
Simple Search Methods for Finding a Nash Equilibrium

Ryan Porter and Eugene Nudelmanand Yoav Shoham
Computer Science Department

Stanford University
Stanford, CA 94305

{rwporter,eugnud,shoham}@cs.stanford.edu

Abstract

We present two simple search methods for computing a sam-
ple Nash equilibrium in a normal-form game: one for 2-
player games and one forn-player games. We test these al-
gorithms on many classes of games, and show that they per-
form well against the state of the art– the Lemke-Howson al-
gorithm for 2-player games, and Simplicial Subdivision and
Govindan-Wilson forn-player games.

Introduction
Game theory has had a profound impact on multi-agent sys-
tems research, and indeed on computer science in general.
Nash equilibrium (NE) is arguably the most important con-
cept in game theory, and yet remarkably little is known about
the problem of computing a sample NE in a normal-form
game. All evidence points to this being a hard problem, but
its precise complexity is unknown (Papadimitriou 2001).

At the same time, several algorithms have been proposed
over the years for the problem. In this paper, three previ-
ous algorithms will be of particular interest. For 2-player
games, the Lemke-Howson algorithm (Lemke & Howson
1964) is still the state of the art, despite being 40 years old.
For n-player games, until recently the algorithm based on
Simplicial Subdivision (van der Laan, Talman, & van der
Heyden 1987) was the state of the art. Indeed, these two al-
gorithms are the default ones implemented in Gambit (McK-
elvey, McLennan, & Turocy 2003), the best-known game
theory software. Recently, a new algorithm, which we will
refer to as Govindan-Wilson, was introduced by (Govindan
& Wilson 2003) and extended and efficiently implemented
by (Blum, Shelton, & Koller 2003).

In a long version of this paper we provide more intu-
ition behind each these methods. Here we simply note
that they have surfaced as the most competitive algorithms
for the respective class of games, and refer the reader
to two thorough surveys on the topic (von Stengel 2002;
McKelvey & McLennan 1996). Our goal in this paper is
to demonstrate that for both of these classes of games (2-
player, andn-player for n > 2) there exists a relatively

Copyright c© 2004, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

1This work was supported in part by DARPA grant F30602-00-
2-0598 and in part by the National Science Foundation under ITR
IIS-0205633.

simple, search-based method that performs very well in
practice. For 2-player games, our algorithm performs sub-
stantially better than Lemke-Howson. Forn-player games,
our algorithm outperforms both Simplicial Subdivision and
Govindan-Wilson.

The basic idea behind our search algorithms is simple.
Recall that, while the general problem of computing a NE is
a complementarity problem, computing whether there exists
a NE with aparticular support2 for each player is a rela-
tively easy feasibility program. Our algorithms explore the
space of support profiles using a backtracking procedure to
instantiate the support for each player separately. After each
instantiation, they prune the search space by checking for
actions in a support that are strictly dominated, given that
the other agents will only play actions in their own supports.

Both algorithms order the search by giving precedence to
supports of small size. Since it turns out that games drawn
from classes that researchers have focused on in the past tend
to have (at least one) NE with a very small support, our al-
gorithms are often able to find one quickly. Thus, this paper
is as much about the properties of NE in games of interest as
it is about novel algorithmic insights.

We emphasize, however, that we are not cheating in the
selection of games on which we test. Past algorithms were
tested almost exclusively on “random” games. We tested on
these too (indeed, we will have more to say about how “ran-
dom” games vary along at least one important dimension),
but also on many other distributions (24 in total). To this
end we use GAMUT, a recently introduced computational
testbed for game theory (Nudelman et al. 2004). Our results
are quite robust across all games tested.

The rest of the paper is organized as follows. After formu-
lating the problem and the basis for searching over supports,
we describe our two algorithms. Then-player algorithm is
essentially a generalization of the 2-player algorithm, but we
describe them separately, both because they differ slightly
in the ordering of the search, and because the 2-player case
admits a simpler description of the algorithm. Then, we de-
scribe our experimental setup, and separately present our re-
sults for 2-player andn-player games. In the final section,
we conclude and describe opportunities for future work.

2The support specifies the pure strategies played with nonzero
probability.

Notation
We consider finite,n-player, normal-form gamesG =
〈N, (Ai), (ui)〉:
• N = {1, . . . , n} is the set of players.

• Ai = {ai1, . . . , aimi
} is the set of actions available to

player i, wheremi is the number of available actions
for that player. We will useai as a variable that takes
on the value of a particular actionaij of player i, and
a = (a1, . . . , an) to denote a profile of actions, one for
each player. Also, leta−i = (a1, . . . , ai−1, ai+1, . . . , an)
denote this same profile excluding the action of playeri,
so that(ai, a−i) forms a complete profile of actions. We
will use similar notation for any profile that contains an
element for each player.

• ui : A1 × . . . × An → < is the utility function for each
playeri. It maps a profile of actions to a value.

Each playeri selects a mixed strategy from the setPi =
{pi : Ai → [0, 1]|∑ai∈Ai

pi(ai) = 1}. A mixed strat-
egy for a player specifies the probability distribution used to
select the action that the player will play in the game. We
will sometimes useai to denote the pure strategy in which
pi(ai) = 1. The support of a mixed strategypi is the set
of all actionsai ∈ Ai such thatpi(ai) > 0. We will use
x = (x1, . . . , xn) to denote a profile of values that specifies
the size of the support of each player.

Because agents use mixed strategies,ui is extended to
also denote the expected utility for playeri for a strategy
profile p = (p1, . . . , pn): ui(p) =

∑
a∈A p(a)ui(a), where

p(a) = Πi∈Npi(ai).
The primary solution concept for a normal form game is

that of Nash equilibrium. A mixed strategy profile is a Nash
equilibrium if no agent has incentive to unilaterally deviate.

Definition 1 A strategy profilep∗ ∈ P is a Nash equilib-
rium if: ∀i ∈ N, ai ∈ Ai : ui(ai, p

∗
−i) ≤ ui(p∗i , p

∗
−i)

Every finite, normal form game is guaranteed to have at
least one Nash equilibrium (Nash 1950).

Searching Over Supports
The basis of our two algorithms is to search over the space
of possible instantiations of the supportSi ⊆ Ai for each
player i. Given a support profile as input, Feasibility Pro-
gram 1, below, gives the formal description of a program for
finding a Nash equilibriump consistent withS (if such an
strategy profile exists).3 In this program,vi corresponds to
the expected utility of playeri in an equilibrium. The first
two classes of constraints require that each player must be
indifferent between all actions within his support, and must
not strictly prefer an action outside of his support. These
imply that no player can deviate to a pure strategy that im-
proves his expected utility, which is exactly the condition for
the strategy profile to be a Nash equilibrium.

3We note that the use of Feasibility Program 1 is not novel–
it was used by (Dickhaut & Kaplan 1991) in an algorithm which
enumerated all support profiles in order to find all Nash equilibria.

Becausep(a−i) =
∏

j 6=i pj(aj), this program is linear for
n = 2 and nonlinear for alln > 2. Note that, strictly speak-
ing, we do not require that each actionai ∈ Si be in the
support, because it is allowed to be played with zero prob-
ability. However, playeri must still be indifferent between
actionai and each other actiona′i ∈ Si.

Feasibility Program 1
Input: S = (S1, . . . , Sn), a support profile
Output: NE p, if there exists both a strategy profilep =
(p1, . . . , pn) and a value profilev = (v1, . . . , vn) s.t.:

∀i ∈ N, ai ∈ Si :
∑

a−i∈S−i

p(a−i)ui(ai, a−i) = vi

∀i ∈ N, ai ∈/ Si :
∑

a−i∈S−i

p(a−i)ui(ai, a−i) ≤ vi

∀i ∈ N :
∑

ai∈Si

pi(ai) = 1

∀i ∈ N, ai ∈ Si : pi(ai) ≥ 0
∀i ∈ N, ai ∈/ Si : pi(ai) = 0

Algorithm for Two-Player Games
In this section we describe Algorithm 1, our 2-player algo-
rithm for searching the space of supports. There are three
keys to the efficiency of this algorithm. The first two are
the factors used to order the search space. Specifically, Al-
gorithm 1 considers every possible support size profile sep-
arately, favoring support sizes that are balanced and small.
The motivation behind these choices comes from work such
as (McLennan & Berg 2002), which analyzes the theoreti-
cal properties of the NE of games drawn from a particular
distribution. Specifically, forn-player games, the payoffs
for an action profile are determined by drawing a point uni-
formly at random in a unit sphere. Under this distribution,
for n = 2, the probability that there exists a NE consistent
with a particular support profile varies inversely with the size
of the supports, and is zero for unbalanced support profiles.

The third key to Algorithm 1 is that it separately instanti-
ates each players’ support, making use of what we will call
“conditional (strict) dominance” to prune the search space.

Definition 2 An actionai ∈ Ai is conditionally dominated,
given a profile of sets of available actionsR−i ⊆ A−i

for the remaining agents, if the following condition holds:
∃a′i ∈ Ai ∀a−i ∈ R−i : ui(ai, a−i) < ui(a′i, a−i).

The preference for small support sizes amplifies the ad-
vantages of checking for conditional dominance. For ex-
ample, after instantiating a support of size two for the first
player, it will often be the case that many of the second
player’s actions are pruned, because only two inequalities
must hold for one action to conditionally dominate another.

Pseudo-code for Algorithm 1 is given below. Note that
this algorithm is complete, because it considers all support
size profiles, and because it only prunes actions that are
strictly dominated.

Algorithm 1
for all support size profilesx = (x1, x2), sorted in increas-
ing order of, first,|x1 − x2| and, second,(x1 + x2) do

for all S1 ⊆ A1 s.t. |S1| = x1 do
A′2 ← {a2 ∈ A2 not cond. dominated, givenS1 }
if @a1 ∈ S1 cond. dominated, givenA′2 then

for all S2 ⊆ A′2 s.t. |S2| = x2 do
if @a1 ∈ S1 cond. dominated, givenS2 then

if Feasibility Program 1 is satisfiable forS =
(S1, S2) then

Return the found NEp

Algorithm for N-Player Games
Algorithm 1 can be interpreted as using the general back-
tracking algorithm (see, e.g., (Dechter 2003)) to solve a con-
straint satisfaction problem (CSP) for each support size pro-
file. The variables in each CSP are the supportsSi, and
the domain of eachSi is the set of supports of sizexi.
While the single constraint is that there must exist a solu-
tion to Feasibility Program 1, an extraneous, but easier to
check, set of constraints is that no agent plays a condition-
ally dominated action. The removal of conditionally domi-
nated strategies by Algorithm 1 is similar to using the AC-1
to enforce arc-consistency with respect to these constraints.
We use this interpretation to generalize Algorithm 1 for the
n-player case. Pseudo-code for Algorithm 2 and its two
procedures, Recursive-Backtracking and Iterated Removal
of Strictly Dominated Strategies (IRSDS) are given below.4

IRSDS takes as input a domain for each player’s support.
For each agent whose support has been instantiated, the do-
main contains only that instantiated support, while for each
other agenti it contains all supports of sizexi that were
not eliminated in a previous call to this procedure. On each
pass of therepeat-untilloop, every action found in at least
one support of a player’s domain is checked for conditional
domination. If a domain becomes empty after the removal
of a conditionally dominated action, then the current instan-
tiations of the Recursive-Backtracking are inconsistent, and
IRSDS returnsfailure. Because the removal of an action can
lead to further domain reductions for other agents, IRSDS
repeats until it either returnsfailure or iterates through all
actions of all players without finding a dominated action.

Finally, we note that Algorithm 2 is not a strict general-
ization of Algorithm 1, because it orders the support size
profiles first by size, and then by a measure of balance. The
reason for the change is that balance (while still significant)
is less important forn > 2 than it is forn = 2. For ex-
ample, under the model of (McLennan & Berg 2002), for
n > 2, the probability of the existence of a NE consistent
with a particular support profile is no longer zero when the
support profile is unbalanced.

4Even though our implementation of the backtracking proce-
dure is iterative, for simplicity we present it here in its equivalent,
recursive form. Also, the reader familiar with CSPs will recognize
that we have employed very basic algorithms for backtracking and
for enforcing arc consistency, and we return to this point in the
conclusion.

Algorithm 2
for all x = (x1, . . . , xn), sorted in increasing order of,
first,

∑
i xi and, second,maxi,j(xi − xj) do

∀i : Si ← NULL //uninstantiated supports
∀i : Di ← {Si ⊆ Ai : |Si| = xi} //domain of supports
if Recursive-Backtracking(S,D, 1) returns a NEp then

Returnp

Procedure 1Recursive-Backtracking

Input: S = (S1, . . . , Sn): a profile of supports
D = (D1, . . . , Dn): a profile of domains
i: index of next support to instantiate

Output: A Nash equilibriump, or failure
if i = n + 1 then

if Feasibility Program 1 is satisfiable forS then
Return the found NEp

else
Returnfailure

else
for all di ∈ Di do

Si ← di

Di ← Di − {di}
if IRSDS(({S1}, . . . , {Si}, Di+1, . . . , Dn)) succeeds
then

if Recursive-Backtracking(S, D, i + 1) returns NEp
then

Returnp
Returnfailure

Procedure 2Iterated Removal of Strictly Dominated
Strategies (IRSDS)

Input: D = (D1, . . . , Dn): profile of domains
Output: Updated domains, orfailure
repeat

changed ← false
for all i ∈ N do

for all ai ∈ di ∈ Di do
for all a′i ∈ Ai do

if ∀a−i ∈ d−i ∈ D−i, ui(ai, a−i) < ui(a′i, a−i)
then

Di ← Di − {di ∈ Di : ai ∈ di}
changed ← true
if Di = ∅ then

returnfailure
until changed = false
returnD

D1 Bertrand Oligopoly D2 Bidirectional LEG, Complete Graph
D3 Bidirectional LEG, Random Graph D4 Bidirectional LEG, Star Graph
D5 Covariance Game:ρ = 0.9 D6 Cov. Game:ρ ∈ [−1/(N − 1), 1]
D7 Covariance Game:ρ = 0 D8 Dispersion Game
D9 Graphical Game, Random Graph D10 Graphical Game, Road Graph
D11 Graphical Game, Star Graph D12 Graphical Game, Small-World
D13 Minimum Effort Game D14 Polymatrix Game, Complete Graph
D15 Polymatrix Game, Random Graph D16 Polymatrix Game, Road Graph
D17 PolymatrixGame, Small-World D18 Uniformly Random Game
D19 Travelers Dilemma D20 Uniform LEG, Complete Graph
D21 Uniform LEG, Random Graph D22 Uniform LEG, Star Graph
D23 Location Game D24 War Of Attrition

Table 1: Descriptions of GAMUT distributions.

Experimental Results
To evaluate the performance of our algorithms we ran sev-
eral sets of experiments. All games were generated by
GAMUT (Nudelman et al. 2004), a test-suite that is capable
of generating games from a wide variety of classes of games
found in the literature. Table 1 provides a brief description
of the subset of distributions on which we tested.

A distribution of particular importance is the one most
commonly tested on in previous work: D18, the “Uniformly
Random Game”, in which every payoff in the game is drawn
independently from an identical uniform distribution. Also
important are distributions D5, D6, and D7, which fall under
a “Covariance Game” model studied by (Rinott & Scarsini
2000), in which the payoffs for then agents for each action
profile are drawn from a multivariate normal distribution in
which the covarianceρ between the payoffs of each pair of
agents is identical. Whenρ = 1, the game is common-
payoff, whileρ = −1

N−1 yields minimal correlation, which
occurs in zero-sum games. Thus, by alteringρ, we can
smoothly transition between these two extreme classes of
games.

Our experiments were executed on a cluster of 12
dual-processor, 2.4GHz Pentium machines, running Linux
2.4.20. We capped runs for all algorithms at 1800 seconds.
When describing the statistics used to evaluate the algo-
rithms, we will use “unconditional” to refer to the value of
the statistic when timeouts are counted as 1800 seconds, and
“conditional” to refer to its value excluding timeouts.

When n = 2, we solved Feasibility Program 1 using
CPLEX 8.0’s callable library. Forn > 2, because the pro-
gram is nonlinear, we instead solved each instance of the
program by executing AMPL, using MINOS as the underly-
ing optimization package. Obviously, we could substitute in
any nonlinear solver; and, since a large fraction of our run-
ning time is spent on AMPL and MINOS, doing so would
greatly affect the overall running time.

Before presenting the empirical results, we note that a
comparison of the worst-case running times of our two algo-
rithms and the three we tested against does not distinguish
between them, since there exist inputs for each which lead
to exponential time.

Results for Two-Player Games
In the first set of experiments, we compared the performance
of Algorithm 1 to that of Lemke-Howson (implemented in
Gambit, which added the preprocessing step of iterated re-
moval of weakly dominated strategies) on 2-player, 300-
action games drawn from 24 of GAMUT’s 2-player distribu-
tions. Both algorithms were executed on 100 games drawn
from each distribution. The time is measured in seconds and
plotted on a logarithmic scale.

Figure 1(a) compares the unconditional median runtimes
of the two algorithms, and shows that Algorithm 1 performs
better on all distributions.5 However, this does not tell the
whole story. For many distributions, it simply reflects the

5Obviously, the lines connecting data points across distributions
for a particular algorithm are meaningless– they were only added
to make the graph easier to read.

fact that there is a greater than50% chance that the distribu-
tion will generate a game with a pure strategy NE, which our
algorithm will then find quickly. Two other important statis-
tics are the percentage of instances solved (Figure 1(b)), and
the average runtime conditional on solving the instance (Fig-
ure 1(c)). Here, we see that Algorithm 1 completes far more
instances on several distributions, and solves fewer on just a
single distribution (6 fewer, on D23). Additionally, even on
distributions for which we solve far more games, our condi-
tional average runtime is 1 to 2 orders of magnitude smaller.

Clearly, the hardest distribution for our algorithm is D6,
which consists of “Covariance Games” in which the co-
varianceρ is drawn uniformly at random from the range
[−1, 1]. In fact, neither Algorithm 1 nor Lemke-Howson
solved any of the games in another “Covariance Game” dis-
tribution in whichρ = −0.9, and these results were omitted
from the graphs, because the conditional average is unde-
fined for these results. On the other hand, for the distribu-
tion “CovarianceGame-Pos” (D5), in whichρ = 0.9, both
algorithms perform well.

To further investigate this continuum, we sampled 300
values forρ in the range[−1, 1], with heavier sampling in the
transition region and at zero. For each such game, we plot-
ted a point for the runtime of both Algorithm 1 and Lemke-
Howson in Figure 1(d).6 The theoretical results of (Rinott &
Scarsini 2000) suggest that the games with lower covariance
should be more difficult for Algorithm 1, because they are
less likely to have a pure strategy Nash equilibrium. Never-
theless, it is interesting to note the sharpness of the transi-
tion that occurs in the[−0.3, 0] interval. More surprisingly,
a similarly sharp transition also occurs for Lemke-Howson,
despite the fact that the two algorithms operate in unrelated
ways. Finally, it is important to note that the transition re-
gion for Lemke-Howson is shifted to the right by approxi-
mately0.3, and that, on instances in the easy region for both
algorithms, Algorithm 1 is still an order of magnitude faster.

In the third set of experiments we explore the scaling
behavior of both algorithms on the “Uniformly Random
Game” distribution (D18), as the number of actions in-
creases from 100 to 1000. For each multiple of 100, we
generated 20 games. Because space constraints preclude an
analysis similar to that of Figures 1(a) through 1(c), we in-
stead plot in Figure 1(e) theunconditionalaverage runtime
over 20 instances for each data size, with a timeout counted
as 1800s. While Lemke-Howson failed to solve any game
with more than 600 actions and timed out on some 100-
action games, Algorithm 1 solved all instances, and, without
the help of cutoff times, still had an advantage of 2 orders of
magnitude at 1000 actions.

Results for N-Player Games
In the next set of experiments we compare Algorithm 2 to
Govindan-Wilson and Simplicial Subdivision (which was
implemented in Gambit, and thus combined with iterated
removal of weakly dominated strategies). First, to compare
performance on a fixed problem size we tested on 6-player,

6The capped instances for Algorithm 1 were perturbed slightly
upward on the graph for clarity.

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

Tim
e(s

)

Alg1
LH

(a) Unconditional median runtime

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

%
 S

olv
ed

Alg1
LH

(b) Percentage solved

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

D
23

D
24

Distribution

Tim
e(s

)

Alg1
LH

(c) Average time on solved instances

0.01

0.1

1

10

100

1000

10000

-1 -0.5 0 0.5 1Covariance

Tim
e(s

)

Alg1
LH

(d) Runtime vs. Covariance

0.01

0.1

1

10

100

1000

10000

100 200 300 400 500 600 700 800 900 1000
Actions

Tim
e(s

)

Alg1
LH

(e) Unconditional average vs. Actions

Figure 1: Comparison of Algorithm 1 and Lemke-Howson on 2-player games. Subfigures (a)-(d) are for 300-action games.

0.001

0.01

0.1

1

10

100

1000

10000

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

Tim
e(s

)

Alg2
SD
GW

(a) Unconditional median runtimes

0
10
20
30
40
50
60
70
80
90

100

D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

%
 S

olv
ed

Alg2
SD
GW

(b) Percentage solved

0.001

0.01

0.1

1

10

100

1000
D
1

D
2

D
3

D
4

D
5

D
6

D
7

D
8

D
9

D
10

D
11

D
12

D
13

D
14

D
15

D
16

D
17

D
18

D
19

D
20

D
21

D
22

Distribution

Tim
e(s

)

Alg2
SD
GW

(c) Average time on solved instances

0.01

0.1

1

10

100

1000

10000

-0.2 0 0.2 0.4 0.6 0.8 1
Covariance

Tim
e(s

)

Alg2
SD
GW

(d) Runtime vs. Covariance

0.1

1

10

100

1000

10000

3 4 5 6 7 8
Actions

Tim
e(s

)

Alg2
SD
GW

(e) Unconditional average runtime vs.
Actions, on 6-player games

0.001

0.01

0.1

1

10

100

1000

10000

3 4 5 6 7
#Players

Tim
e(s

)

Alg2
SD
GW

(f) Unconditional average runtime vs.
Players, on 5-action games

Figure 2: Comparison of Algorithm 2, Simplicial Subdivision, and Govindan-Wilson. Subfigures (a)-(d) are for 6-player,
5-action games.

5-action games drawn from 22 of GAMUT’sn-player dis-
tributions.7 While the numbers of players and actions ap-
pear small, note that these games have 15625 outcomes and
93750 payoffs. Once again, Figures 2(a), 2(b), and 2(c)
show unconditional median runtime, percentage of instances
solved, and conditional average runtime, respectively. Al-
gorithm 2 has a very low unconditional median runtime, for
the same reason that Algorithm 1 did for two-player games,
and outperforms both other algorithms on all distributions.
While this dominance does not extend to the other two met-
rics, the comparison still favors Algorithm 2.

We again investigate the relationship betweenρ and the
hardness of games under the “Covariance Game” model.
For generaln-player games, minimal correlation under this
model occurs whenρ = − 1

n−1 . Thus, we can only study
the range[−0.2, 1] for 6-player games. Figure 2(d) shows
the results for 6-player 5-action games. Algorithm 2, over
the range[−0.1, 0], experiences a transition in hardness that
is even sharper than that of Algorithm 1. Simplicial Sub-
division also undergoes a transition, which is not as sharp,
that begins at a much larger value ofρ (around0.4). How-
ever, the running time of Govindan-Wilson is only slightly
affected by the covariance, as it neither suffers as much for
small values ofρ nor benefits as much from large values.

Finally, Figures 2(e) and 2(f) compare the scaling behav-
ior (in terms of unconditional average runtimes) of the three
algorithms: the former holds the number of players constant
at 6 and varies the number of actions from 3 to 8, while the
latter holds the number of actions constant at 5, and varies
the number of players from 3 to 8. In both experiments,
both Simplicial Subdivision and Govindan-Wilson solve no
instances for the largest two sizes, while Algorithm 2 still
finds a solution for most games.

Conclusion and Future Work
In this paper, we presented two algorithms for finding a sam-
ple Nash equilibrium. Both use backtracking approaches
(augmented with pruning) to search the space of support pro-
files, favoring supports that are small and balanced. Both
also outperform the current state of the art.

The most difficult games we encountered came from the
“Covariance Game” model, as the covariance approaches its
minimal value, and this is a natural target for future algo-
rithm development. We expect these games to be hard in
general, because, empirically, we found that as the covari-
ance decreases, the number of equilibria decreases, and the
equilibria that do exist are more likely to have support sizes
near one half of the number of actions, which is the support
size with the largest number of supports.

One direction for future work is to employ more sophis-
ticated CSP techniques. The main goal of this paper was
to show that our general search method performs well in
practice, and there are many other CSP search and infer-
ence strategies which may improve its efficiency. Another
promising direction to explore is local search, in which the

7Two distributions from the tests of 2-player games are missing
here, due to the fact that they do not naturally generalize to more
than 2 players.

state space is the set of all possible supports, and the avail-
able moves are to add or delete an action from the support of
a player. While the fact that no equilibrium exists for a par-
ticular support does not give any guidance as to which neigh-
boring support to explore next, one could use a relaxation of
Feasibility Program 1 that penalizes infeasibility through an
objective function. More generally, our results show that AI
techniques can be successfully applied to this problem, and
we have only scratched the surface of possibilities along this
direction.

References
Blum, B.; Shelton, C. R.; and Koller, D. 2003. A contin-
uation method for Nash equilibria in structured games. In
IJCAI-03.
Dechter, R. 2003.Constraint Processing. Morgan Kauf-
mann.
Dickhaut, J., and Kaplan, T. 1991. A program for finding
Nash equilibria.The Mathematica Journal87–93.
Govindan, S., and Wilson, R. 2003. A global newton
method to compute Nash equilibria. InJournal of Eco-
nomic Theory.
Lemke, C., and Howson, J. 1964. Equilibrium points of
bimatrix games.Journal of the Society for Industrial and
Applied Mathematics12:413–423.
McKelvey, R., and McLennan, A. 1996. Computation of
equilibria in finite games. In H. Amman, D. Kendrick, J. R.,
ed.,Handbook of Computational Economics, volume I. El-
sevier. 87–142.
McKelvey, R.; McLennan, A.; and Turocy, T. 2003.
Gambit: Software tools for game theory, version 0.97.0.5.
Available at http://econweb.tamu.edu/gambit/.
McLennan, A., and Berg, J. 2002. The asymptotic ex-
pected number of Nash equilibria of two player normal
form games. Mimeo, University of Minnesota.
Nash, J. 1950. Equilibrium points in n-person games.Pro-
ceedings of the National Academy of Sciences of the United
States of America36:48–49.
Nudelman, E.; Wortman, J.; Shoham, Y.; and Leyton-
Brown, K. 2004. Run the GAMUT: A comprehen-
sive approach to evaluating game-theoretic algorithms. In
AAMAS-04.
Papadimitriou, C. 2001. Algorithms, games, and the inter-
net. InSTOC-01, 749–753.
Rinott, Y., and Scarsini, M. 2000. On the number of pure
strategy Nash equilibria in random games.Games and Eco-
nomic Behavior33:274–293.
van der Laan, G.; Talman, A.; and van der Heyden, L.
1987. Simplicial variable dimension algorithms for solv-
ing the nonlinear complementarity problem on a product
of unit simplices using a general labelling.Mathematics of
Operations Research.
von Stengel, B. 2002. Computing equilibria for two-person
games. In Aumann, R., and Hart, S., eds.,Handbook of
Game Theory, volume 3. North-Holland. chapter 45, 1723–
1759.

