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Abstract

This paper presents a multi-agent oriented method for solving CSPs (Constraint Satisfaction
Problems). In this method, distributed agents represent variables and a two-dimensional grid-like
environment in which the agents inhabit corresponds to the domains of the variables. Thus, the
positions of the agents in such an environment constitute the solution to a CSP. In order to reach
a solution state, the agents will rely on predefined local reactive behaviors; namely, better-move,
least-move, and random-move. While presenting the formalisms and algorithm, we will analyze
the correctness and complexity of the algorithm, and demonstrate the proposed method with two
benchmark CSPs, i.e., n-queen problems and coloring problems. In order to further determine the
effectiveness of different reactive behaviors, we will examine the performance of this method in
deriving solutions based on behavior prioritization and different selection probabilities.  2001
Published by Elsevier Science B.V.

Keywords: Constraint satisfaction; Multi-agent; Reactive moving behaviors; Behavior prioritization; Behavior
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1. Introduction

1.1. CSPs

Many problems in Artificial Intelligence (AI) as well as in other areas of computer
science and engineering can be translated into a certain type of constraint satisfaction
problem (CSP) [19,29]. Some examples of such problems include: spatial and temporal
planning, qualitative and symbolic reasoning, diagnostics, decision support, computational
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linguistics, scheduling, resource allocation and planning, graph problems, hardware design
and verification, configuration, real-time systems, and robot planning.

Definition 1.1. A constraint satisfaction problem (CSP) consists of:

(1) A finite set of variables, X = {X1,X2, . . . ,Xn}.
(2) A domain set, containing a finite and discrete domain for each variable:

D = {D1,D2, . . . ,Dn}, ∀i ∈ [1, n], Xi ∈Di.
(3) A constraint set, C = {C(R1),C(R2), . . . ,C(Rm)}, where eachRi is an ordered subset

of the variables, and each constraint C(Ri) is a set of tuples indicating the mutually
consistent values of the variables in Ri .

Definition 1.2. The solution, S, for a CSP is an assignment to all variables such that the
assignment satisfies all given constraints. Specifically,

(1) S is an ordered set, S = 〈v1, v2, . . . , vn〉, S ∈D1 ×D2 × · · · ×Dn.
(2) (∀j ∈ [1,m]) (∃S′ ⊆ S)∧ (S′ ∈C(Rj )) is true. S′ is also an ordered set.

In this paper, we will focus our discussion on binary CSPs where each constraint is
either unary or binary [19]. A binary CSP has the same definition as Definition 1.1, except
Ri = Di1 × Di2. It is possible to convert a CSP with n-ary constraints to an equivalent
binary CSP [19,34].

Let us now take a look at two typical CSP examples as follows:

Example 1.1. The n-queen problem is a classical CSP. It is generally regarded as
a benchmark for testing algorithms and has attracted a lot of attentions in the CSP
community [38]. This problem requires one to place n queens on an n × n chessboard,
so that no two queens are in the same row, the same column, or the same diagonal. There
exist solutions for the n-queen problems with n greater than or equal to 4 [2,38] (see Fig. 1).
The equivalent CSP can be stated as follows:

X = {X1,X2, . . . ,Xn}.
D = {D1,D2, . . . ,Dn}, ∀i, Di = [1, n].
C = {

C(Ru) | ∀i, j ∈ [1, n],C(Ru)= {〈b, c〉 | b ∈Di, c ∈Dj , b �= c,
i − j �= b− c, i − j �= c− b}}.

Fig. 1. A solution for a 4-queen problem.
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Fig. 2. An example solution for a coloring problem.

Example 1.2. The (vertex) coloring problem that is found in a variety of applications can
readily be modeled as a CSP. In this problem, we need to color each vertex or node of
a graph by a certain color (from a set of colors, suppose to be m colors), such that no
two nodes incident to any edge have the same color. The equivalent CSP will represent
each of the nodes in the graph into a variable. The domain of the variable corresponds
to the given set of m colors. For each pair of nodes incident to an edge, there is a
binary constraint between the corresponding variables that disallows identical assignments
to these two variables. Here is an example: X = {V1,V2,V3}, D1 = {green, red}, D2 =
{red,blue}, D3 = {blue}, where constraints are: V1 �= V2, V1 �= V3, and V2 �= V3, so
C = {{〈green, red〉, 〈green,blue〉, 〈red,blue〉}, {〈green,blue〉, 〈red,blue〉}, {〈red,blue〉}}.
Fig. 2 presents a possible solution to this problem.

1.2. Related work

General methods for solving CSPs include generate-and-test (GT) and backtracking
(BT) methods [19]. GT generates each possible combination of the variables systematically
and then checks to see whether it is a solution, i.e., whether it satisfies all the constraints.
One limitation of this method is that it has to consider all instances of the Cartesian product
of all the variable domains. In this respect, BT is more efficient than GT, as it assigns
values to variables sequentially and then checks constraints for each variable assignment.
If a partial assignment does not satisfy any of the constraints, it will backtrack to the most
recently assigned variable and repeat the process again. Although this method eliminates
a subspace from the Cartesian product of all the variable domains, its computational
complexity for solving most nontrivial problems remains to be exponential.

Many studies have been conducted to investigate various ways of improving the above-
mentioned BT method. In order to avoid thrashing [15,19] in BT, consistency techniques
(Arc Consistency and k-Consistency) have been developed by Mackworth and other
researchers [6,17,19,25,28],which are able to remove inconsistent values from the domains
of the variables. In order to avoid both thrashing and redundant-work [19] in BT, a
dependency-directed backtracking scheme and its improvements have been proposed [3,
19,33,39]. Other ways of increasing the efficiency of BT include the use of search order for
variables, values, and consistency check [32]. Nevertheless, even with such improvements,
BT is still unable to solve nontrivial large-scale CSPs in a reasonable runtime.
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For the GT method, there have been some research efforts on making the solution
generator smarter. The representatives of such efforts are stochastic and heuristic
algorithms. Along this direction, one of the most popular ideas is to perform local
search [16,19]. For large-scale n-queen CSPs, it gives better results than a complete, or
even incomplete, systematic BT method. There are three key elements in local search [1],
they are:

(1) Configuration: one possible assignment of all variables, not required to be a solution.
(2) Evaluation value: the number of unsatisfied constraints.
(3) Neighbor: the configuration obtained by changing one variable’s assignment in the

current configuration.

Local search generates an initial configuration and then incrementally uses “repair”
or “hill climbing” to modify the inconsistent configuration to move to a neighborhood
configuration that has the best or better evaluation value among its neighbors, until a
solution is found. In order to avoid falling into local optima, it sometimes performs
random-walk and tabu search [12]. As related to the idea of local search, other heuristics
have also been developed, such as hill-climbing [1], min-conflicts [27], MCRW (Min-
Conflicts-Random-Walk) [41], and GSAT (GSAT is a randomized local search procedure
for solving propositional satisfiability problems) [36,37].

1.2.1. Min-conflicts heuristics
Repair-based heuristics were originally used in AI problem-solving systems to debug

and modify initial solutions. Minton et al. [27] extended this approach to solving large-
scale constraint satisfaction problems, and proposed a value-ordering heuristic, called min-
conflicts heuristic. The min-conflicts heuristic attempts to select a new value that minimizes
the number of outstanding constraint violations after each step.

They argued that the effectiveness of the min-conflicts heuristic is largely due to the
repair of a complete but inconsistent assignment that is more informative in guiding search
than an incrementally constructed partial assignment as in the traditional backtracking
methods [27]. They also noted that the performance of this sequentially executed heuristic
is remarkably comparable to that of a parallelly implemented Guarded Discrete Stochastic
(GDS) network for solving constraint satisfaction problems (e.g., the Hubble Space
Telescope scheduling problem). The two implementations employed the same heuristic (in
fact, as stated in [27], the min-conflicts approach was intended to replicate the behavior of
the GDS network): the network reassigns a value for a variable by choosing the value that
violates the fewest constraints (i.e., flipping the neuron whose output is most inconsistent
with its current input).

Our multi-agent approach utilizes the idea of inconsistency reduction over a complete
initial assignment. However, our approach differs from the min-conflicts approach in a
number of ways. For instance, our approach explores heuristics in addition to violation
minimization, and relays on the combination of prioritized heuristics in order to improve
computational efficiency. A more detailed discussion on the distinctions between the two
approaches is provided in Section 5.
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Other methods for solving CSPs have been based on Neural Networks [26] and Genetic
Algorithms [18].

The above-mentioned methods and techniques have their advantages and drawbacks,
and no single algorithm has been found to be suited to solving all CSPs. For small-size
problems, we may use BT to readily find a solution, whereas for large-scale problems
we may use local search. The efficiency of local search for solving n-queen problems is
reported to be very efficient, among other algorithms [38]. However, we cannot prove that
it can find solutions for every case every time as it is stochastic in nature, while on the
other hand BT’s performance is more stable and complete. Furthermore, local search is
not suitable for problems other than n-queen. It requires that the problems have a clear
neighborhood structure.

1.3. Multi-agent systems

Agent-based computation has been studied for some years in the field of artificial
intelligence and has been widely used in other branches of computer science. Multi-agent
systems are computational systems in which several agents interact or work together in
order to achieve goals. Agents in such systems may be homogeneous or heterogeneous, and
may have common goals or distinct goals [21]. Previous work on multi-agent systems has
generally focused on areas such as simulations of social and biological systems, problem
solving, communication, collective robotics, and electronic commerce on the Internet.

1.3.1. Distributed constraint satisfaction
A distributed constraint satisfaction problem (distributed CSP) is a constraint satisfac-

tion problem in which variables and constraints are semantically partitioned (or distrib-
uted) into sub-problems, each of which is to be solved by an agent. When multiple agents
are involved in solving a distributed CSP, the agents have to comply with certain constraints
among them. Thus, finding a solution to a distributed CSP requires that all agents find the
values for their variables that satisfy not only their own constraints but also interagent
constraints. Examples of distributed CSP research efforts include distributed scheduling,
planning, and reasoning [5,7,31,35].

Yokoo et al. [42–45] have made significant contributions in the area of distributed
CSP. They developed an algorithm called asynchronous backtracking that guarantees the
completeness, and then later extended this algorithm into a more efficient asynchronous
weak-commitment search algorithm, by introducing dynamic ordering among agents.
Furthermore, they also proposed a multi-agent real-time-A* algorithm with selection to
solve an n-puzzle problem [45]. In those algorithms, the agents are individual solvers for
obtaining partial solutions.

1.3.2. Swarm-like systems
In addition to the above-mentioned distributed constraint satisfaction approaches, it is

worth mentioning a special instance of multi-agent systems for applications in computation
and simulation; namely, swarm [40].

Swarm is a formulation for simulating distributed multi-agent systems, which involves
three key concepts: living environment, agents with reactive rules, and a schedule serving
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as a timetable to update the changes and dispatch agents’ actions. Based on this idea, Liu
et al. [23,24] developed an evolutionary autonomous agent system to adaptively extract
image features and segments. Recently, Liu and Han [22] proposed an energy-based
artificial-life model for solving n-queen problem.

1.4. The proposed approach

As inspired by the previous models of swarm, in this paper we will present a new
approach called ERA (i.e., Environment, Reactive rules, and Agents) to solving CSPs. The
CSPs considered here will not be limited to distributed CSPs. This approach is intended to
provide an alternative, multi-agent formulation that can be used to handle general CSPs and
to find approximate solutions without too much computational cost. The key idea behind
ERA lies in a distributed multi-agent system, having the same architecture as swarm, i.e.,
an environment, agents with moving behaviors, reactive rules, and a schedule. This system
self-organizes itself, when each individual agent follows its behavioral rules, and gradually
evolves toward a global solution state.

From the point of view of solving CSPs, the proposed approach may be regarded as an
extended GT approach, somewhat like local search. However, the main difference between
ERA and local search is that the evaluation value of ERA is not the number of unsatisfied
constraints for the whole assignment as in local search, but the number of unsatisfied
constraints for the value of each variable—these numbers constitute an environment in
the ERA system.

If there exists a consistent solution, the ERA system will eventually find it. On the other
hand, if there is no complete solution, the ERA system can still generate an approximate
solution. As to be presented in this paper, our approach can solve both n-queen problems
and coloring problems. Furthermore, our experiments will show that ERA is efficient
in finding exact as well as approximate solutions to CSPs in few time steps. Generally
speaking, it is more efficient than the BT algorithms and more readily to solve different
CSPs than the local search algorithm.

1.5. Organization of the paper

The remainder of this paper is organized as follows: Section 2 describes the basic
ideas behind this distributed multi-agent oriented method. Section 3 discusses how to use
this method to find an approximate solution. Section 4 describes several experiments and
observations. Section 5 discusses the features of the proposed ERA approach and compare
them with the existing major approaches in the field. Finally, Section 6 concludes the paper
by highlighting the contribution of this work and some future extensions.

2. The multi-agent model

In this section, we will describe the basic formulation and algorithm for our proposed
multi-agent model. Specifically, we will provide the definitions as well as formalisms for
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agent environment, major policies for agent-environment interaction, reactive behaviors,
and a basic ERA algorithm.

2.1. ERA fundamentals

Problem solving is an area that many multi-agent-based applications are concerned with.
It includes the following subareas: distributed solutions to problems, solving distributed
problems, and distributed techniques for problem solving [10,21]. In this paper, we will
introduce an application of distributed techniques for solving CSPs. In our case, the domain
of a CSP is represented into a multi-agent environment. Thus, the problem of finding a
solution to the CSP is reduced to that of local behavior-governed moves within such an
environment.

Specifically, the notions of agent and multi-agent system can be defined as follows:

Definition 2.1. An agent, a, is a virtual entity that essentially has the following properties:

(1) Be able to live and act in the environment.
(2) Be able to sense its local environment.
(3) Be driven by certain objectives.
(4) Have some reactive behaviors.

Definition 2.2. A multi-agent system is a system that contains the following elements:

(1) An environment, E, a space in which the agents live.
(2) A set of reactive rules, R, governing the interaction between the agents and their

environment. They are the laws of the agent universe.
(3) A set of agents, A= {a1, a2, . . . , an}.

The goal of this work is to examine how exact or approximate solutions to CSPs can be
self-organized by a multi-agent system, consisting of {E,R,A}.

2.1.1. Overview of the ERA multi-agent formulation
The ERA method is meant to be a framework for interacting agents to achieve a global

solution state. In ERA, the environment records the number of constraint violations of the
current state for each value in the domains of all variables. Each agent represents a variable
and the position of the agent corresponds to the value of the respective variable. The agent
can move locally within a row and has its own reactive moving behaviors. Its objective is
to move to a position whose constraint violation number is zero, we call it zero-position
(for detail see Definition 2.3(2)). An exact solution state in ERA is reached when every
agent (variable) finds its zero-position. The reactive rules correspond to the schedules for
dispatching agents and updating the environment.

In this paper, we will first present the basic formulation and algorithm for the ERA
method, and then focus on the effectiveness of some extended ERA techniques that utilize
combined reactive behaviors as well as different selection probabilities.
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Fig. 3. An illustration of agent model for Example 2.1.

In the following paragraph, we will use an example to illustrate how a CSP can be
translated into an ERA multi-agent system.

Example 2.1. A CSP is given as follows:

X = {X1,X2,X3}, n= 3.

D = {D1,D2,D3},
D1 = {1,2,3,4,5,6}, D2 = {1,2,3,4}, D3 = {1,2,3,4,5}.

C = {X1 �=X2,X1 >X3}.

Example 2.1 can be modeled as a multi-agent system as follows: The lattices represent
an environment, where each row corresponds to a variable’s domain and the length of each
row is equal to the domain size. In each row, there exists only one agent. In this case,
the horizontal coordinate of the agent represents the corresponding variable’s value. As in
Fig. 3, there are three agents all residing at zero-positions. The numbers that these agents
occupy correspond to the values within the domains of the three variables. Fig. 3 shows a
solution state of S = 〈4,2,1〉.

2.1.2. Environment
An environment, E, has n rows corresponding to the number of variables. For all

i ∈ [1, n], rowi has |Di | columns. It records two kinds of values: the domain value and
the violation value.

Definition 2.3. The data structure of E can be defined as follows:

(1) Size
• n rows⇔ n variables. E = 〈row1, row2, . . . , rown〉.
• ∀i ∈ [1, n],

rowi ⇔ domain of Xi⇔Di , so rowi has |Di | columns.
rowi = 〈lattice1i , lattice2i , . . . , lattice|Di|i〉.
• E is an array of size

∑ |Dk|. e(i, j) refers to the position of latticeij .
(2) Values
• Domain value: e(i, j).value records the ith value of domain Dj .
• Before we introduce e(i, j).violation, let us first define the notion of ‘attack’

between position1 and position2.
We use (x1, y1) to represent position1 and (x2, y2) to represent position2. So,



J. Liu et al. / Artificial Intelligence 136 (2002) 101–144 109

Fig. 4. An illustration of the agent environment. (a) the position of an agent, (b) the representation of domain
values, and (c)–(d) violation numbers marked in the environment.

Attack
(
(x1, y1), (x2, y2)

)

=



true, if there is constraint C(Rt) between Xy1 and Xy2

and 〈e(x1, y1).value, e(x2, y2).value〉 /∈ C(Rt),
false, otherwise.

(1)

• Violation number: e(i, j).violation records in the current state how many agents
whose positions attack position (i, j), i.e., e(i, j).violation = m means there are
m agents whose assignments dissatisfy the assignment of Xj = e(i, j).value. The
e(i, j).violation values are dynamically modified since the agents keep on moving
and their corresponding state is changing. The violation numbers will be updated by
applying an updating-rule, which will be described in Section 2.1.5.
• zero-position: position (i, j), in which e(i, j).violation = 0. That means all other

agents agree on Xj = e(i, j).value, according to constraints related to Xj .

Fig. 4(a) presents the position of an agent at (1,2). Fig. 4(b) shows the domain value
of each lattice. row1 contains values in domain D1 = {1,2,3,4,5,6}, row2 represents
D2 = {1,2,3,4}, and row3 represents D3 = {1,2,3,4,5}. Fig. 4(c) shows that if agent
a1 stays at (3,1), meaning X1 = 3, according to the constraints of X1 �=X2 and X1 >X3,
it will violate X2 = 3, X3 = 1, X3 = 2, and X3 = 3. Therefore, it will contribute 1 to the
violation number at position (3,2), (3,3), (4,3), and (5,3). Fig. 4(d) presents a snapshot
for the state of the system with the violation numbers. Since all agents are at zero-positions,
the state corresponds to an exact solution.

2.1.3. Agents
All agents inhabit in an environment, in which their positions indicate values of certain

variables. During the operation of the system, the agents will keep on moving, based on
certain reactive moving behaviors. At each time step, the positions of the agents provide a
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consistent or inconsistent assignment for all variables. The agents are trying to find better
positions that can lead them to a solution state.

Here is a summary of some major policies for agent-environment interaction in the ERA
model:

(1) ∀i ∈ [1, n], ai represents Xi . As shown in Fig. 4(d), three agents, a1, a2, and a3

represent X1, X2, and X3, respectively.
(2) Agent ai moves locally in rowi . It can only move to its right or left, but not up

and down. ai .x represents its x-coordinate. So the position of ai can be denoted as
(ai.x , i).

Example 2.2. In Fig. 4(d), a2 lives in row2, and it can move freely to position (1, 2),
(2, 2), (3, 2), or (4, 2) in one step, but not to other positions.

In this paper, we use function ψ to define an agent’s move.

Definition 2.4. ψ : [1, n] × [1, |Di |] → [1, |Di |]. ψ(x, y) gives the x-coordination of
the new position of agent ai , after it moves from position (x, y). So the new position
can be represented as (ψ (x , y), y).

(3) In any state of the system, the positions of all agents form an assignment for all
variables. ∀j ∈ [1, n], Xj = e(aj .x, j).value. It may not be a consistent assignment,
i.e., not an exact solution.
If an assignment satisfies all the constraints, i.e., ∀j ∈ [1, n], e(aj .x, j).violation= 0,
it is an exact solution, S = 〈e(a1.x,1).value, e(a2.x,2).value, . . . , e(an.x, n).value〉.

(4) Agent ai is able to ‘perceive’ the violation number for each lattice in rowi . Here, we
define a function ϕ(i) for returning a position (x-coordination) with the minimum
violation number in rowi .

Definition 2.5. A minimum-position is the position of (x, j) such that j ∈ [1, n]∧(∀i ∈
[1, |Dj |]), e(x, j).violation � e(i, j).violation.

Definition 2.6. The function for finding the first minimum-position for agent ai in rowi
is defined as follows:
ϕ : [1, n] → [1,max(|Di |)], ϕ(i) = x | (x, i) is a minimum-position∧ (∀j ∈ [1, x))
(j, i) is not a minimum-position.

(5) In order to achieve a goal state, each agent uses its local reactive behaviors. Agents
attempt to move toward zero-positions at each time step. But, in most cases, they
cannot, or only some lucky agents can, find zero-positions, simply because some rows
do not contain such positions at a certain time step. In such cases, the agents will have
to perform other behaviors.
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Fig. 5. The violation numbers are updated, when agent a1 moves to a new position by executing a least-move
behavior.

2.1.4. Local reactive behaviors
In order to reach a solution state, the agents will select and execute some predefined

local reactive behaviors, namely, better-move, least-move, and random-move. Later in
Section 4, we will investigate the effectiveness of these reactive behaviors by examining
the performance of the ERA system with behavior prioritization and/or different selection
probabilities.

2.1.4.1. least-move. An agent moves to a minimum-position with a probability of least-
p. If there exists more than one minimum-position, we let the agent choose the first one on
the left of the row. The least-move behavior can be expressed as follows:

ψ−l (x, y)= ϕ(y). (2)

Note that in this function, the result will not be affected by the current x , and the number
of computational operations to find the position for each i is |Di | − 1.

Example 2.3. Fig. 5 shows that when agent a1 performs a least-move, it will first compute
ψ−l (2,1)= ϕ(1)= 5, and thereafter move to (5,1).

2.1.4.2. better-move. An agent moves to a position that has a smaller violation number
than its current position with a probability of better-p. It will randomly select a position and
then compare its violation number to decide whether or not it should move to this position.
We use function Random(k) to get a random number of uniform distribution between 1
and k. This behavior can be defined using function ψ−b:

ψ−b =
{
x, when e(Random(|Dy |), y).violation � e(x, y).violation,

Random(|Dy |), when e(Random(|Dy |), y).violation< e(x, y).violation.

(3)

Although it may not be the best choice for the agent, the computational cost required
for this behavior is much less than that of least-move. Only two operations are involved for
deciding this move, i.e., producing a random number and performing a comparison. This
behavior can readily find a position to move to especially when the agent is currently at a
larger violation position.

As will be shown in Section 4, the better-move behavior plays an important role in
bringing down the number of global constraint violations in a few time steps.

Example 2.4. Fig. 6 shows that when agent a1 performs a better-move, it will com-
pute ψ−b(2,1). Suppose that Random(6) = 3(|D1| = 6). Thus, ψ−b(2,1) = 3, since
e(2,1).violation> e(3,1).violation. The new assignment will become 〈3,2,4〉. Although
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Fig. 6. The violation numbers are updated, when agent a1 moves to a new position by executing a better-move
behavior.

Fig. 7. The violation numbers are updated, when agent a1 moves to a new position by executing a random-move
behavior.

this assignment is not an exact solution, it is a better approximate solution than the as-
signment of 〈2,2,4〉 as in Fig. 5, because the new state has only one constraint, X1 >X3,
unsatisfied.

2.1.4.3. random-move. An agent moves randomly with a probability of random-p.
random-p will be relatively smaller than the probabilities for selecting better-move and
least-move behaviors. It is somewhat like a random-walk in local search. For the same
reason as in local search, random-move is necessary because without randomized moves
the system will get stuck in local-optima, that is, all the agents are at minimum-positions,
but not all of them at zero-positions. In the state of local-optima, no agent will move to a
new position if using the behaviors of better-move and least-move alone. Thus, the agents
will lose their chance of finding a solution if without any techniques to avoid getting stuck
in local-optima.

random-move can be defined using function ψ−r :
ψ−r (x, y)= Random(|Dy |). (4)

Example 2.5. Fig. 7 shows that when agent a1 performs a random-move, it will randomly
produce a number. If Random(6) = 1, it will move to (1,1). If Random(6) = 3, it will
move to (3,1).

2.1.5. System schedule
The multi-agent system proposed in this paper is concurrent and discrete in nature, with

respect to its space, time, and state space. In the present simulated implementation, the
system will use a discrete clock to synchronize its operations, as shown in Fig. 8. It works
as follows:

• time step= 0: The system is initialized. We place n agents into the environment, a1 in
row1, a2 in row2, . . . , an in rown. The simplest way to place the agents is to randomly
select positions. That is, for ai , we set a position of (Random(|Di |), i).
• time step ← time step + 1: For each time step, which means one unit increment of

the system clock, all agents will have a chance to decide their moves, that is, whether
to move or not and where to move, and then move synchronously.
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Fig. 8. Distributed agent-environment interaction at different time steps.

It should be pointed out that in the simulation, the multi-agent system dispatches the
agents one by one. The order of dispatching is based on a random or a predefined
sequence.
After the move of an agent from (x1, y) to (x2, y), the violation number of the
environment will be updated according to the following two update-rules:
(1) update-rule 1: Remove from (x1, y)

(∀x ′ ∈ [1, |Dy |]) (∀y ′ ∈ [1, n])
(
Attack

(
(x1, y), (x

′, y ′)
))
,

execute e(x ′, y ′).violation← e(x ′, y ′).violation− 1.

(2) update-rule 2: Add to (x2, y)

(∀x ′ ∈ [1, |Dy |]) (∀y ′ ∈ [1, n])
(
Attack

(
(x2, y), (x

′, y ′)
))
,

execute e(x ′, y ′).violation← e(x ′, y ′).violation+ 1.

• End: After the moves of agents at each time step, the system will check whether all
agents are at zero-positions and whether its clock exceeds a time threshold (i.e., time
allowed). If one of these conditions is true, the system will stop its operations and
return either an exact or an approximate solution.

Another way to terminate the operations is when q agents are staying at zero-positions.

2.2. The basic ERA algorithm

Now let us consider the basic ERA algorithm, from which a number of ERA properties
and extended methods will be derived in the following sections.

Fig. 9 presents a function for initializing individual agents and then adding them
to the environment randomly. This function also initializes the probabilities for better-
move, least-move, and random-move. Fig. 10 provides the RemoveFrom function that
updates environment numbers, according to update-rule 1 when removing an agent
from the environment. Fig. 11 shows the function of AddTo that updates violation
numbers, according to update-rule 2 when adding an agent to the environment. Function
SelectBehavior in Fig. 12 selects a reactive behavior, according to the probabilities for
various behaviors.

The complete listing of the basic ERA algorithm is given in Fig. 13.
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Fig. 9. Function Initialize.

Fig. 10. Function RemoveFrom.

Fig. 11. Function AddTo.

Fig. 12. Function SelectBehavior.

2.3. Properties of the basic ERA algorithm

2.3.1. Termination
After each move, the ERA system will check whether all agents stay at zero-positions.

Generally speaking, the termination condition for an exact solution can be stated as
follows:

condition-1: (∀ai∈A) e(ai.x, i).violation= 0.

For an approximate solution, we can employ certain termination conditions as
mentioned in Section 2.1.5, such as a threshold of time step. In this case, the algorithm will
terminate if the clock exceeds t-max. Thus, the termination condition for an approximate
solution can be stated as follows:

condition-2: time step t-max.
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Fig. 13. The basic ERA algorithm for solving CSPs. It should be noted that the parallel operations of distributed
agents are here simulated by means of sequentially dispathing agents and allowing them to sense the present state
of their environment, containing violation numbers, and then decide where to move. In so doing, the movements
of the agents will not interfere with each other. That is, their decisions will be independent. This is because in our
implementation the sequentially updated violation numbers as a result of each agent’s movement will be copied
as the next state of the environment only after all the agents have been given the chance to move.

2.3.2. Correctness
We now give the correctness theorems for the basic ERA algorithm. Detailed proofs for

the theorems can be found in Appendix A.
Note that when the system terminates at condition-1, all agents are at zero-positions.

Theorem 2.1. If (x, y) is a zero-position, i.e., e(x, y).violation = 0, the following
assertion is true: (∀ai ∈ A, i �= y) (∃t ∈ [1,m]) (C(Rt ) ∈ C) ∧ (Rt = Di×Dy) →
〈e(ai.x, i).value, e(x, y).value〉 ∈ C(Rt).

Theorem 2.2. The assignment of S = 〈X1,X2, . . . ,Xn〉, Xi = e(ai.x , i).value, is an exact
solution when the system terminates at condition-1.

2.3.3. Complexity
Now let us discuss the complexity of the basic ERA algorithm.

Theorem 2.3. The space complexity of the basic ERA algorithm is O(
∑|Di |).



116 J. Liu et al. / Artificial Intelligence 136 (2002) 101–144

Proof. The main contribution to the space complexity is from the storage for environment
e. e has n rows, each rowi has |Di | lattices. So the total number of lattices in e is

∑|Di |.
For each lattice, it records 2 values, i.e., the domain value and the violation value. It
requires 2

∑ |Di | units to record environment e. Another contribution to the space is from
the storage for n agents. For each agent, it records the current x-coordinate and three
probabilities for better-move, least-move, and random-move, respectively. So it requires
4n space units in total for n agents. If all the agents have the same probabilities for better-
move, least-move, and random-move, it needs only n + 3 units in total for n agents. In
conclusion, the space complexity is O(

∑|Di |). ✷
Theorem 2.4. The time complexity of the initialization is O(

∑|Di |).
Proof. For lines 2–5 in Fig. 13, there are in total

∑|Di | lattices to be initialized with the
domain values and the violation numbers. So it needs 2

∑ |Di | operators. And for lines 6–
8, there are n agents to be initialized. For each agent, there are 3 operators for initializing
the probabilities of three behaviors. There are in total 3n operations. So the complexity of
initialization is O(

∑|Di |). ✷
Theorem 2.5. The time complexity of each time step in the basic ERA algorithm is bounded
by O(n

∑|Di |) in the worst case.

Proof. The main contribution to the time complexity is from the agent’s move, including
the modification of violation numbers in the functions of RemoveFrom and AddTo, and
the checking of the solution state. The number of operations in RemoveFrom and AddTo
is

∑|Di | in the worst case that there exists a constraint between every two agents. And
for the checking of a solution state, it needs n checks in the worst case. Now for each
agent’s move, the total operation number is

∑ |Di | + n. So the complexity is bounded by
O(

∑ |Di | + n) in the worst case. In conclusion, for n agents, in the worst case, the time
complexity is bounded by O(n×(∑ |Di | + n))=O(n

∑|Di | + n2))=O(n
∑ |Di |). ✷

3. Approximate solution

One of the major motivations for developing the ERA multi-agent method is to be able
to find an anytime solution, although it may be approximate, within the time allowed. In
this section, we will discuss some properties of the basic ERA method, with respect to the
goal of deriving approximate solutions:

(1) Each state represents an approximate solution.
In the BT method, variables are assigned with values sequentially. Unless the first k
variables’ assignments satisfy constraints, the (k+ 1)th variable’s assignment will not
be considered. Thus, we cannot get an assignment for all variables when the solution is
not found. That is to say, in the process of BT, we cannot get an approximate solution.
However, in the ERA method, every state, including the initial state, represents an
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assignment to all variables, even though it may not be an exact solution. Therefore,
ERA is able to provide an approximate solution at anytime.
This property is useful for real-time systems that require a solution within a fixed time
interval while being not so demanding on the optimality of the solution.

(2) The system always evolves toward a better state in which more and more constraints
are satisfied.
Note that random-p is much smaller than better-p and least-p in most situations.
Thus, agents will have a greater chance to choose either better-move or least-move, in
order to effectively reduce the number of unsatisfied constraints. In the ERA method,
e(ai.x, i).violation records the violation number for the position at which agent ai
resides.

Definition 3.1. λ (s) represents in the current state s the sum of the violation numbers
for those positions at which agents reside, so λ(s)=∑

i∈[1,n] e(ai.x, i).violation.

If state s is not a solution state, that is, the positions of some agents are not zero-
positions, then λ(s) > 0. Otherwise, λ(s)= 0 for solution state s.

Theorem 3.1. For state s, λ(s)= 0 ⇔ s is a solution state.

Proof. Because ∀i ∈ [1, n], j ∈ [1, |Di |], e(ai.x, i).violation � 0, we have
λ(s)= 0⇔ ∀i ∈ [1, n], e(ai.x, i).violation= 0⇔ s is a solution state (based on The-
orem 2.2). ✷
Now we can see that the process of finding a solution is essentially a process of min-
imizing the value of λ(s). In initial state s0, λ(s0) > 0 for most situations. Gradually,
as the system keeps on dispatching agents to move to smaller violation-number posi-
tions, the value of λ(s) will get minimized. When λ(s) reaches zero, an exact solution
is found.

Theorem 3.2. When agent ai moves from position (x1, y) to position (x2, y), the varia-
tion of λ can be computed as follows:∆λ = 2×(q2−q1) where q1 = e(x1, y).violation,
q2 = e(x2, y).violation.

Proof. We use ∆λ1 to denote the variation after picking up ai from (x1, y), ∆λ2
to denote the variation after placing ai to (x2, y). When ai is at position (x1, y),
there will be q1 agents attacking ai . When we pick up ai from (x1, y), ai’s con-
tribution to λ is zero, and all these q1 agents’ violation numbers are reduced by 1.
Now ∆λ1 = −q1 − q1 × 1 = −2 × q1. Then we place ai to (x2, y), ai ’s contribu-
tion to λ is q2, and there will be q2 agents attacking ai . The violation numbers of all
these q1 agents are increased by 1, i.e., ∆λ2 = q2 + q2 × 1 = 2 × q2. So, we have
∆λ =∆λ1 +∆λ2 =−2× q1 + 2× q2 = 2× (q2 − q1). ✷
Theorem 3.3. After agent ai performs better-move or least-move, ∆λ � 0.
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Proof. Because ψ−l (x, y)= ϕ(y),
e(x, y).violation � e

(
x,ϕ(y)

)
.violation

(based on Definitions 2.5 and 2.6), (5)

∆λ = 2× (
e
(
x,ϕ(y)

)
.violation− e(x, y).violation

)
(based on Theorem 3.2). (6)

Thus, for least-move, ∆λ � 0.
And since

ψ−b =



x, when e(Random(|Dy |), y).violation

� e(x, y).violation
Random(|Dy |), when e(Random(|Dy |), y).violation

< e(x, y).violation

we have

e(x, y).violation � e
(
x,ψ−b(x, y)

)
.violation, (7)

∆λ = 2× (
e
(
x,ψ−b(x, y)

)
.violation− e(x, y).violation

)
(based on Theorem 3.2). (8)

Thus, for better-move, ∆λ � 0. ✷
In the process of dispatching, agents will have a much higher probability to perform
either a better-move or a least-move. So after each move, ∆λ� 0, which means that λ
is decreasing and the system is improving the solution. However, λ(s1) < λ(s2) does
not always indicate that state s1 is better than state s2. For instance, if s1 is a local op-
timum state, which means all agents are at minimum-positions, but not all of them are
at zero-positions, it is hard for s1 to move to a new state except using a random-move.
So, λ is just one of the important criteria.

(3) After a few steps, the assignments of most variables will satisfy constraints.
Because we randomly place the agents at the initialization step, they will seldom be
placed right at good positions. In other words, they will most likely be placed at po-
sitions that have large violation numbers. After one time step, many agents that apply
the behavior of better-move or least-move will move to positions with smaller violation
numbers, which means∆λ < 0. The improvement achieved at the first time step will be
very substantial because |∆λ| is large. While at the following time step, the chance for
finding a smaller violation position is becoming less as many agents are already at the
minimum-positions of their respective rows. After r time steps (to different problem r
is different), the variation of λ will fluctuate up and down around a fixed value. In this
state, the agents usually stay at their original positions and only the behavior of ran-
dom-move will make them move to other positions. In such states, λ is very small and
the corresponding solution can satisfy most of the constraints. So, if we do not require
an exact solution, we may stop the system and get an approximate solution from the
current state. This phenomenon can readily be observed in the experiments of solving
n-queen problems and coloring problems as to be discussed in the next section.
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4. Empirical studies on extended ERA methods with behavior prioritization and
different selection probabilities

The preceding sections have presented the basic ERA formulation and algorithm,
and discussed some of their key properties. In this section, we will further examine
the extensions and performance of the ERA approach under various behavioral settings.
Specifically, the goal of this section is threefold:

(1) It presents several empirical results on solving different n-queen and coloring
problems.

(2) It discusses how to apply and implement this approach by choosing the probabilities
of least-move and random-move.

(3) It examines the effectiveness of prioritizing agent behaviors in order to efficiently
derive an approximate solution.

In the experiments, we will initialize all agents with the same set of parameters,
i.e., 〈better-p, least-p, random-p〉. Specifically, ∀i ∈ [1, n], ai .better-p=better-p, ai.least-
p= least-p, ai.random-p= random-p.

4.1. n-queen problem

An n-queen problem has been stated in Example 1.1. It is required to place n queens
on an n × n chessboard so that no two queens are in the same row, or the same column,
or the same diagonal. This problem is a good benchmark because its problem size n can
vary from 4 to a very large number. Also the solution to an n-queen problem can find many
practical applications [38].

An n-queen problem can be translated into a binary CSP as described in Example 1.1
of Section 1.1:

• n queens: X = {X1,X2, . . . ,Xn}.
• n× n chessboard: D = {D1,D2, . . . ,Dn}, ∀i, Di = {1,2, . . . , n}.
• Placement requirement:

C = {
C(Ru) | ∀i, j ∈ [1, n],C(Ru)= {〈b, c〉 | b ∈Di, c ∈Dj, b �= c,

i − j �= b− c, i − j �= c− b}}.
In this CSP, each variable has the same domain [1, n] and there is a constraint between

every two variables. In the following paragraphs, we will show how to apply the basic ERA
algorithm to solve this problem.

First, we use n agents to represent n queens (variables), ai represents variableXi , which
is a queen in rowi . Second, we model the domains, i.e., the chessboard, as the environment
of the agents (see Fig. 14(a)). Fig. 14(b) presents an example of the multi-agent system for
a 4-queen problem.

At the initialization step, the domain values will be recorded as e(i, j).value (see
Fig. 14(a)) and the violation numbers for all positions will be set to zero (see Fig. 15(a)).
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Fig. 14. (a) The representation of domain values for a 4-queen problem. (b) Four agents dispatched into the
4-queen environment. (c) Updated violation numbers corresponding to the positions of the four agents.

Fig. 15. (a) Violation numbers at the initialization step. (b) Violation numbers updated having placed a1 at (3,1).

After that, agents will be randomly placed into different rows. For instance, if agent a1

is placed at position (3,1), the violation numbers in the environment will be updated
accordingly, as shown in Fig. 15(b).

Fig. 16 presents a series of snapshots from an 8-queen problem experiment. Here each
circle signifies an agent. The number on the lattice gives the corresponding violation
number. The darker the color of a lattice, the larger the violation number of that position
will be. First, in the initialization of time step 0 in Fig. 16(a), eight agents are randomly
placed onto the rows. In this particular case, none of the agents is at a zero-position. Five
of them are at the positions of violation = 3. Two agents are at the positions of violation
= 2. One agent is at the position of violation = 1. Obviously, the assignment according to
this state is not a solution. For agent a1 at position (4, 1), we can observe that agent a2 at
(3, 2) and agent a3 at (2, 3) are both in the same diagonal as a1, and agent a4 is in the same
column as a1. So the position where a1 stays has the violation number of 3. In this state of
s0, λ (s0)= 3+ 3+ 3+ 3+ 3+ 2+ 2+ 1= 20.

Between time step 0 and time step 1, most agents can move to a better position that
reduces the violation number. At time step 1, eight agents have moved to a better position.
Now we have λ (s1)= 1+1+0+1+1+0+0+0= 4. In this assignment, four variables
(i.e.,X3,X6,X7, andX8) satisfy all the constraints applicable to them. Two pairs, 〈X1,X5〉
and 〈X2,X4〉, cannot satisfy the constraints: X1 and X5 are in the same diagonal, and X2

and X4 are in the same column. Obviously, the assignment in state s1 is much better than
the assignment in state s0.

From time step 1 to time step 2, the following moves have occurred: s1 ⇒ a4 stays, a5

least-moves to (6,5), a3 stays, a6 stays, a2 stays, a7 stays, a1 stays, and a8 stays ⇒ s2.
Now, λ(s2) = 0 + 1+ 0 + 1 + 0 + 0 + 0+ 0 = 2. In this assignment, six variables (i.e.,
X1, X3, X5, X6, X7, and X8) satisfy all the constraints related to them, while the pair of
〈X2,X4〉 cannot satisfy each other.
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Fig. 16. (a) s0 at time step 0 (initialization). (b) s1 at time step 1. (c) s2 at time step 2. (d) s3 at time step 3, which
is an exact solution state.

From time step 2 to time step 3, the moves can be summarized as follows: s2 ⇒ a4
least-moves to (8,4) but all other agents remain at the same positions ⇒ s3. Now,
λ(s3)= 0+ 0+ 0+ 0+ 0+ 0+ 0+ 0= 0. An exact solution state is reached.

4.1.1. The effects of the least-p/random-p ratio and behavior prioritization
Having illustrated the process of the basic ERA system in solving an n-queen

problem, let us now consider the effects of behavior selection probabilities and behavior
prioritization on the efficiency of finding an exact solution. In the experiments, we will
let the system run until an exact solution is found. For the ease of comparison, we will
record the average runtime required for generating the solution. Based on the observations
made from the experiments, we will empirically show how the basic ERA method can be
improved by adjusting random-p and by prioritizing behaviors.

4.1.1.1. The least-p/random-p ratio. From the above sections, we know that besides
better-move and least-move, random-move is also necessary. If there is no random-move,
i.e., random-p= 0, the system may get stuck in a local optimum and cannot find a solution.
Now, the question that remains is how to set the probability ratio, least-p/random-p. It is
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Table 1
Average runtime for different ratios of least-p to random-p

not so intuitive to see the most effective setting for solving a problem. In the following
experiment, we will try to empirically determine a good least-p/random-p ratio.

Experiment 4.1. n = {1000,2000,3000,4000,5000,6000,7000}, least-p/random-p=
{0.5n,n,1.5n,2n}, type= LR (10 runs). Note that the reason that we test n-queen problems
up to 7000 queens is because beyond that number, the memory limitation of our computer
becomes a problem. The behavioral type of LR indicates that in this experiment, the agents
will only use the least-move and random-move behaviors.

Observation 4.1. The bold and underlined numbers in Table 1 correspond to the shortest
ones among all the ratios for each n. As shown in the table, for all n except n= 6000, the
ratio of least-p to random-p that results in the shortest runtime is 1.5n. Therefore, we can
obtain an empirical rule for setting the ratio of least-p/random-p: For n-queen problems,
the good ratio is 1.5n.

4.1.1.2. The high-priority better-move. Behaviors better-move and least-move are simi-
lar: move to a position based on the violation number. At each time step, it would be much
easier for an agent using better-move to find a better position to move to than for the one
using least-move. This is because least-move checks all the positions in its row, whereas
better-move checks only one position. Therefore, the time complexity of better-move is
much less than that of least-move.

In order to take the advantage of better-move, we decide to set this behavior to the
highest priority, which means that an agent will first use better-move to compute its new
position. If it fails to find a better position to move to, the agent will then turn to least-move.
We call this behavior better-least-move, the probability of which will be the same as that
of least-p.

Initially, most agents are at the positions with large violation numbers. The chance of
successfully finding a position to move to with better-move is quite high. Thus at the first
step, most agents will perform a better-move instead of a least-move.

Further to the above prioritized better-move, the next question is whether more better-
move attempts will be helpful (since their complexity is low—a comparison operation). If
so, how many better-move attempts will be most effective? In order to examine these issues,
we will introduce another better-move right after the first better-move fails in finding a
better position. For example, if ai at position (x , y) performs a better-move, it will compute
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Fig. 17. Total better-move number vs. clock step.

ψ−b(x , y). If ψ−b(x , y)= x , then it will compute ψ−b(x , y) again. If at this time ψ−b(x ,
y)= x , it will then turn to least-move. We call this behavior BBLR (i.e., one better-move
and if it cannot find a better position, it will perform BLR) type of behavior. Extending this
concept, with the probability of least-p, the agent may perform at most r times better-move
until it finds a better position to move to. We denote this behavior prioritization rBLR and
its complexity is r .

4.1.1.3. The number of better-move at each step. Now, let us examine how many better-
move attempts are needed in order to find a better position at each time step of the system.
We will test and record the total number of better-move for all agents successfully finding a
better position with better-least-move and random-move (this type of combined behaviors
is called BLR). In this experiment, n= 100, 1000, and 2000, respectively.

Experiment 4.2. n= {100,1000,2000}, least-p/random-p= n, type= BLR.

Observation 4.2. From Fig. 17, we note that except at time step 1, the lines for n= 100,
1000, and 2000 go very smoothly without so much changes. That means better-move
enables most agents to find better positions at the first step.

Specifically, 32 agents in the 100-queen problem, 247 agents in the 1000-queen
problem, and 541 agents in the 2000-queen problem can move to a better position by
using better-move at the first time step. And after the first step, very few agents can find
a better position with better-move. Based on the observation, we may change the type
of behavior prioritization into FBLR, which means agents will perform BLR only at the
first (F) time step and then perform LR at the following steps. So, the type of combined
behaviors changes during the process.

4.1.1.4. rBLR. Agents will apply this type for all steps. We will test the runtime for
n= 1000 with r = 1, 2, 3, and 5, respectively.

Experiment 4.3. n = 1000, least-p/random-p = n, type = {BLR,2BLR,3BLR,5BLR}
(10 runs).
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Table 2
Average runtime of n= 1000 with rBLR

Table 3
Average runtime of n= 1000 with LR, rBLR, and FrBLR

Observation 4.3. From Table 2, we note that the system has the best performance when
r = 2. That means 2BLR will create more chance for agents to find a better position than
BLR. The runtime complexity of 2BLR is less than 3BLR and 5BLR. So, 2BLR will be the
best setting if we want to successfully find better positions, and at the same time, have less
runtime complexity.

4.1.1.5. LR vs. rBLR vs. FrBLR. The following experiment compares the average
runtime among the prioritization types discussed above. LR means that an agent only
has two moving behaviors: least-move (with the probability of least-p) and random-
move (with the probability of random-p). FrBLR means that the agent will perform rBLR
behavior at the first step and then perform LR at all the following steps.

Experiment 4.4. n= 1000, least-p/random-p= n, type= {LR,BLR,2BLR,3BLR,5BLR,
FBLR,F2BLR,F3BLR,F5BLR} (10 runs).

Observation 4.4. The results given in Table 3 show that FBBLR has the best runtime
performance among all the types. For ∀r ∈ {1,2,3,5}, the runtime of FrBLR is less than
that of rBLR. So, we conclude that FrBLR is better than rBLR, and rBLR is better than
LR.

4.1.2. Approximate solution
In this section, we will study the performance of the system in finding an approximate

solution by tracking at each time step the total number of agent moves, the number
of agents at zero-positions, and the total number of zero-positions. The results of our
experiments consistently indicate that ∀n ∈ [100,7000], the system will converge as
follows:

• After 1 step, 80% agents are at zero-positions.
• After 2 steps, n− c1 (where c1 is a constant, c1 ≈ 25) agents are at zero-positions.
• After 3 steps, n− c2 (where c2 is a constant, c2 ≈ 7) agents are at zero-positions.
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This property enables the system to efficiently find an approximate solution: 3 steps are
needed in order to find an approximate solution, in which about n − 7 queens will not
attack each other.

4.1.2.1. Is the system stable? In the following paragraphs, we will track the system step
by step and show how the system performs. The measures to be considered are as follows:

• Move-Num (number of moves): First, we observe the total number of moves that
all agents have performed, from the beginning of the system till the current time
step (i.e., accumulative number). Before an exact solution is found, the agents in the
system should move to other positions to improve the current assignment. If no agent
moves, the system will not improve itself. Thus, the number of moves at one time step
measures the improvement speed of the system.
• Zero-Agent-Num (number of agents at zero-positions): This measure expresses how

good the assignment in the current state is. If Zero-Agent-Num= n, the current state
is an exact solution state. A larger Zero-Agent-Num means more variables satisfy the
constraints.
• Zero-Position-Num (zero-position number in the environment): If there are a lot of

zero-positions in the environment, the agents will have a good chance to find and move
to zero-positions. So, the Zero-position-Num implies the degree of difficulty to find a
zero-position to move to, and the difficulty for the system to improve itself.

Now let us examine the cases of n= 100, 1000, and 2000.

Experiment 4.5. n= {100,1000,2000}, least-p/random-p= n, type= 2BLR.

Observation 4.5.

(1) Move-Num: As shown in Figs. 18 and 19, especially in large problem sizes such as
n = 1000, the agents move more drastically at the first time step, and thereafter the
total number of moves increases slowly. This means that the agents can easily find
a better position to move to at the first step, and then the chance of finding a better
position decreases as time goes by.

(2) Zero-Position-Num: As also shown in Figs. 18 and 19, except in small problem sizes
such as n = 100, the number of zero-positions drops sharply at the first 3 steps and
then fluctuates at the following steps. These may explain why Move-Num increases at
the first 3 steps and then remains unchanged. More zero-positions means more chance
for agents to find a better position.

(3) Zero-Agent-Num: The plots as shown in Figs. 18–19 all increase at the first 3 steps,
nearly reaching n, and then slightly fluctuate. This means that the system improves
itself quickly during the first 3 steps.

4.1.2.2. Approximate solution: the first 3 steps. Since we have observed that the system
will converge and its improvement will slow down after 3 steps, we can just let the system
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Fig. 18. Move-Num, Zero-Agent-Num, and Zero-Position-Num (n= 100).

Fig. 19. Move-Num, Zero-Agent-Num, and Zero-Position-Num (n= 1000).

run for 3 steps and then get an approximate solution. Experiment 4.6 examines how well
the system does at the first 3 steps.

Experiment 4.6. n = [100,7000], 'n = 100, least-p/random-p = n, type = F2BLR
(10 runs).

Observation 4.6.

(1) Our experiments have shown that after the initialization, nearly 10% agents stay at
zero-positions.

(2) After the 1st step, nearly 80%× n agents stay at zero-positions when n is larger than
1000, as shown in Fig. 20. That means when n > 1000, there are 80% variables’
assignments can satisfy the constraints. This result is desirable because it is obtained
by just one step.
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Fig. 20. Average Zero-Agent-Num/n of the 1st step for n= 100 to 7000, 'n= 100.

Fig. 21. Average Non-Zero-Agent-Num of the 2nd step for n= 100 to 7000, 'n= 100.

(3) After the 2nd step, nearly n − 25 agents stay at zero-positions when n is larger than
1000, as shown in Fig. 21. That means when n > 1000, there are about n − 25
variables’ assignments can satisfy the constraints. On the other hand, there are about
25 variables’ assignments cannot satisfy the constraints. This result is obtained by just
two steps no matter how large n is.

(4) After the 3rd step, nearly n − 7 agents stay at zero-positions when n is larger than
1000, as shown in Fig. 22. That means when n > 1000, there are about n−7 variables’
assignments can satisfy the constraints. This is a good approximate solution obtained
in just three steps.

Based on Theorem 2.5, we know that the complexity for the first time step is
O(n

∑|Di |). Thus, we can tell that the complexity for the approximate solution will be
bounded by O(n

∑|Di |). For n-queen problems, |Di | = n, the complexity will be bounded
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Fig. 22. Average Non-Zero-Agent-Num of the 3rd step for n= 100 to 7000, 'n= 100.

Fig. 23. Attacking 3 positions at most.

by O(n3). In fact, for such problems, the single time step complexity of the ERA method
is O(n2).

Theorem 4.1. The single time step complexity of the ERA method in solving n-queen
problems is O(n2).

Proof. The total number of operations in RemoveFrom and AddTo is 6n in the worst
case. This is because between agent ai and all other agents in rowj , there exist at most
3 positions in rowj (see Fig. 23), in which the agents will attack ai . So the computation
of RemoveFrom and AddTo is 3n, in total 6n. As for checking a solution state, it needs n
tests in the worst case. Now for each agent’s move, the total number of operations is 7n. So
the complexity for one time step is 7n2, bounded by O(n2), and the complexity for 3-step
approximate solution finding is also O(n2). ✷
4.1.2.3. Runtime for finding an approximate solution. Now let us take a look at the
runtime in finding an approximate solution in 3 steps.

Experiment 4.7. n = {100,500,1000,2000,3000,4000,5000,6000,7000}, least-p/
random-p = n, type= F2BLR (10 runs for 3 steps each).

Observation 4.7. Fig. 24 shows that the empirical results are consistent with Theorem 4.1.
To find an approximate solution in 3 time steps, in which nearly n− 7 variables satisfy the
constraints, the runtime complexity is O(n2).
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Fig. 24. Average runtime (second) for 3 steps (n= 100∼ 7000).

Fig. 25. Average runtime (second) for finding an exact solution and an approximate solution (n= 100∼ 7000).

We have also compared the runtime for deriving an exact solution with that for finding
an approximate solution. The results are presented in Fig. 25.

4.2. Coloring problem

A coloring problem has been defined in Example 1.2. Many problems of practical
interest can be modeled as coloring problems, such as time tabling and scheduling [20],
frequency assignment [13], register allocation [4], printed circuit board testing [14], and
pattern labeling [30].

Given an undirected graph G= (V ,E), an m-coloring problem can be translated into a
binary CSP as follows:

• n nodes, V : X = {X1,X2, . . . ,Xn}, Xi represents vi ∈ V .
• m colors: D = {D1,D2, . . . ,Dn}, ∀i,Di = {1,2, . . . ,m}.
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• Coloring requirement:

C = {
C(Ru) | ∀i, j ∈ [1, n] 〈vi , vj 〉 ∈E,

C(Ru)= {〈b, c〉 | b ∈Di, c ∈Dj,b �= c}
}
.

In this case, all variables have the same domain, [1,m], and there is a constraint between
two nodes incident to an edge. An example coloring problem is given in Fig. 26. This
instance can be colored by using three colors. Now, let us see how the ERA method works
in solving this problem.

First, we use four agents to represent four nodes (variables). ai represents node vi
(variableXi ). Second, we model the domains as the environment of the agents (see Fig. 27).

Initially, the domain values (labels of color) will be recorded as e(i, j).value (see
Fig. 27(a)) and the violation numbers for all positions will be set to zero. After that, we
will randomly place the agents onto different rows. For instance, if we place agent a1 at
position (2,1), the violation numbers will be updated accordingly as shown in Fig. 28.

In what follows, we will examine the performance of the ERA method in solving a set
of large-scale coloring problems from DIMACS (the Center for Discrete Mathematics and

Fig. 26. A coloring problem.

Fig. 27. (a) The representation of domain values into the environment of a multi-agent system for the coloring
problem of Fig. 26. (b) Four agents dispatched into the environment, the positions of which correspond to a
specific color assignment. (c) Violation numbers updated.

Fig. 28. (a) Violation numbers at the initialization step. (b) Violation numbers updated having placed a1 at (2,1).
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Theoretical Computer Science) [46].1 In particular, we will use the test problems from
Donald Knuth’s Stanford GraphBase [47].

Each problem includes the information of (nodes, edges), number of optimal colors,
and source. Thus, each problem has n variables, where n is the number of nodes, k values
for each domain, where k is the number of optimal colors, and m constraints, where m
is the number of edges. In the following listing, the source of SGB (from Michael Trick
(trick@cmu.edu)) refers to Donald Knuth’s Stanford GraphBase:

(1) miles250.col (128,387), 8, SGB
(2) miles500.col (128,1170), 20, SGB
(3) miles750.col (128,2113), 31, SGB
(4) miles1000.col (128,3216), 42, SGB
(5) miles1500.col (128,5198), 73, SGB
(6) anna.col (138,493), 11, SGB
(7) david.col (87,406), 11, SGB
(8) huck.col (74,301), 11, SGB
(9) jean.col (80,254), 10, SGB

(10) games120.col (120,638), 9, SGB
(11) inithx.i.1.col (864,18707), 54, REG

In the above problems, miles graphs are similar to geometric graphs in that the nodes are
placed in space with two nodes connected if they are close enough. The nodes represent a
set of United States cities and the distance between them corresponds to the road mileage
recorded in 1947. Book graphs are created where each node represents a character and
two nodes are connected by an edge if the corresponding characters encounter each other
in the book. The book graphs were created by Anna, David, Huck and Jean. games120
from Knuth represents the 1990 college football season. In games120, the nodes represent
college teams and two teams are connected by an edge if they played against each other
during the season. inithx.i.1 is a problem based on register allocation (named REG) as
contributed by Gary Lewandowski (gary@cs.wisc.edu).

4.2.1. Approximate solution
In the previous experiments on n-queen problems, we have shown that the system can

get a good approximate solution after 3 steps. Similarly, for coloring problems, we will also
test the performance of 3 steps. We will examine the runtime for 3 steps and the number of
agents at zero-positions (Zero-Agent-Num) at each time step.

Experiment 4.8. least-p/random-p= n, type= BBBLR (10 runs for 3 steps each).

Observation 4.8. The system can quickly find an approximate solution. As shown in
Table 4, the average runtime measurement for all problems are close to zero.

1 More information can be found from the OR-Library [48] for test data sets for a variety of Operations
Research (OR) problems.
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Table 4
Zero-Agent-Num for coloring problems after 3 steps

Fig. 29. Zero-Agent-Num (%) at each time step for 11 coloring problems. The number on the horizontal axis
corresponds to an individual problem: (1) miles250, (2) miles500, (3) miles750, (4) miles1000, (5) miles1500, (6)
anna, (7) david, (8) huck, (9) jean, (10) games120, and (11) inithx.i.1.

Observation 4.9. After the first step, the system can find an approximate solution for all
problems except inithx.i.1, with more than 80% variables satisfying the constraints. For the
miles problems, almost 95% variables (nodes) can satisfy the constraints after 3 steps. For
the problems of david, huck, jean, and games120, the system can find an exact solution
within 3 steps. In fact, in this experiment, they need only 2 time steps to find an exact
solution (see Fig. 29). An exception is the problem of inithx.i.1, where about 70% variables
can satisfy all the constraints.

4.2.1.1. Zero-Agent-Num at each time step. In order to study the performance of this
system, we will record Zero-Agent-Num at each time step. The problems of david, huck,
jean, and games120 will be excluded from the following experiment, since the system can
find an exact solution for these problems within 2 steps.

Experiment 4.9. least-p/random-p= n, type= FBBLR (1 run).

Observation 4.10. The results from this experiment are shown in Fig. 30, where the
Zero-Agent-Num curves fluctuate around 120 after 3 steps. The value at the last time
step corresponds to an exact solution found. This observation has been quite consistent,



J. Liu et al. / Artificial Intelligence 136 (2002) 101–144 133

Fig. 30. Zero-Agent-Num at different time steps, obtained from the experimental studies on the miles problems.

Fig. 31. Zero-Agent-Num at each time step in the case of inithx.i.1.

meaning that we can get an approximate solution with about 120 (95%) variables satisfying
the constraints at anytime after 3 steps.

Observation 4.11. In Fig. 31, Zero-Agent-Num increases during the first 45 steps and then
falls down. This process is repeated for several times before it finally reaches an exact
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solution state. The speed of convergence is not as high as that in other problems. This
indicates that not all the problems can converge to 80% at the first step and to 95% at the
third step, while using the ERA method. The performance is, to some extent, affected by
the structure of the problem.

5. Discussion

In this section, we will compare the basic as well as extended ERA approach to
the existing heuristic and distributed approaches, and discuss their distinct features and
advantages.

5.1. Comparison with min-conflicts heuristics

The proposed ERA approach differs from the min-conflicts approach in the following
aspects:

(1) In the min-conflicts hill-climbing system reported in [27], the system chooses a
variable at each step that is currently in conflict and reassign its value by searching the
space of possible assignments and selecting the one with the minimum total conflicts.
The hill-climbing system can get trapped in a local minimum (note that the same
phenomenon can also be observed from the GDS network for constraint satisfaction).
On the other hand, in our approach, an agent is given a chance to select a random-move
behavior according to its probability, and hence it is capable of escaping from a local
trap. In our present work, we also note that the extent to which the agents can most
effectively avoid the local minima and improve their search efficiency is determined
by the probabilities (i.e., behavior selection probabilities) of the least-move (as well as
better-least-move) and random-move behaviors.

(2) Another system introduced in [27] is called informed backtracking. It arguments a
standard backtracking method with the min-conflicts ordering of the variables and
values. This system attempts to find a sequence of repairs, such that no variable is
repaired more than once. If there is no way to repair a variable without violating
a previously repaired variable, the algorithm backtracks. It incrementally extends a
consistent partial assignment in the same way as a constructive backtracking program,
however, it uses information from the initial assignment to guide its search.
The key distinction between this approach and ours is that our approach does not
require backtracking. As stated by Minton et al. [27], their system trades search
efficiency for completeness; for large-scale problems, terminating in a no-solution
report will take a very long time.

(3) In both min-conflicts hill-climbing and informed backtracking systems proposed
in [27], the key is to compute and order the choice of variables and values to consider.
It requires to test all related constraints for each variable and to test all its possible
values.
This step is similar to the RemoveFrom and AddTo operations in our approach, except
that we only test a selected position (one value for each variable) and do not sort the
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variables. The use of the ordering heuristic can lead to excessive assignment evaluation
preprocessing and therefore will increase the computational cost at each step.

(4) In our present approach, we examine the use of a fewer-conflicts repair, by introducing
the better-move behavior, that requires only one violation number evaluation for each
variable. The empirical evidence has shown that the use of the high-priority better-
move when combined with other behaviors can achieve more efficient results. We
believe that the reason that using the currently-available min-conflicts value at each
step can compromise the systems performance is because the min-conflicts values
quickly reduce the number of inconsistencies for some variables but at the same time
also increase the difficulties (e.g., local minima) for other variables.

5.2. Comparison with Yokoo et al.’s distributed constraint satisfaction

Our multi-agent approach has several fundamental distinctions from Yokoo et al.’s
distributed constraint satisfaction approach, as listed below:

(1) Yokoo et al.’s approach does not require a global broadcasting mechanism or data
structure. It allows agents to communicate their constraints to others by sending and
receiving messages such as ok?, and nogood. In other words, their methods handle
the violation checking among agents (variables) through agent-to-agent message
exchanges, such that each agent knows all instantiated variables relevant to its own
variable.
In our approach, the notion of agent-to-agent communication is implicit—we assume
that for violation updating, each agent (representing the value of a variable) is
‘informed’ about the values from relevant agents (representing the values of relevant
variables) either by means of accessing an n × n look-up memory table or via
pairwise value exchange—both implementations enable an agent to obtain the same
information, but the latter can introduce significant communication overhead costs
(i.e., longer cycles required [43]2) to the agents.
As the communication in Yokoo et al.’s approach is quite distributed, we believe that
their approach will work well under a large number of constrained conditions.

(2) In the asynchronous weak-commitment search algorithm developed by Yokoo et al. [42,
43], a consistent partial solution is incrementally extended until a complete solution
is found. When there exists no value for a variable that satisfies all the constraints
between the variables included in the partial solution, this algorithm abandons the
whole partial solution and then constructs a new one. Although asynchronous weak-
commitment search is more efficient than asynchronous backtracking, abandoning par-
tial solutions after one failure can still be costly. In the case of the ERA approach, the
high-level control mechanism for maintaining or abandoning consistent partial solu-
tions does not exist.
Yokoo et al. [42] have also developed a non-backtracking algorithm called distributed
breakout, which provides a distributed implementation for the conventional breakout.

2 As stated in [43], “one drawback of this model is that it does not take into account the costs of
communication”.
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Table 5
Comparison (in averaged number of cycles) between ERA and Yokoo et al.’s
distribution constraint satisfaction in solving benchmark n-queen problems

Asynchronous Asynchronous Asynchronous
n backtracking backtracking with weak-commitment ERA

min-conflicts heuristic

100 510 504 51 22
1,000 – 324 30 18
2,000 – – – 30

(3) In asynchronous weak-commitment search, each agent utilizes the min-conflicts
heuristic as mentioned in Section 5.1 to select a value from those consistent with the
agent_view (those values that satisfy the constraints with variables of high-priority
agents, i.e., value-message senders).
On the other hand, the ERA approach utilizes a combination of value-selection
heuristics that involves a better-move behavior for efficiently finding fewer-conflicts
repairs.

(4) As related to the above two remarks, the asynchronous weak-commitment search
and asynchronous backtracking algorithms are designed to achieve completeness
and thus the steps of backtracking and incremental solution constructing/abandoning
are necessary, whereas the ERA approach is aimed at more efficiently finding an
approximate solution, which is useful when the amount of time available for an exact
solution is limited.

(5) Last but not the least, we have also systematically compared the performance of the
ERA system with that of Yokoo et al.’s algorithms, namely, asynchronous backtrack-
ing, asynchronous backtracking with min-conflicts heuristic, and asynchronous weak-
commitment, in solving benchmark n-queen problems where n = 100,1000,2000,
respectively [43]. The averaged numbers of cycles used in each case are summarized
in Table 5. We can establish that as demonstrated in solving the benchmark n-queen
problems, EAR is an effective approach and the number of of cycles used in the ERA
system is competitive with those by Yokoo et al.’s approach, given that our formulation
utilizes different behavior prioritization and violation checking schemes. Note that the
‘–’ symbol in the table indicates that the data item is presently unavailable.

In summary, as complementary to each other, both Yokoo et al.’s asynchronous approach
and the ERA approach can be very efficient and robust when applied in the right
context. For instance, in some practical applications such as distributed telecommunication
networks, Yokoo et al.’s formulation involving agent information exchange offers a natural
way of modeling and solving the distributed CSP, whereas in CSPs that do not lend
themselves so well to partitioning variables and constraints into sub-problems, the ERA
formulation becomes straightforward to implement and execute. A distinct feature of
Yokoo et al.’s asynchronous approach is, like other standard backtracking techniques, its
completeness, whereas the feature of the EAR approach lies in its efficiency and robustness
in obtaining an approximate solution within a few time steps (although it empirically
always produces an exact solution when enough time steps are allows). The ERA approach
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is not guaranteed to be complete since it involves random moves. Another feature of the
ERA approach is that its strategies are quite easy to implement.

5.3. Remarks on partial constraint satisfaction

Partial constraint satisfaction is a very desirable way of solving CSPs that are either
overconstrained or too difficult to solve [41]. It is also extremely useful in situations where
we want to find the best solution obtainable within fixed resource bounds or in real-time.
Freuder and Wallace [11] are the pioneers in systematically studying the effectiveness of a
set of partial constraint satisfaction techniques using random problems of varying structural
parameters. The investigated techniques included basic branch and bound, backjumping,
backmarking, pruning with arc consistency counts, and forward checking. Based on the
measures of constraint checks and total time to obtain an optimal partial solution, forward
checking was found to be the most effective. Also of general interest is that their work has
offered a model of partial constraint satisfaction problems (PCSPs) involving a standard
CSP, a partially ordered space of alternative problems, and a notion of distances between
these problems and the original CSP.

Our present work attempts to develop, and empirically examine, an efficient technique
that is capable of generating partial constraint satisfaction solutions. This work shares the
same motivation as that of Freuder and Wallace’s work [11,41], and also emphasizes that
the costs of calculating (communicating) and accessing constraint violation information
should be carefully considered in developing a practically efficient technique. That is
also part of the reason why much attention in our work has been paid to (1) the use of
environmentally updated and recorded violation numbers (without testing from the scratch
for each variable) and (2) the effectiveness of the better-move behavior in finding an
approximate solution.

5.4. Remarks on agent information and communication for conflict-check

Yokoo et al.’s approach and the ERA approach have a common thread; both formula-
tions employ multiple agents that reside in an environment of variables and constraints (al-
though in the ERA approach, the environment also contains violation information, which
is analogous to the ‘artificial pheromone’ in an ant system [8,9]) and make their own deci-
sions in terms of how the values of certain local variables should be searched and selected
in the process of obtaining a globally consistent solution.

Nevertheless, it should be pointed out that the present implementations of the two
approaches differ from each other in the way in which the agents record and access their
conflict-check information. The former utilizes a sophisticated communication protocol
to enable the agents representing different groups of variables and constraints to exchange
their values. By doing so, the agents are capable of evaluating constraint conflict status with
respect to other relevant agents (variables). On the other hand, our implementation utilizes a
feature of agent current-value broadcast to enable other agents to compare with their values
and to update the violation numbers in their local environment. Although the formulations
may seem different, the objectives as well as effects of them are fundamentally similar.
The reasons that we decided to use value broadcast and sharing are threefold: First, the
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implementation can make use of a common storage space of complexity O(n) where n
corresponds to the number of variables and by doing so avoid introducing the same space
requirement to every agent; secondly, it can reduce the overhead costs incurred during the
pairwise information exchange, which can be quite significant; and thirdly, since our ERA
method extensively uses fewer-conflicts moves, such behaviors can be triggered based on
only one possible violation evaluation instead of n assignment evaluations, and hence the
access to such a broadcast information source is not demanding.

5.5. Remarks on sequential-iteration implementation

Theoretically, the ERA method using swarm-like agents can be implemented in a
parallel fashion, however, in light of our resource limitation, we used a sequential
computation implementation to simulate the multi-agent concurrent or synchronous actions
and to test the effectiveness of our approach.

Our sequential simulation utilizes a global simulated clock, called time step. The state
of the environment as well as the agents (i.e., the positions of the agents) will be changed
only at each discrete time step. In order to simulate the concurrent or synchronous actions
of the agents at time step k, we let the individual agents perform their cycles of behavior
selection, value selection, and violation updating. In so doing, the agents are dispatched in
a sequential fashion. Once this is completed, the state of the system will then be refreshed
with the new positions of the agents corresponding to the newly-selected values, and
thereafter, the simulated clock will be incremented to k + 1.

Here, it is worth mentioning that apart from the fact that our implementation
simulates the operations of a parallel system, the empirical results of our sequential
ERA implementation are still comparable to those reported in [27,43], if we evaluate the
performance using the measures of number of constraint checks, as introduced by Freuder
and Wallace [11], and space complexity.

6. Summary

In this paper, we have described a multi-agent oriented approach to solving constraint
satisfaction problems, such as n-queen problems and coloring problems. The key ideas
behind this approach rest on three notions: Environment, Reactive rules, and Agents
(ERA). Each agent can only sense its local environment (i.e., violation numbers) and apply
some behavioral rules for governing its value-selection moves. The environment records
and updates the local values that are computed and affected according to the moves of
individual agents (analogous to the idea of laying ‘artificial pheromone’ in an ant system
[8,9]).

In solving a CSP with either a basic or an extended ERA method, each agent represents
a variable and its position corresponds to a value assignment for the variable. The
environment for the whole multi-agent system contains all the possible domain values
for the problem, and at the same time, it also records the violation numbers for all the
positions. An agent can move within its row, which represents its domain. So far, we have
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introduced three reactive behaviors: better-move, least-move, and random-move. The move
of an agent will affect the violation numbers of other rows in the environment.

While formally describing the ERA approach as well as its properties, we have also
presented several empirical studies that examine how the basic algorithm can be extended
to effectively find a solution to an n-queen or a coloring problem. Some practical rules for
behavioral settings have been established following our observations from the experiments.

We have compared the ERA approach with some of the existing heuristic or distributed
approaches in order to highlight their main features and limitations. Some features of the
ERA approach include:

(1) The move of an agent will affect the whole environment. Thus, the interaction among
agents is indirectly carried out through the medium of their environment. In this sense,
we may regard that the agents can self-organize themselves in finding a solution.

(2) The performance of this approach in solving CSPs for approximate solutions is
efficient. It can find a reasonably good solution in just few steps. This property is
quite useful in situations where a solution is required with a hard deadline.

(3) The ERA approach is also open and flexible: We may set or combine various reactive
behaviors for each agent, or modify their parameter settings.

Although we have tested several n-queen problems and coloring problems in our present
work, we hope that in our future work we will be able to further improve the ERA approach
by explicitly introducing communication and/or cooperation mechanisms and to discover
new properties of this approach in solving other types of CSPs.
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Appendix A

In what follows, we will present the proofs for the ERA correctness theorems. In the
proofs, we will adopt symbol ‘→’ to represent ‘such that’ and symbol ‘⇒’ to denote
‘imply’.

A.1. Proof for Theorem 2.1

Proof. There two sections of the algorithm that will have an effect on the violation
numbers: Initialization (Section 1 in Fig. 13) and the running (Section 2 in Fig. 13).
Therefore, our proof can be divided into two sections.
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(1) Stage 1: Initialization
(a) Lines 1–5 in Fig. 13.

Before we place the agents into the environment, because there is no agent in
it, there will be no assignment. In such a case, there is no constraint for each
domain value. The precondition (∀ai ∈ A, i �= y) (∃t ∈ [1,m]) (C(Rt ) ∈ C) ∧
(Rt =Di ×Dy) is false, so (∀ai ∈ A, i �= y, ai one) (∃t ∈ [1,m]) (C(Rt ) ∈ C) ∧
(Rt =Di ×Dy)→ 〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ) is true.

(b) Lines 6–8.
To each agent, the Initialize function is defined in Fig. 9, and the operations on
violation are in the AddTo function. After adding ai to position (g, i), if position
(x, y) is still a zero-position, that means

Attack((g, i), (x, y)) is false
⇒ � ∃t C(Rt ) between Xi and Xy ∨
∃t C(Rt ) between Xi and Xy ∧
〈e(g, i).value, e(x, y).value〉 ∈C(Rt ).

⇒ (∃t C(Rt ) between Xi and Xy→
〈e(g, i).value, e(x, y).value〉 ∈C(Rt )

)
.

⇒ (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di ×Dy)→
〈e(g, i).value, e(x, y).value〉 ∈C(Rt ).

After all agents are placed onto the environment, if ∃(x, y) ∈ environment, position
(x, y) is still a zero-position, that means:

(∀ai ∈A, i �= y) ((∃t ∈ [1,m]) (C(Rt ) ∈C)∧ (Rt =Di ×Dy)→
〈e(g, i).value, e(x, y).value〉 ∈C(Rt ))

⇒ (∀ai ∈A, i �= y) (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dy)→
〈e(g, i).value, e(x, y).value〉 ∈C(Rt ).

So Theorem 2.1 is true in this section.
(2) Stage 2: Running

We need to prove: If Theorem 2.1 is true before line 15, Theorem 2.1 is still true
after line 15–16. We will prove it in two steps: (1) Theorem 2.1 is true before line
15→ Theorem 2.1 is true after line 15; (2) Theorem 2.1 is true after line 15→
Theorem 2.1 is true after line 16.

[Theorem 2.1 is true.]
(a) Line 15 RemoveFrom(ai.x, i).

After remove ai from (ai.x, i), if ∃(x, y) ∈ environment, (x, y) is still a zero-
position, that means:

Attack((ai.x, i), (x, y)) is false
⇒ � ∃t C(Rt ) between Xi and Xy ∨
∃t C(Rt ) between Xi and Xy ∧
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ).

⇒ (∃t C(Rt ) between Xi and Xy→
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt )

)
.

⇒ (∃t ∈[1,m]) (C(Rt ) ∈C)∧ (Rt =Di ×Dy)→
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ). [−I]
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Because during this process, other agents do not move, and Theorem 2.1 is true
before this process. So all these agents

(∀aj∈A,j �= y ∧ j �= i) (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dy)
→ 〈e(ai.x, i).value, e(x, y).value〉 ∈ C(Rt ) is true.

Combining with [–I], we have:

(∀ai∈A, i �= y)
(
(∃t ∈ [1,m]) (C(Rt) ∈C)∧ (Rt =Di×Dy)→

〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt )
)
.

⇒ (∀ai∈A, i �= y) (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dy)→
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ).

[Theorem 2.1 is true.]
(b) Line 16 AddTo(ai.x, i).

After adding ai to (ai.x, i), if ∃(x, y) ∈ environment, (x, y) is still a zero-position,
that means:

Attack
(
(ai.x, i), (x, y)

)
is false

⇒ � ∃t C(Rt ) between Xi and Xy ∨
∃t C(Rt ) between Xi and Xy ∧
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ).

⇒ (∃t C(Rt ) between Xi and Xy→
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt )

)
.

⇒ (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dy)→
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ). [−I]

Because during the process of AddTo(ai.x, i), other agents do not move, and
Theorem 2.1 is true before this process. So all other agents

(∀aj∈A,j �= y ∧ j �= i) (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dy)
→ 〈e(ai.x, i).value, e(x, y).value〉 ∈ C(Rt ) is true.

Combining with [–I], we get:

(∀ai∈A, i �= y)
(
(∃t ∈ [1,m]) (C(Rt) ∈C)∧ (Rt =Di×Dy)→

〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt )
)
.

⇒ (∀ai∈A, i �= y) (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dy)→
〈e(ai.x, i).value, e(x, y).value〉 ∈C(Rt ).

[Theorem 2.1 is true.]
So during the running process, Theorem 2.1 is true.

In conclusion, Theorem 2.1 is true. ✷
A.2. Proof for Theorem 2.2

Proof. We will prove it based on Definition 1.2 and Theorem 2.1.

(1) Xi = e(ai.x, i).value∈Di , so S is an n-tuple that S ∈D1×D2×· · · ×Dn.
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(2) For each u ∈ [1,m],C(Ru) ∈C, suppose ∃g,h ∈ [1, n] that Ru =Dg×Dh,

e(ag.x, g).violation= 0
⇒ (

(∀ai∈A, i �= g) (∃t ∈ [1,m]) (C(Rt ) ∈ C)∧ (Rt =Di×Dg)→
〈e(ai.x, i).value, e(ag.x, g).value〉 ∈C(Rt )

)
,

(based on Theorem 2.1)
then

(C(Ru) ∈ C)∧ (
(∀ai∈A, i �= g) (∃t ∈ [1,m])

(C(Rt) ∈C)∧ (Rt =Di×Dg)→
〈e(ai.x, i).value, e(ag.x, g).value〉 ∈C(Rt )

)
⇒ 〈e(ah.x,h).value, e(ag.x, g).value〉 ∈ C(Rt ).

We have:

(C(Ru) ∈C)∧ e(ag.x, g).violation= 0→
〈e(ah.x,h).value, e(ag.x, g).value〉 ∈C(Rt ).

So for

∀C(Ru) ∈C,Ru =Dg×Dh,
(〈e(ah.x,h).value, e(ag.x, g).value〉 ⊆ S)∧(〈e(ah.x,h).value, e(ag.x, g).value〉 ∈C(Ru)

)
is true.

So the assignment of S = 〈X1,X2, . . . ,Xn〉,Xi = e(ai.x, i).value, is an exact solution
when the system terminates at condition-1: (∀ai∈A)e(ai.x, i).violation= 0. ✷
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