-off was raised to 10,000,000, and
then in steps of 10,000,000 until at least one solution was found. R+DDFW was
then allowed 100 trials at the given flip cut-off for all instances except the ferry
problems, where it was limited to 10 trials. The total time allowed for R+DDFW
on each set of 10 or 100 trials was then recorded and all other algorithms were
given this as a time cut-off on each problem. The following results detail the mean
time in seconds (including the resolution preprocessing step), mean flips and the
success rate for these cut-offs (results in bold indicate the best performance for
a particular problem).

5.1 SAT Competition Problem Results

The results in Figure 2a graph the performance of R+DDFW+, R+DDFW,
R+AdaptNovelty+ and R+G2WSAT after applying resolution on the 50 k3
problems from the SAT2004 competition (as R+RSAPS had very poor per-
formance on the random instances it has been omitted from the figure and
the following discussion). The graph shows the cumulative percentage of prob-
lems solved against runtime, assuming that each instance is solved in parallel
(for example, in Figure 2a after 5 seconds approximately 71% of the 50 × 100
trials for R+DDFW will have terminated). Here R+DDFW+ and R+DDFW
were the only solvers that could reach a 100% success rate over all trials. Al-
though R+G2WSAT was competitive and could solve the easier problems faster
than R+DDFW, it was unable to match R+DDFW as problem difficulty in-
creased. Overall the graph shows that R+DDFW+ has the superior perfor-
mance across the range of problem sizes, clearly dominating R+DDFW and

 40 40

 50 50

 60 60

 70 70

 80 80

 90 90

 100 100

 5 10 20 10 15 30 20 40 50 25

Pe
rc

en
ta

ge
 S

ol
ve

d

Pe
rc

en
ta

ge
 S

ol
ve

d

 60
 Time(sec) Time(sec)

R+DDFW

 70 80 90 100

R+DDFW
R+DDFW+
R+RSAPS

R+DDFW+
R+AdaptNovelty+

R+G2WSAT

a. Random 3SAT problems (50 Instances) b. Industrial Ferry problems (16 Instances)

Fig. 2. Results for the SAT2004 random problems and SAT2005 industrial problems

thereby demonstrating that the new adaptive heuristic can positively affect run-
time performance. Figure 2a also shows that R+G2WSAT generally dominates
R+AdaptNovelty+, although R+AdaptNovelty+ does match R+G2WSAT’s suc-
cess rate over the whole problem set.

The results for the SAT2005 industrial ferry problems are shown in Fig-
ure 2b and in Table 1 (as R+G2WSAT and R+AdaptNovelty+ were only able
to solve 29% and 9% of the ferry instances respectively, they have been re-
moved from the graphical analysis). Looking at Figure 2b we can see that
R+RSAPS, after performing poorly on the random problems, is now able to
dominate R+DDFW across the range of the ferry problems, but cannot quite
reach R+DDFW+’s 97.5% success rate. However, Table 1 shows that R+RSAPS
is able to solve 10 of the 16 ferry problems faster than either DDFW variant, and
that R+DDFW+’s superior success rate is largely based on instance ferry4001.
We must therefore conclude that there is little to choose between R+RSAPS
and R+DDFW+ on these problems. Nevertheless, R+DDFW+ does more clearly
outperform R+DDFW and again demonstrates that the adaptive heuristic can
make noticeable improvements.

5.2 Quasigroup Problem Results

Table 2 shows the performance of the solvers on the quasigroup problems. Here
we can see that R+DDFW and R+DDFW+ clearly emerge as the two best
solvers, sharing the best results for each instance and both achieving an overall
success rate of 100%. Comparing between the two DDFW methods, for the first
time it becomes unclear whether the adaptive heuristic has made any difference,
as, for most instances the results are comparable. However R+DDFW+ does
exhibit noticeably better performance on instance qg1-08, whereas R+DDFW
shows equally strong performance on qg7-13. We should therefore conclude that
the adaptive mechanism does not change the overall performance of DDFW on
this problem set, although it can make a difference, either positively or nega-
tively, on individual instances.

R+DDFW+ R+DDFW R+AdaptNovelty+ G2WSAT R+RSAPS

Problems Time Flips % Time Flips % Time Flips % Time Flips % Time Flips %

ferry3994 3.48 2,073,195 100 1.1 786,967 100 n/a n/a 0 n/a n/a 0 0.6 530,501 100

ferry3995 1.54 933,726 100 0.6 458,302 100 n/a n/a 0 n/a n/a 0 0.1 89,730 100

ferry3996 0.0 7,903 100 0.0 13,942 100 3.9 8,204,511 20 0.1 275,547 100 0.0 7,741 100

ferry3997 10.3 8,238,690 60 10.3 5,055,539 90 n/a n/a 0 n/a n/a 0 9.2 6,742,006 50

ferry3998 0.0 6,526 100 0.0 8,586 100 2.1 3,344,936 100 0.1 180,334 100 0.0 5,070 100

ferry3999 9.81 5,312,170 100 3.2 1,908,547 100 n/a n/a 0 n/a n/a 0 0.6 304,680 100

ferry4000 0.0 31,774 100 0.0 19,280 100 n/a n/a 0 1.8 2,442,300 80 0.0 12,771 100

ferry4001 63.1 24,392,288 100 99.4 40,117,368 90 n/a n/a 0 n/a n/a 0 90.0 54,061,467 80

ferry4002 0.0 9,637 100 0.0 20,336 100 4.8 7,535,284 30 2.1 1,958,552 90 0.0 3,852 100

ferry4003 21.2 10,395,968 100 21.2 7,773,439 50 n/a n/a 0 n/a n/a 0 7.2 2,884,301 100

ferry4004 0.0 30,348 100 0.1 40,547 100 n/a n/a 0 2.4 2,437,826 50 0.0 20,394 100

ferry4006 0.0 14,640 100 0.0 17,697 100 n/a n/a 0 4.9 2,616,491 20 0.0 9,160 100

ferry4008 0.0 33,192 100 0.1 51,796 100 n/a n/a 0 3.2 2,655,066 20 0.1 42,938 100

ferry4009 0.0 23,163 100 0.1 24,015 100 n/a n/a 0 n/a n/a 0 0.1 17,612 100

ferry3992 0.1 60,525 100 0.2 102,413 100 n/a n/a 0 n/a n/a 0 0.2 92,346 100

ferry3993 0.0 26,878 100 0.1 43,595 100 n/a n/a 0 7.2 3,399,169 10 0.2 54,742 100

Table 1. Results for the SAT2005 industrial ferry planning problems

R+DDFW+ R+DDFW R+AdaptNovelty+ R+G2WSAT R+RSAPS

Problems Time Flips % Time Flips % Time Flips % Time Flips % Time Flips %

qg1-07 0.0 4,388 100 0.1 11,375 100 0.2 14,840 100 0.1 9,600 100 0.1 4,901 100

qg1-08 10.2 352,276 100 21.8 601,271 100 33.8 1,076,689 100 28.8 2,818,904 100 64.6 2,153,008 99

qg2-07 0.0 2,361 100 0.0 2,035 100 0.1 9,094 100 0.1 5,073 100 0.1 2,478 100

qg2-08 57.5 1,556,545 100 60.0 1,346,438 100 77.1 1,906,196 20 79.8 4,569,088 50 71.5 1,879,019 70

qg3-08 0.1 16,867 100 0.1 21,986 100 0.6 78,849 100 0.1 24,534 100 0.2 11,049 100

qg4-09 0.2 25,311 100 0.2 26,123 100 1.5 169,169 100 0.7 142,619 100 1.2 54,920 100

qg5-11 0.2 7,303 100 0.2 6,797 100 2.3 131,924 100 0.4 29,992 100 0.6 11,014 100

qg6-09 0.0 478 100 0.0 466 100 0.0 3,644 100 0.0 686 100 0.6 11,753 100

qg7-09 0.0 292 100 0.0 299 100 0.0 698 100 0.0 412 100 0.0 295 100

qg7-13 9.3 229,258 100 3.2 122,091 100 16.3 5,351,459 56 n/a n/a 0 24.9 373,456 10

Table 2. Results for Quasigroup SATLIB problems

5.3 Structured Problem Results

Table 3 shows the results for the structured problems taken from the original
SAPS problem set [7] and the parity learning problems taken from the original
PAWS study [8]. This set comprises of two blocks world planning (bw) prob-
lems, two logistics planning instances, two flat graph coloring problems (flat),
two all-interval-series problems (ais) and four 16-bit parity learning problems
(par16*). The results confirm our earlier observation from the random problem
results that G2WSAT does not scale as well as DDFW. In this case R+G2WSAT
is the best algorithm on the smaller ais, logistics and flat problems, but is out-
performed by R+DDFW on each of the larger instances of these problems. In
addition, R+RSAPS has stronger performance than R+DDFW on the ais and
par16 problems.

However, the situation changes if we consider the performance of R+DDFW+.
In comparison to R+DDFW, R+DDFW+ is better on the ais10, both logistics
and all par16 problems, whereas R+DDFW is only better on the ais12 and
flat200 problems (the two methods perform identically on the bw problems be-

cause the large number of literals mean the adaptive mechanism is not used).
These results show that the R+DDFW+ adaptive mechanism has again pro-
duced noticeable performance benefits, and has improved the overall behaviour
of R+DDFW on this problem set. In addition, if we take a simple count of the
number of problems on which R+DDFW+ dominates we can see that it is also
the best of the five algorithms considered.

R+DDFW+ R+DDFW R+AdaptNovelty+ R+G2WSAT R+RSAPS

Problems Time Flips % Time Flips % Time Flips % Time Flips % Time Flips %

ais10 0.0 298,650 100 0.5 498,911 100 1.4 1,214,321 100 0.0 112,044100 0.0 25,459 100

ais12 5.0 4,036,866 100 2.3 1,934,170 100 10.1 7,328,426 51 2.4 1,854,652 100 0.2 187,743100

logistics-c 0.0 242,540 100 0.3 414,645 100 0.0 26,696 100 0.0 23,623100 0.0 5,364 100

logistics-d 0.1 16,708100 0.1 25,869 100 0.1 109,650 100 0.5 350,711 100 0.1 20,918 100

flat200-m 0.3 262,905 100 0.2 161,902 100 0.2 351,563 100 0.1 150,588100 0.4 362,786 100

flat200-h 3.2 2,814,221 100 1.01,014,878100 3.6 8,166,964 36 2.4 5,535,185 100 3.5 3,517,562 94

bw large.c = =100 0.6 145,607100 6.7 5,660,460 67 n/a n/a 0 21.3 4,258,483 91

bw large.d = =100 1.4 184,874100 13.4 7,974,818 38 n/a n/a 0 n/a n/a 0

par16-1 4.33,828,086100 7.1 5,229,852 50 7.415,608,349 15 n/a n/a 0 7.4 1,164,862 80

par16-2 23.221,670,517 100 27.920,542,514 60 36.854,634,563 10 n/a n/a 0 16.017,581,843100

par16-3 7.77,146,517100 24.417,959,087 70 32.750,828,991 40 31.826,133,070 30 16.0 18,890,265 100

par16-4 2.92,699,444100 11.412,800,152 100 26.841,099,634 50 26.551,205,540 60 8.1 9,445,556 100

Table 3. Results for structured problems from the SAPS and PAWS original studies,
(the = symbol means that R+DDFW+ behaves identically to R+DDFW on these
problems)

6 Analysis and Conclusions

Overall we can conclude that the addition of an adaptive mechanism has im-
proved the performance of DDFW over the entire range of the problem sets we
have considered. The strongest dominance was observed on the random 3-SAT
and parity problems (shown in Figure 2a and Table 3 respectively). On the other
problems R+DDFW+ improved over R+DDFW on 10 of the 16 ferry problems
(in Table 1), 6 of the 10 quasigroup problems (in Table 2) and stays neutral on
the remaining real-world problems (in Table 3).

We can further conclude that R+DDFW (i.e. even without the adaptive
mechanism) has the better overall performance in comparison to AdaptNovelty+,
G2WSAT and R+RSAPS. If we first look at R+G2WSAT, while it performed
well on the smaller random problems, it could not match R+DDFW on the larger
more difficult random problems. In the other categories R+G2WSAT was less
competitive, again showing promise on the smaller structured problems in Ta-
ble 3, but failing to scale up as well as R+DDFW on the more difficult problems.
Interestingly, G2WSAT performed strongly on the quasigroup problems when no
resolution was performed, but was uncompetitive after resolution (these results
are not reported in the current paper). This confirms the findings in [12] that
suggest clause weighting algorithms can gain more advantage from resolution

than non-weighting algorithms. In addition, R+G2WSAT was uniformly worse
than R+DDFW on the ferry problems.

Turning our attention to R+RSAPS, this algorithm showed slightly bet-
ter performance than R+DDFW on the structured and ferry problems, dom-
inating on 10 of the 16 ferry problems and on all the parity problems, with
R+DDFW showing the better performance on the remaining 6 ferry problems
and on the other larger structured problems. However, R+RSAPS was outper-
formed by R+DDFW+ on the parity problems, was uniformly worse on the
random problems and was uncompetitive with R+DDFW on the quasigroup
problems, thereby failing to show the same robust performance as R+DDFW
and R+DDFW+ across the whole range of problem sets. Our third comparison
algorithm, R+AdaptNovelty+, also had the worst overall performance, being
unable to achieve outright dominance on any of the problems considered.

In a further unpublished study (not reported here) we investigated the effect
of the preprocessing resolution step on the performance of each algorithm. This
showed that resolution has little effect on the random problem instances but
has a positive effect on the quasigroup instances, with the effect being more
pronounced for R+DDFW and less pronounced for R+G2WSAT. For the real
world instances, resolution was also generally helpful for the ferry, ais, logistics
and parity problems but had little or no effect on the bw and flat problems.

In conclusion, we have introduced and integrated a new adaptive mechanism
into the DDFW algorithm. This mechanism is unusual in that it oscillates be-
tween increasing and resetting clause weights, timing these changes according
to a stagnation measure defined by the number of problem literals. While the
increase mechanism increments the existing weight profile, the reset mechanism
eliminates the profile entirely, returning the weights to their initial state. We con-
jecture that this dramatic and discontinuous change in the weighted cost surface
increases diversity by allowing the search to explore new trajectories. The reset
mechanism also ensures that the amount of weight added to a problem is strictly
controlled without requiring an additional weight decrease parameter.

In order to evaluate the new adaptive algorithm, R+DDFW+, we also incor-
porated the latest resolution-based preprocessing technique used by the winning
algorithm in the SAT2005 competition. In a broad ranging empirical study we
have shown that integrating our new adaptive mechanism into DDFW can signif-
icantly enhance its overall performance. We have also shown that R+DDFW+

has the best overall performance across a range of representative structured
and random problem instances in comparison to three of the best SLS solvers
currently available. The results suggest that R+DDFW+ should be the SLS al-
gorithm of choice in situations where the characteristics of a problem domain are
not known in advance and manual parameter tuning is not practical. In future
work it would be worthwhile to experiment with other resolution techniques to
see if further performance benefits can be obtained.

Acknowledgement: The authors would like to acknowledge the financial sup-
port of National ICT Australia (NICTA) and the Queensland government. NICTA

is funded through the Australian Government’s Backing Australia’s Ability ini-
tiative and also through the Australian Research Council.

References

1. Morris, P.: The Breakout method for escaping from local minima. In: Proceedings
of 11th AAAI. (1993) 40–45

2. Cha, B., Iwama, K.: Adding new clauses for faster local search. In: Proceedings of
13th AAAI. (1996) 332–337

3. Frank, J.: Learning short-term clause weights for GSAT. In: Proceedings of 15th
IJCAI. (1997) 384–389

4. McAllester, D., Selman, B., Kautz, H.: Evidence for invariants in local search. In:
Proceedings of 14th AAAI. (1997) 321–326

5. Wu, Z., Wah, B.: An efficient global-search strategy in discrete Lagrangian methods
for solving hard satisfiability problems. In: Proceedings of 17th AAAI. (2000) 310–
315

6. Schuurmans, D., Southey, F.: Local search characteristics of incomplete SAT pro-
cedures. In: Proceedings of 10th AAAI. (2000) 297–302

7. Hutter, F., Tompkins, D., Hoos, H.: Scaling and Probabilistic Smoothing: Efficient
dynamic local search for SAT. In: Proceedings of 8th CP. (2002) 233–248

8. Thornton, J., Pham, D.N., Bain, S., Ferreira Jr., V.: Additive versus multiplicative
clause weighting for SAT. In: Proceedings of 19th AAAI. (2004) 191–196

9. Hoos, H.: An adaptive noise mechanism for WalkSAT. In: Proceedings of 19th
AAAI. (2002) 655–660

10. Ishtaiwi, A., Thornton, J., Sattar, A., Pham, D.N.: Neighbourhood clause weight
redistribution in local search for SAT. In: Proceedings of 11th CP. (2005) 772 –
776

11. Schuurmans, D., Southey, F., Holte, R.: The exponentiated subgradient algorithm
for heuristic boolean programming. In: Proceedings of 17th IJCAI. (2001) 334–341

12. Anbulagan, Pham, D., Slaney, J., Sattar, A.: Old resolution meets modern SLS.
In: Proceedings of 20th AAAI. (2005) 354–359

13. Li, C.M., Huang, W.: Diversification and determinism in local search for satisfia-
bility. In: Proceedings of 8th SAT. (2005) 158–172

14. Mills, P., Tsang, E.: Guided local search applied to the satisfiability (SAT) problem.
In: Proceedings of 15th ASOR. (1999) 872–883

15. Thornton, J.: Clause weighting local search for SAT. Journal of Automated Rea-
soning (2006) (to appear)

16. Hutter, F., Hamadi, Y.: Parameter adjustment based on performance prediction:
Towards an instance aware problem solver. In: Technical Report: MSR-TR-2005-
125, Microsoft Research, WA. (2005)

17. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In:
Proceedings of 3rd CP. (1997) 341–355

18. Quine, W.V.: A way to simplify truth functions. American Mathematical Monthly
62 (1955) 627–631

19. Davis, M., Putnam, H.: A computing procedure for quantification theory. Journal
of the ACM 7 (1960) 201–215

20. Robinson, J.A.: A machine-oriented logic based on the resolution principle. Journal
of the ACM 12 (1965) 23–41

