Experiments on Metaheuristics: Methodological Overview and Open Issues

Marco Chiarandini, Luis Paquete, Mike Preuss, and Enda Ridge

Presentation: Chris Fawcett
EARG, October 15 2008
Outline

• Metaheuristics and measuring their performance
• Univariate Analysis
 • Characterisation and statistical testing
 • Component comparison and tuning
• Multivariate Analysis
 • Characterisation and statistical testing in two scenarios
Metaheuristics

• Creating a heuristic from a collection of other heuristics.
 • Construction heuristics
 • Local search neighbourhoods
 • Hill-climbing and memory techniques
 • etc.
Measuring Performance

- Often we don’t reach an optimal solution after a given time bound.
- Two helpful metrics:
 - Solution quality achievable given a time bound
 - Time required to find a solution with a given quality
- Both are (in general) random variables.
Measuring Performance

• The field of statistics offers:

 • A systematic framework for designing experiments.

 • A Mathematical foundation for inferring the probability of events from empirical data.
Univariate Model

- Experimenter is interested in *either* solution cost or run-time.

- In both cases, the variable not under consideration is fixed to something reasonable.
Characterisation

- Performance measure X of a metaheuristic on a single instance is described equivalently by
- its probability distribution
 \[p(x) = \Pr [X = x] \]
- its cumulative (discrete) distribution function
 \[F(x) = \Pr [X \leq x] = \sum_{x_i \leq x} p(x_i). \]
Characterisation

- Our experiments sample data X_1, X_2, \ldots, X_n from these distributions, giving an empirical cumulative distribution function (ECDF)

$$F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x)$$

- Holds for censored and uncensored data.
Characterisation
Characterisation

- Usually we care about performance on a class of instances.
- We use a representative sample of this class, Π, yielding the modified probability distribution

$$p(x) = \sum_{\pi \in \Pi} p(x|\pi)p(\pi).$$

- More convenient if the samples have equal probability.
Characterisation

- Summary measures for this sample data are divided into
 - measures of location (sample mean, q-quantiles)
 - measures of dispersion (sample variance)
- Summary measures by definition remove some of the information in the samples.
- Should prefer the ECDFs themselves.
Characterisation

• For run-time, there are links to a branch of statistics called survival analysis, dealing with time-to-event models.

• ECDFs for run-time are often exponentially distributed.

• ECDFs for solution cost are often well-approximated by Weibull distributions.
Statistical Analysis

- Descriptive statistics are not sufficient.
- Inferential statistics must be used to check that the sampled data are enough to generalise the results.
- Statistical testing makes these statements objective.
- Both parametric and non-parametric tests exist.
Statistical Analysis

- Parametric tests often assume normally distributed data.
- Authors claim that this isn’t an issue because some parametric tests are robust?
- Non-parametric tests remove this normality assumption
Statistical Analysis

- Two sample unreplicated tests
 - Matched pairs Welch t-test (parametric)
 - binomial test or Wilcoxon signed rank test (non-parametric)
- Replicated
 - Blocking on both instance and seed, or
 - two-way ANOVA or Kruskal-Wallis rank sum test
Statistical Analysis

- It can be more accurate to compare the ECDFs of two metaheuristics.
- Kolmogorov-Smirnov (KS) test uses the maximal difference between two ECDF curves. Can identify statistical dominance.
- Can be hard to identify a preferred metaheuristic when there is no statistical dominance.
- All of these tests assume uncensored data.
Regression Trees

1. \(\text{neighb} \quad p < 0.001 \)
 - \(\text{MinCon C.} \)
 - \(\{\text{MinConf V., No Res.}\} \)

2. \(\text{prohib} \quad p = 0.05 \)
 - strong \{medium, weak\}

3. \(n = 234 \quad y = 1 \)
4. \(n = 468 \quad y = 0.966 \)

5. \(\text{prohib} \quad p < 0.001 \)
 - strong
 - \{medium, weak\}

6. \(\text{neighb} \quad p < 0.001 \)
 - \(n = 234 \quad y = 1 \)
 - \(n = 234 \quad y = 0.809 \)

7. \(n = 468 \quad y = 0.646 \)
8. \(n = 468 \quad y = 0.468 \)
Parameter Tuning

• How to determine which algorithm parameters and instance properties have effects on the response.

• What are the most important parameters?

• Factorial designs aren’t really appropriate

• Fractional Factorial Designs can be

• Authors mention desirability functions and overlay plots.
Sequential Testing

- How many runs do we need to make to identify differences between two parameter configurations?
- Racing algorithms (F-Race)
- Sequential Parameter Optimisation (SPO)
- Crossover between the two?
Multivariate Model

- A thorough understanding of metaheuristic performance should include *both* run-time and solution quality.
- Authors distinguish two scenarios of this type.
Scenario One

- We evaluate solution cost and run-time at the point where a certain termination criteria is reached.

- Each run of a metaheuristic is single data point (solution cost, run-time)
Characterisation

- If $X \in \mathbb{R}^2$ is the bivariate performance measure, the cumulative distribution function is

$$F(x) = \Pr[X \leq x]$$

- and the corresponding ECDF:

$$F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(X_i \leq x).$$
Characterisation

- Can compare the envelope or center of gravity of the two sets of points.
Statistical Analysis

• Can compare bivariate means using
 • Hotelling’s T^2 test (parametric)
 • multivariate analysis of variance (MANOVA)
• Rank ordering doesn’t extend to multiple dimensions, so non-parametric testing is unclear.
• Can also extend Kolmogorov-Smirnov and Birnbaum-Hall to the ECDFs.
Scenario Two

- The experimenter is interested in solution cost during the run of a metaheuristic.
- A single run is now a set of (solution cost, run-time) points.
- Analysis and characterisation from random-set theory.
Characterisation

• Given that we care about improvements over the course of a run, we can use the set of non-dominated points:

\[\mathcal{X} = \{ \mathbf{X}_j \in \mathbb{R}^2, j = 1, \ldots, m \} \]

\[F(x) = \Pr[\mathcal{X} \leq x] \]

• ECDF defined as usual:

\[F_n(x) = \frac{1}{n} \sum_{i=1}^{n} I(\mathcal{X}_i \leq x) \]

3.2 Scenario 2

In this scenario, we observe run-time distributions functions. Code for computing these ECDFs is available at www.tik.ee.ethz.ch/pisa.
Characterisation

- We can slice this bivariate ECDF in any of the three axes to create interesting graphs.
- The authors only mention probability quantiles.
Statistical Analysis

- Fairly rare to see statistical dominance of these ECDFs in practice.
- Perhaps finding the best performance for some specific run-times, etc.
Statistical Analysis

• Taillard has used a Mann-Whitney test for comparing the solution costs of a set of algorithms each time any of them improve.

• Can also use KS or Birnbaum-Hall analogues to test inequality of ECDFs.

• Note also that these bivariate ECDFs do not capture dependence between solution cost and run-time.
Nutshell Summary?

- Univariante case is well studied and principled analysis is (relatively) straightforward.
- Multivariate case gets hairy quickly, is still an active area of research.
- Advanced methods for the multivariate case haven’t really been explored.
- Try to be as principled as possible, perhaps?