
Hierarchical Hardness Models for SAT

Lin Xu, Holger H. Hoos, and Kevin Leyton-Brown

University of British Columbia, 2366 Main Mall, Vancouver BC, V6T 1Z4, Canada
{xulin730,hoos,kevinlb}@cs.ubc.ca

Abstract. Empirical hardness models predict a solver’s runtime for a
given instance of an NP-hard problem based on efficiently computable
features. Previous research in the SAT domain has shown that better
prediction accuracy and simpler models can be obtained when mod-
els are trained separately on satisfiable and unsatisfiable instances. We
extend this work by training separate hardness models for each class,
predicting the probability that a novel instance belongs to each class,
and using these predictions to build a hierarchical hardness model using
a mixture-of-experts approach. We describe and analyze classifiers and
hardness models for four well-known distributions of SAT instances and
nine high-performance solvers. We show that surprisingly accurate clas-
sifications can be achieved very efficiently. Our experiments show that
hierarchical hardness models achieve higher prediction accuracy than the
previous state of the art. Furthermore, the classifier’s confidence corre-
lates strongly with prediction error, giving a useful per-instance estimate
of prediction error.

1 Introduction

For NP-hard problems such as SAT, even the best known algorithms have worst-
case running times that increase exponentially with instance size. In practice,
however, many large instances of NP-hard problems can still be solved within
a reasonable amount of time. In order to understand this phenomenon, much
effort has been invested in understanding the “empirical hardness” of such prob-
lems [15,18]. One recent approach uses linear basis-function regression to obtain
models that can predict the time required for an algorithm to solve a given SAT
instance [18]. These empirical hardness models can be used to gain insight into
the factors responsible for an algorithm’s performance, or to induce distributions
of problem instances that are challenging for a given algorithm. They can also be
leveraged to select among several different algorithms for solving a given problem
instance [13,14,20] and can be applied in automated algorithm configuration and
tuning [9]. Empirical hardness models have proven very useful for combinatorial
auction winner determination [15], a prominent NP-hard optimization problem.
In Section 2, we introduce some background knowledge about empirical hardness
models as well as our experimental setup.

Considering the SAT problem in particular, previous work has shown that if
instances are restricted to be either only satisfiable or only unsatisfiable, very
different models are needed to make accurate runtime predictions for uniform
random SAT instances. Furthermore, models for each type of instance are simpler

C. Bessiere (Ed.): CP 2007, LNCS 4741, pp. 696–711, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

Hierarchical Hardness Models for SAT 697

and more accurate than models that must handle both types, which means that
better empirical hardness models can be built if we know the satisfiability of
instances. In this work we further investigate this idea by considering a variety
of both structured and unstructured SAT instances and several state-of-the-art
SAT solvers. The detailed experimental results are described in Section 3.

In Section 4, we study the feasibility of predicting the satisfiability of a novel
SAT instance from a known distribution, using Sparse Multinomial Logistic Re-
gression (SMLR) [11] as our classifier. Our experimental results are very promis-
ing. Even for uniform random 3-SAT instances generated at the phase transition,
the prediction accuracy was greater than 86%. For the trickiest problems we en-
countered (SAT-encoded graph coloring problems on small-world graphs), the
prediction accuracy was still greater than 73%.

Armed with a reasonably accurate (but imperfect) classifier, in Section 5 we
consider the construction of hierarchical hardness models in order to make run-
time predictions. We do so by using a mixture-of-experts approach with fixed
(“clamped”) experts—in other words, with conditional models trained on sat-
isfiable instances and unsatisfiable instances separately. We evaluate both con-
ditional models and then return a weighted sum of the two predictions, where
these weights are given by a learned function that depends on both the instance
features and the classifier’s prediction. We found that using such hierarchical
models improved overall prediction accuracy. Furthermore, the classifier’s con-
fidence correlated with prediction accuracy, giving useful per-instance evidence
about the quality of the runtime prediction.

2 Background

For a given problem instance, empirical hardness models predict the runtime of
an algorithm based on polytime-computable instance features. We have investi-
gated a wide variety of different regression techniques in past work [15]. Here,
we use the same linear basis-function ridge regression method that has previ-
ously proven to be very successful in predicting runtime on uniform random SAT
and combinational auctions [18,15] and focus on combining models specialized
to different types of instances.

2.1 Empirical Hardness Models

In order to predict the runtime of an algorithm A on a distribution I of problem
instances, we run algorithm A on n instances drawn from I and compute for each
instance i ∈ I a feature vector xi = (xi,1, . . . , xi,k). We then fit a function f(x)
that, given the features xi of an instance i, approximates A’s runtime on i, yi. To
improve numerical stability by eliminating highly correlated features, we reduce
the set of features through forward selection. Then we perform a basis function
expansion of our feature set. Our basis functions can include arbitrarily complex
functions of sets of features, or can simply be the raw features themselves; in
this work, quadratic basis functions are used. Finally, we perform another pass of
forward feature selection and select a subset of extended features φi = φ(xi) =
[φ1(xi), . . . , φd(xi)] for which our models achieve the best performance on a
given validation data set.

698 L. Xu, H.H. Hoos, and K. Leyton-Brown

We then use ridge regression to fit the free parameters w of the linear func-
tion fw(xi) = w�φ(xi). We compute w = (δI + Φ�Φ)−1Φ�ỹ, where ỹ =
(ỹ1, . . . , ỹn), and ỹi is a transformation of the runtime yi. In this work, we use
ỹi = log yi. The n × d matrix Φ contains the feature values for all training in-
stances, and δ is a small regularization constant that prevents arbitrarily large
parameter values in w and increases numerical stability. Given a new, unseen
instance j, a runtime prediction is made by computing its features xj and eval-
uating fw(xj) = w�φ(xj).

Empirical hardness models have a probabilistic interpretation. The features
x and the empirical algorithm runtime y, when seen as random variables, are
related as in the following graphical model:

x y

In this model, we observe the feature vector x, and the probability distribution
over runtime y is conditionally dependent on x. Since we train a linear model
using least squares fitting, we have implicitly chosen to represent P (y|x) as
a Gaussian with mean w�φ(x) and some fixed variance β. What we call a
prediction of an empirical hardness model is really E(y|x), the mean of this
distribution conditioned on the observed feature vector.

2.2 Experimental Setup

For the experiments conducted throughout this study, we selected two distribu-
tions of unstructured SAT instances and two of structured instances:

– rand3-fix: uniform-random 3-SAT with 400 variables from the solubility
phase transition (clauses-to-variables ratio 4.26) [2,19]; we generated 20,000
instances with a satisfiable/unsatisfiable ratio of 50.7/49.3.

– rand3-var:uniform-random3-SATwith400variablesandclauses-to-variables
ratios randomly selected from 3.26 to 5.26; we generated 20,000 instances with
a satisfiable/unsatisfiable ratio of 50/50.

– QCP: random quasi-group completion (the task of determining whether the
missing entries of a partial Latin square can be filled in to obtain a complete
Latin square [7]); using a range of parameter settings, we generated 30,620
SAT-encoded instances with a satisfiable/unsatisfiable ratio of 58.7/41.3.

– SW-GCP: graph-coloring on small-world graphs [6]; using a range of param-
eter settings, we generated 20,000 SAT-encoded instances with a satisfi-
able/unsatisfiable ratio of 55.9/44.1.

The latter two types of SAT distributions have been widely used as a model of
hard SAT instances with interesting structure; we used the same instance gen-
erators and SAT encodings as the respective original studies. Each instance set
was randomly split into training, validation and test sets, at a ratio of 70:15:15.
All parameter tuning was performed with a validation set; test sets were used
only to generate the final results reported in this paper. Note that since the test

Hierarchical Hardness Models for SAT 699

sets we used for our experiments are very big (at least 3000 instances each), we
can expect similar performance for the whole distribution. For each instance, we
computed the 84 features described by Nudelman et al. [18]; these features can
be classified into nine categories: problem size, variable-clause graph, variable
graph, clause graph, balance features, proximity to Horn formulae, LP-based,
DPLL search space, and local search space. We used only raw features as basis
functions for classification, because even a simple quadratic basis function ex-
pansion exceeded the 2GB of RAM available to us. For regression, we used raw
features as well as quadratic basis functions for better runtime prediction accu-
racy. We evaluated the accuracy of logarithm runtime prediction using root mean
squared error (RMSE). In order to reduce the number of redundant features, we
used forward selection and kept the model with the smallest cross-validation
error (this was done independently for each of the learned hardness models).

For uniform random 3-SAT instances, we ran four solvers that are known to
perform well on these distributions: kcnfs [3], oksolver [12], march dl [8], and
satz [16]. For structured SAT instances, we ran six solvers that are known to per-
form well on these distributions: oksolver, zchaff [22], sato [21], satelite [4],
minisat [5], and satzoo [5]. Note that in the 2005 SAT competition, satelite
won gold medals for the Industrial and Handmade SAT+UNSAT categories;
minisat and zchaff won silver and bronze, respectively, for Industrial SAT+UN
SAT; and kcnfs and march dl won gold and silver, respectively, in the Random
SAT+UNSAT category.

All of our experiments were performed using a cluster consisting of 50 com-
puters equipped with dual Intel Xeon 3.2GHz CPUs with 2MB cache and 2GB
RAM, running Suse Linux 9.1. All runs of any solver that exceeded 1 CPU hour
were terminated and recorded in our database of experimental results with a
runtime of 1 CPU hour; this timeout occurred in fewer than 3% of all runs.

3 Conditional and Oracular Empirical Hardness Models

From previous research [18], we know that for uniform-random 3-SAT instances,
much simpler and more accurate empirical hardness models can be learned when
all instances are either satisfiable or unsatisfiable. In the following, we refer to
these as conditional models, and to models trained on satisfiable and unsat-
isfiable instances as unconditional models. Let Msat (Munsat) denote a model
trained only on satisfiable (unsatisfiable) instances. If we had an oracle that knew
which conditional model performed better for a given instance, models equipped
with such an oracle could achieve more accurate runtime predictions. We call
such a (hypothetical) scheme an oracular model. (Note that our oracle chooses
the best model for a particular instance, not the model trained on data with
the same satisfiability status as the instance. This may seem counterintuitive; it
will be discussed in detail below. For now, note simply that in most cases the
two sorts of oracles would select the same model.) We can infer from the results
of Nudelman et al. [18] that on uniform-random 3-SAT, oracular models could
achieve much higher prediction accuracies than unconditional models. In fact,
the performance of an oracular model bounds the performance of a conditional
model from above.

700 L. Xu, H.H. Hoos, and K. Leyton-Brown

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatiisfiable

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 1. Comparison of oracular model (left, RMSE=0.247) and unconditional model
(right, RMSE=0.426). Distribution: QCP, solver: satelite.

−4 −2 0 2 4 6
−4

−2

0

2

4

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−4 −2 0 2 4 6
−4

−2

0

2

4

6

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 2. Actual vs predicted runtime using only Msat (left, RMSE=1.493) and only
Munsat (right, RMSE=0.683), respectively. Distribution: QCP, solver: satelite.

In the experiments conducted for this work, we found that the usefulness
of oracular models extends to solvers and distributions not studied previously.
Figure 1 shows the difference between using oracular models and unconditional
models on structured SAT instances (distribution: QCP, solver: satelite). For
oracular models, we observed almost perfect predictions of runtime for unsatisfi-
able instances and more noisy, but unbiased predictions for satisfiable instances
(Figure 1, left). Figure 1 (right) shows that the runtime prediction for unsatisfi-
able instances made by unconditional models can exhibit both less accuracy and
more bias.

Even though using the best conditional model can result in higher prediction
accuracy, we found that there is a big penalty for using the wrong conditional
model to predict the runtime of an instance. Figure 2 (left) shows that if we
used Msat for runtime prediction on an unsatisfiable instance, the prediction
error was often very large. The large bias in the inaccurate predictions is due
to the fact that models trained on different types of instances are very different.
As shown in Figure 2 (right), similar phenomena occur when we use Munsat to
predict the runtime on a satisfiable instance.

Hierarchical Hardness Models for SAT 701

Table 1. Accuracy of hardness models for different solvers and instance distributions

RMSE for rand3-var models RMSE for rand3-fix models
Solvers sat. unsat. unconditional oracular sat. unsat. unconditional oracular

satz 5.481 3.703 0.385 0.329 0.459 0.835 0.420 0.343
march dl 1.947 3.705 0.396 0.283 0.604 1.097 0.542 0.444
kcnfs 4.766 4.765 0.373 0.294 0.550 0.983 0.491 0.397

oksolver 8.169 4.141 0.443 0.356 0.689 1.161 0.596 0.497

RMSE for QCP models RMSE for SW-GCP models
Solvers sat. unsat. unconditional oracular sat. unsat. unconditional oracular

zchaff 1.866 1.163 0.675 0.303 1.230 1.209 0.993 0.657
minisat 1.761 1.150 0.574 0.305 1.280 1.275 1.022 0.682
satzoo 1.293 0.876 0.397 0.240 0.709 0.796 0.581 0.384
satelite 1.493 0.683 0.426 0.247 1.232 1.226 0.970 0.618
sato 2.373 14.914 0.711 0.375 1.682 1.887 1.353 0.723

oksolver 1.213 1.062 0.548 0.427 1.807 2.064 1.227 0.601

Our results are consistent across data sets and solvers; as shown in Table 1,
oracular models always achieved higher accuracy than unconditional models.
The very large prediction errors in Table 1 for Msat and Munsat indicate that
these models are very different. In particular, the RMSE for using models trained
on unsatisfiable instances to predict runtimes on a mixture of instances was as
high as 14.914 (distribution: QCP, solver: sato).

Unfortunately, oracular models rely on information that is unavailable in prac-
tice: the respective accuracies of our two models on a given (test) instance. Still,
the prediction accuracies achieved by oracular models suggest that it may be
promising to find some practical way of combining conditional models. For the
rest of this paper, we will investigate the question of how this can be done. We
will be guided both by the potential benefit of relying on conditional models
(oracular models outperform unconditional models) and by the danger in doing
so (if we make the wrong choices, prediction error can be much higher than when
using an unconditional model).

4 Predicting the Satisfiability of SAT Instances

In this section, we will consider the most obvious candidate for a practical ap-
proximation of the oracle from the previous section: a classifier that predicts
whether or not a given (test) instance is satisfiable. Even if this classifier were
perfect—which it surely could not be in general, given the NP-completeness of
SAT—it would not choose the better of Msat and Munsat on a per-instance basis,
as our oracular model does. However, on our datasets it would do nearly as well,
making the same choices as the oracular model 98% of the time for rand3-var,
86% for rand3sat-fixed, 92% for QCP, and 77% for SW-GCP.

To build such models, we used Sparse Multinomial Logistic Regression (SMLR)
[11], a recently developed, state-of-the-art sparse classification algorithm. Like
relevance vector machines and sparse probit regression, SMLR learns classifiers

702 L. Xu, H.H. Hoos, and K. Leyton-Brown

rand3−var rand3−fix QCP S W-QC P
0.5

0.6

0.7

0.8

0.9

1
C

la
ss

ifi
ca

tio
n

A
cc

ur
ar

y sat.
unsat.
all

Classification Accuracy
Dataset on sat. on unsat. overall

rand3sat-var 0.9791 0.9891 0.9840
rand3sat-fix 0.8480 0.8814 0.8647

QCP 0.9801 0.9324 0.9597
SW-GCP 0.7516 0.7110 0.7340

Fig. 3. Classification accuracy for different data sets

that use sparsity-promoting priors to control the expressivity of the learned clas-
sifier, thereby tending to result in better generalization. SMLR encourages param-
eter weights either to be significantly large or exactly zero. It also learns a sparse
multi-class classifier that scales favorably in both the number of training samples
and the input dimensionality, which is important for our problems since we have
tens of thousands of samples per data set. We also evaluated other classifiers,
such as support vector machines [10], but we found that SMLR achieved the
best classification accuracy.

We applied SMLR to build a classifier that would distinguish between satis-
fiable and unsatisfiable SAT instances, using the same set of raw features that
were available to the regression model, although in this case we did not find it
necessary to use a basis-function expansion of these features. The difference was
in the response variable: here we defined it as the probability that an instance
is satisfiable, rather than an algorithm’s runtime on that instance. Of course,
although the output of the classifier is real-valued, all the training data was
labelled as satisfiable with probability 1 or with probability 0.

Since SAT is NP-hard and our feature computation and model evaluation
are polynomial-time, we cannot expect perfect classification results in general.
However, NP-hardness is a worst-case notion; there is no theoretical result that
rules out often correctly guessing whether instances from known distributions
are satisfiable. Complexity theory simply tells us that our classifier must some-
times make mistakes (unless P = NP); as we show below, it does. Indeed, NP-
hardness does not imply that all—or even most—instances of a problem are in-
deed intractable. This is precisely why these problems can be successfully tackled
with heuristic algorithms, such as those studied here.

Considering the difficulty of the classification task, our experimental results
are very good. Overall accuracy on test data (measured as the fraction of the
time the classifier assigned more than 50% of probability mass to the correct
class) was as high as 98%, and never lower than 73%. Furthermore, the classifier
was usually very confident about the satisfiability of an instance (i.e., returned
probabilities very close to 0 or 1), and the more confident the classifier was, the
more accurate it tended to be. These results are summarized in Figures 3–5.

For the rand3-var data set (Figure 4, left), the overall classification error
was only 1.6%. Using only the clauses-to-variables ratio (greater or less than
4.26) as the basis for predicting the satisfiability of an instance yields an error
of 3.7%; therefore, by using SMLR rather than this simple classifier, the clas-
sification error is halved. On the QCP data set (Figure 4, right), classification
accuracy was 96%, and the classifier was extremely confident in its predictions.

Hierarchical Hardness Models for SAT 703

 0 0.25 0.5 0.75 1
0

0.5

1
C

la
ss

ifi
ca

tio
n

ac
cu

ra
cy

 0 0.25 0.5 0.75 1
0

0.2

0.4

Probability of satisfiable

F
ra

ct
io

n

0 0.25 0.5 0.75 1
0

0.5

1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

0 0.25 0.5 0.75 1
0

0.2

0.4

Probability ofsatisfiable

F
ra

ct
io

n

Fig. 4. Classification accuracy vs classifier output (top) and fraction of instances within
the given set vs classifier output (bottom). Left: rand3-var, right: QCP.

 0 0.25 0.5 0.75 1
0

0.5

1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

 0 0.25 0.5 0.75 1
0

0.2

0.4

Probability of satisfiable

F
ra

ct
io

n

 0 0.25 0.5 0.75 1
0

0.5

1

C
la

ss
ifi

ca
tio

n
ac

cu
ra

cy

 0 0.25 0.5 0.75 1
0

0.2

0.4

Probabilit of satisfiable

F
ra

ct
io

n

Fig. 5. Classification accuracy vs classifier output (top) and the fraction of instances
within the given set vs classified output (bottom). Left: rand3-fix, right: SW-GCP.

Since all instances for rand3sat-fix (Figure 5, left) are generated at the phase
transition, it is surprising to see a polynomial-time technique perform so well
(accuracy of 86%). For SW-GCP (Figure 5, right) the classification accuracy is
much lower (73%). We believe that this is primarily because our features are
less predictive on this instance distribution, which is consistent with the results
we obtained from unconditional hardness models for SW-GCP. Note that the frac-
tion of instances for which the classifier was confident is smaller for the last two
distributions than for rand3-var and QCP. However, even for SW-GCP we still see
a strong correlation between the classifier’s output and classification accuracy
on test data.

One further interesting finding is that our classifiers can achieve very high
accuracies even given very small sets of features. For example, on the QCP data,
the SMLR classifier achieves an accuracy of 93% with only 5 features. The five
most important features for classification on all four data sets are shown in Ta-
ble 2. Interestingly, local-search based features turned out to be very important
for classification in all four data sets.

704 L. Xu, H.H. Hoos, and K. Leyton-Brown

Table 2. The five most important features (listed from most to least important) for
classification as chosen by backward selection. (For details on the features, see [18].)

Data sets rand3-var rand3-fix

gsat BestCV Mean saps BestSolution CoeffVariance
Five saps BestStep CoeffVariance gsat BestSolution Mean

features lobjois mean depth over vars saps BestCV Mean
VCG VAR max lobjois mean depth over vars

saps BestSolution Mean gsat BestCV Mean
Accuracy (5 features) 98.4% 86.5%

Accuracy (all features) 98.4% 86.5%

Data sets QCP SW-GCP

lobjois log num nodes over vars vars reduced depth
Five saps BestSolution Mean gsat BestCV Mean

features saps BestCV Mean nvars
vars clauses ratio VCG VAR min

saps BestStep CoeffVariance saps BestStep Mean
Accuracy (5 features) 93.0% 73.2%

Accuracy (all features) 96.0% 73.4%

To the best of our knowledge, our work represents the first attempt to predict
the satisfiability of SAT instances using machine learning techniques. Overall,
our experiments show that a classifier may be used to make surprisingly accurate
polynomial-time predictions about the satisfiability of SAT instances. As dis-
cussed above, such a classifier cannot be completely reliable (unless P = NP).
Nevertheless, our classifiers perform very well for the widely-studied instance
distributions considered here. This finding may be useful in its own right. For
example, researchers interested in evaluating incomplete SAT algorithms on large
numbers of satisfiable instances drawn from a distribution that produces both
satisfiable and unsatisfiable instances could use a complete search algorithm to
label a relatively small training set, and then use the classifier to filter instances.

5 Hierarchical Hardness Models

Given our findings to far, it would be tempting to construct a hierarchical model
that uses a classifier to pick the most likely conditional model and then simply
returns that model’s prediction. However, while this approach could sometimes
be a good heuristic, it is not theoretically sound. Intuitively, the problem is that
the classifier does not take into account the accuracies of the different conditional
models. For example, recall Figure 2, which showed the prediction accuracy of
Msat and Munsat for satelite on QCP. We saw that Msat was much less accurate
for unsatisfiable instances than Munsat was for satisfiable instances. Thus if
we encountered an instance that the classifier considered slightly more likely
satisfiable than unsatisfiable, we would still expect to obtain a more accurate
prediction from Munsat than from Msat.

A more principled way of combining conditional models can be derived based
on the probabilistic interpretation of empirical hardness models introduced in

Hierarchical Hardness Models for SAT 705

Section 2.1. As before (see Figure 6, left) we have a set of features that are al-
ways observed and a random variable representing runtime that is conditionally
dependent on the features. Now we combine the features with our classifier’s
prediction s, yielding the feature vector (x, s). We also introduce a new random
variable z ∈ {sat, unsat}, which represents the oracle’s choice of which condi-
tional model will perform best for a given instance. Instead of selecting one of the
predictions from the two conditional models for runtime y, we use their weighted
sum

P (y|(x, s)) =
∑

z∈{sat,unsat}
P (z|(x, s)) · PMz (y|(x, s)), (1)

where PMz (y|(x, s)) is the probability of y evaluated according to model Mz.
Since the models were fit using ridge regression, we can rewrite Eq. (1) as

P (y|(x, s)) =
∑

z∈{sat,unsat}
P (z|(x, s)) · N (y|wzx, βz), (2)

where wz and βz are the weights and standard deviation of model Mz. Thus,
we will learn weighting functions P (z|(x, s)) to maximize the likelihood of our
training data according to P (y|(x, s)). As a hypothesis space for these weighting
functions we chose the commonly used softmax function

P (z = sat|(x, s)) =
ev�(x,s)

1 + ev�(x,s)
, (3)

where v is a vector of free parameters that must be learned [1]. Then we have
the following loss function to minimize, where E(yi,z|x) is the prediction of Mz

and ȳi is the real runtime:

L =
N∑

i=1

(
ȳi −

(∑

k∈{sat,unsat}
P (z = k|(xi, si)) · E(yi,z|xi)

))2

. (4)

This can be seen as a mixture-of-experts problem with the experts clamped to
Msat and Munsat (see, e.g., [1]). For implementation convenience, we used an
existing mixture of experts implementation, which is built around an EM algo-
rithm and which performs iterative reweighted least squares in the M step [17].
We modified this code slightly to clamp the experts and to set the initial values
of P (z|(x, s)) to s (i.e., we initialized the choice of experts to the classifier’s
output). To evaluate the model and get a runtime prediction for test data, we
simply compute the features x and the classifier’s output s, and then evaluate

E(y|(x, s)) =
∑

k∈{sat,unsat}
P (z|(x, s)) · w�

k φ(x), (5)

where wk are the weights from Mk and φ(x) is the basis function expansion of
x. Thus, the classifier’s output is not used directly to select a model, but rather
as a feature upon which our weighting functions P (z|(x, s)) depend, as well as
for initializing the EM algorithm.

706 L. Xu, H.H. Hoos, and K. Leyton-Brown

x, s z y

features &
probability

of satisfiable

model
selection

oracle
runtime

.Feature only Init. only None Unconditional

0.84

0.86

0.88

0.9

0.92

0.94

0.96

0.98

1

R
el

at
iv

e
pe

rf
or

m
an

ce
 (

R
M

S
E

 r
at

io
)

Models

Fig. 6. Left: Graphical model for our mixture-of-experts approach. Right: Comparison
of hierarchical hardness models’ relative performance: RMSE of full hierarchical model
÷ RMSE of indicated model. Data set: QCP, Solvers: 6 solvers for QCP.

5.1 Experimental Results

Our first experiment used the QCP dataset to investigate the importance of the
classifier’s output to hierarchical models. Figure 6 (right) shows box plots com-
paring five scenarios. The first four are hierarchical models with classifier output
used (1) both for EM initialization and as a feature to the weighting function;
(2) only as a feature; (3) only for initialization; and (4) not at all. We also con-
sider the case of an unconditional model. For each scenario except for the first
we report the ratio between its RMSE and that of the first model. The best
performance was achieved by full models (all ratios are less than 1). The ratio
for keeping the feature only is nearly 1, indicating that the EM initialization
is only slightly helpful. All of the hierarchical models outperform the uncon-
ditional model, indicating the power of leveraging conditional models; however,
when we build a hierarchical model that disregards the classifier’s output entirely
we achieve only slightly better median RMSE than the unconditional model.

The broader performance of different unconditional, oracular and hierarchical
models is shown in Table 3. For rand3-var, the accuracy of classification was
very high (classification error was only 1.6%). Our experiments confirmed that
hierarchical hardness models can achieve almost the same runtime prediction
accuracy as oracular models for all four solvers considered in our study. Figure 7
shows that using the hierarchical hardness model to predict satz’s runtime is
much better than using the unconditional model.

On the rand3-fix dataset, results for all four solvers were qualitatively
similar: hierarchical hardness models gave slightly but consistently better run-
time predictions than unconditional models. On this distribution the gap in pre-
diction accuracy between unconditional and oracular models is already quite
small, which makes further significant improvements more difficult to achieve.
Detailed analysis of actual vs predicted runtimes for satz (see Figure 8) showed
that particularly for unsatisfiable instances, the hierarchical model tends to pro-
duce slightly more accurate predictions. Further investigation confirmed that
those instances in Figure 8 (right) that are far away from the ideal prediction

Hierarchical Hardness Models for SAT 707

Table 3. Comparison of oracular, unconditional and hierarchical hardness models. The
second number of each entry is the ratio of the model’s RMSE to the oracular model’s
RMSE. (∗For SW-GCP, even the oracular model has large runtime prediction error.)

RMSE (rand3-var models) RMSE (rand3-fix models)
Solvers oracular uncond. hier. oracular uncond. hier.

satz 0.329 0.385(85%) 0.344(96%) 0.343 0.420(82%) 0.413(83%)
march dl 0.283 0.396(71%) 0.306(92%) 0.444 0.542(82%) 0.533(83%)
kcnfs 0.294 0.373(79%) 0.312(94%) 0.397 0.491(81%) 0.486(82%)

oksolver 0.356 0.443(80%) 0.378(94%) 0.497 0.596(83%) 0.587(85%)

RMSE (QCP models) RMSE (SW-GCP models)∗
Solvers oracular uncond. hier. oracular uncond. hier.

zchaff 0.303 0.675(45%) 0.577(53%) 0.657 0.993(66%) 0.983(67%)
minisat 0.305 0.574(53%) 0.500(61%) 0.682 1.022(67%) 1.024(67%)
satzoo 0.240 0.397(60%) 0.334(72%) 0.384 0.581(66%) 0.581(66%)
satelite 0.247 0.426(58%) 0.372(66%) 0.618 0.970(64%) 0.978(63%)

sato 0.375 0.711(53%) 0.635(59%) 0.723 1.352(53%) 1.345(54%)
oksolver 0.427 0.548(78%) 0.506(84%) 0.601 1.337(45%) 1.331(45%)

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−3 −2 −1 0 1 2 3
−3

−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 7. Actual vs predicted runtime for satz on rand3-var. Left: unconditional model
(RMSE=0.387); right: hierarchical model (RMSE=0.344).

line(y = x) have low classification confidence. (We further discuss the relation-
ship between classification confidence and runtime prediction accuracy at the
end of this section.)

For the structured QCP instances, we observed similar runtime prediction ac-
curacy improvements by using hierarchical models. Since the classification ac-
curacy for QCP was higher than the classification accuracy for rand3-fix, we
expected bigger improvements when using the hierarchical hardness model com-
pared to the rand3-fix case. Our experimental results confirmed this hypothesis
(Figure 9). For example, a hierarchical model for the satelite solver achieved
a RMSE of 0.372, compared to 0.462 obtained from an unconditional model
(whereas the oracular model yielded RMSE 0.247).

However, the runtime prediction accuracy obtained by hierarchical hardness
models depends on the quality of the underlying conditional models (experts).
In the case of data set SW-GCP (see Figure 10), we found that both unconditional
and oracular models had fairly large prediction error (RMSE about 0.6; since

708 L. Xu, H.H. Hoos, and K. Leyton-Brown

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−2 −1 0 1 2 3
−2

−1

0

1

2

3

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 8. Actual vs predicted runtime for satz on rand3-fix. Left: unconditional model
(RMSE=0.420); right: hierarchical model (RMSE=0.413).

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−4 −2 0 2 4
−4

−3

−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 9. Actual vs predicted runtime for satelite on QCP. Left: unconditional model
(RMSE=0.426); right: hierarchical model (RMSE=0.372).

we used log runtime, this means that runtime predictions were off by about half
an order of magnitude on average). As mentioned in Section 4, we believe that
this is because our features are not as informative when applied to this data set
as for the other three instance distributions. This is also consistent with the fact
that the classification error on SW-GCP is much higher (26.6%, compared to 4.0%
on QCP and 13.5% on rand3sat-fix).

When investigating the relationship between the classifier’s confidence and
regression runtime prediction accuracy, we found that higher classification con-
fidence tends to be indicative of more accurate runtime predictions. This rela-
tionship is illustrated in Figure 11 for the satelite solver on the QCP data set:
when the classifier is more confident about the satisfiability of an instance, both
prediction error (Figure 11, left) and RMSE (Figure 11, right) are smaller.1

Though space constraints preclude a detailed discussion, we also observed
that the features important for classification were similarly important for regres-
sion. For instance, only using the three features that were most important for

1 Closer inspection of the raw data shown in Figure 11, left, revealed that a large
number of the data points appear at (0, 0) and (1, 0). This is also reflected in the
shape of the curve in the right pane of Figure 11.

Hierarchical Hardness Models for SAT 709

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

−2 −1 0 1 2 3 4
−2

−1

0

1

2

3

4

Log predicted runtime [sec]

Lo
g

ac
tu

al
 r

un
tim

e
[s

ec
]

satisfiable
unsatisfiable

Fig. 10. Actual vs predicted runtime for zchaff on SW-GCP. Left: unconditional model
(RMSE=0.993); right: hierarchical hardness model (RMSE=0.983).

 0 0.25 0.5 0.75 1
−4

−3

−2

−1

0

1

2

3

4

Probability of satisfiable

E
rr

or
 fo

r
pr

ed
ic

tio
n

satisfiable
unsatisfiable

 0 0.25 0.5 0.75 1
0

0.5

1

1.5
R

M
S

E

Probability of satisfiable

Fig. 11. Classifier output vs runtime prediction error (left); relationship between clas-
sifier output and RMSE (right). Data set: QCP, solver: satelite.

classification on QCP data, we achieved runtime prediction RMSE within 10% of
the full model’s accuracy for satelite.

6 Conclusions and Future Work

We have shown that there are big differences between models trained only on
satisfiable and unsatisfiable instances, not only for uniform random 3-SAT (as
was previously reported in [18]), but also for distributions of structured SAT
instances, such as QCP and SW-GCP. Furthermore, these models have higher pre-
diction accuracy than the respective unconditional models. A classifier can be
used to distinguish between satisfiable and unsatisfiable instances with surpris-
ingly high (though not perfect) accuracy. We have demonstrated how such a
classifier can be combined with conditional hardness models into a hierarchical
hardness model using a mixture-of-experts approach. In cases where we achieved
high classification accuracy, the hierarchical models thus obtained always offered
substantial improvements over an unconditional model. When the classifier was
less accurate, our hierarchical models did not offer a substantial improvement
over the unconditional model; however, hierarchical models were never signifi-

710 L. Xu, H.H. Hoos, and K. Leyton-Brown

cantly worse. It should be noted that our hierarchical models come at virtually
no additional computational cost, as they depend on the same features as used
for the individual regression models. The practical usefulness of our approach
was recently demonstrated by our algorithm portfolio solver for SAT, SATzilla-
07, which, utilizing hierarchical hardness models, placed 1st in three categories
of the 2007 SAT competition [20].

In future work, we intend to investigate new instance features to improve both
classification and regression accuracy on SW-GCP. Furthermore, we will test our
approach on more real-world problem distributions, such as software and hard-
ware verification problems. We also plan to study hierarchical models based on
partitioning SAT instances into classes other than satisfiable and unsatisfiable—
for example, such classes could be used to build different models for different
underlying data distributions in heterogeneous data sets.

References

1. Bishop, C.M.: Pattern Recognition and Machine Learning. Springer, Heidelberg
(2006)

2. Cheeseman, P., Kanefsky, B., Taylor, W.M.: Where the really hard problems are.
In: IJCAI-91, pp. 331–337 (1991)

3. Dubois, O., Dequen, G.: A backbone-search heuristic for efficient solving of hard
3-SAT formulae. In: IJCAI-01, pp. 248–253 (2001)

4. Eén, N., Biere, A.: Effective preprocessing in SAT through variable and clause
elimination. In: Bacchus, F., Walsh, T. (eds.) SAT 2005. LNCS, vol. 3569, pp.
61–75. Springer, Heidelberg (2005)

5. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Hoos, H.H., Mitchell, D.G.
(eds.) SAT 2004. LNCS, vol. 3542, pp. 502–518. Springer, Heidelberg (2005)

6. Gent, I.P., Hoos, H.H., Prosser, P., Walsh, T.: Morphing: Combining structure and
randomness. In: AAAI-99, pp. 654–660 (1999)

7. Gomes, C., Selman, B., Crato, N., Kautz, H.: Heavy-tailed phenomena in satis-
fiability and constraint satisfaction problems. J. of Automated Reasoning 24(1),
67–100 (2000)

8. Heule, M., Maaren, H.V.: march dl: Adding adaptive heuristics and a new branch-
ing strategy. J. on Satisfiability, Boolean Modeling and Computation 2, 47–59
(2006)

9. Hutter, F., Hamadi, Y., Hoos, H.H., Leyton-Brown, K.: Performance prediction
and automated tuning of randomized and parametric algorithms. In: Benhamou,
F. (ed.) CP 2006. LNCS, vol. 4204, pp. 213–228. Springer, Heidelberg (2006)

10. Joachims, T.: Making large-scale support vector machine learning practical. In:
Advances in Kernel Methods: Support Vector Machines, pp. 169–184 (1998)

11. Krishnapuram, B., Carin, L., Figueiredo, M., Hartemink, A.: Sparse multinomial
logistic regression: Fast algorithms and generalization bounds. IEEE Trans. on
Pattern Analysis and Machine Intelligence, 957–968 (2005)

12. Kullmann, O.: Heuristics for SAT algorithms: Searching for some foundations.
Technical report (September 1998)

13. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: Boost-
ing as a metaphor for algorithm design. In: Rossi, F. (ed.) CP 2003. LNCS,
vol. 2833, pp. 899–903. Springer, Heidelberg (2003)

14. Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., Shoham, Y.: A port-
folio approach to algorithm selection. In: IJCAI-03, pp. 1542–1543 (2003)

Hierarchical Hardness Models for SAT 711

15. Leyton-Brown, K., Nudelman, E., Shoham, Y.: Learning the empirical hardness of
optimization problems: The case of combinatorial auctions. In: Van Hentenryck,
P. (ed.) CP 2002. LNCS, vol. 2470, pp. 556–572. Springer, Heidelberg (2002)

16. Li, C.M., Anbulagan: Look-ahead versus look-back for satisfiability problems. In:
Smolka, G. (ed.) Principles and Practice of Constraint Programming - CP97.
LNCS, vol. 1330, pp. 341–355. Springer, Heidelberg (1997)

17. Murphy, K.: The Bayes Net Toolbox for Matlab. In: Computing Science and Statis-
tics: Proc. of the Interface, vol. 33 (2001), http://bnt.sourceforge.net/

18. Nudelman, E., Leyton-Brown, K., Hoos, H.H., Devkar, A., Shoham, Y.: Under-
standing random SAT: Beyond the clauses-to-variables ratio. In: Wallace, M. (ed.)
CP 2004. LNCS, vol. 3258, pp. 438–452. Springer, Heidelberg (2004)

19. Selman, B., Mitchell, D.G., Levesque, H.J.: Generating hard satisfiability problems.
Artificial Intelligence 81, 17–29 (1996)

20. Xu, L., Hutter, F., Hoos, H.H., Leyton-Brown, K.: SATzilla-07: The design and
analysis of an algorithm portfolio for SAT. In: CP-07 (2007)

21. Zhang, H.: SATO: an efficient propositional prover. In: Proc. of the Int’l. Conf. on
Automated Deduction, pp. 272–275 (1997)

22. Zhang, L., Madigan, C.F., Moskewicz, M.W., Malik, S.: Efficient conflict driven
learning in Boolean satisfiability solver. In: Proc. of the Int’l. Conf. on Computer
Aided Design, pp. 279–285 (2001)

http://bnt.sourceforge.net/

	Hierarchical Hardness Models for SAT
	Introduction
	Background
	Empirical Hardness Models
	Experimental Setup

	Conditional and Oracular Empirical Hardness Models
	Predicting the Satisfiability of SAT Instances
	Hierarchical Hardness Models
	Experimental Results

	Conclusions and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

