
Ordered Racing Protocols for Automatically Configuring
Algorithms for Scaling Performance

James Styles
University of British Columbia

jastyles@cs.ubc.ca

Holger Hoos
University of British Columbia

hoos@cs.ubc.ca

ABSTRACT
Automated algorithm configuration has been proven to be
an effective approach for achieving improved performance
of solvers for many computationally hard problems. We
consider the challenging situation where the kind of prob-
lem instances for which we desire optimised performance
is too difficult to be used during the configuration process.
Here, we propose a novel combination of racing techniques
with existing algorithm configurators to meet this challenge.
We demonstrate that, applied to state-of-the-art solver for
propositional satisfiability, mixed integer programming and
travelling salesman problems, the resulting algorithm con-
figuration protocol achieves better results than previous ap-
proaches and in many cases closely matches the bound on
performance obtained using an oracle selector. We also re-
port results indicating that the performance of our new rac-
ing protocols is quite robust to variations in the confidence
level of the test used for eliminating weak configurations,
and that performance benefits from presenting instances or-
dered according to increasing difficulty during the race –
something not done in standard racing procedures.

Categories and Subject Descriptors
[Theory of computation]: Design and analysis of algo-
rithms

Keywords
Parameter tuning, Machine learning, Empirical study

1. INTRODUCTION
High performance algorithms for computationally hard

problems often have numerous parameters which control
their behaviour and performance. Finding good values for
these parameters, some exposed to end users and others hid-
den as hard-coded design choices and magic constants, can
be a challenging problem for algorithm designers. Recent
work on automatically configuring algorithms has proven to
be very effective [4, 9, 10, 13, 14, 15, 18, 19]. These auto-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’13, July 6–10, 2013, Amsterdam, The Netherlands.
Copyright 2013 ACM 978-1-4503-1963-8/13/07 ...$15.00.

matic algorithm configurators rely on the use of significant
computational resources (e.g., large computer clusters) to
explore the design space of an algorithm by evaluating thou-
sands of different configurations. The general protocol for
using an automatic configurator is as follows:

1. Identify the intended use case of the algorithm (e.g.,
structure and size of expected problem instances, re-
source limitations) and define a metric to be optimized
(e.g., runtime).

2. Construct a training set which is representative of the
intended use case. The performance of the configurator
depends on being able to evaluate a large number, ide-
ally thousands, of configurations. Training instances
must be chosen to permit this.

3. Perform multiple independent runs of the configurator.

4. Validate the final configurations found by each configu-
rator run and select the best performing configuration.

The choice of training set and validation method both have a
significant impact on the quality of configuration found. The
standard version of this protocol constructs a training set by
drawing instances directly from the intended use case and
validates the configurations by evaluating them on the entire
training set. The validation step in the standard version of
the protocol is only needed to ensure configurations can be
fairly compared, since in practice, a run of a configurator
typically only uses a subset of the training set.

However, there are scenarios where instances in the in-
tended use case are too difficult (i.e. require too much time
to be solved) to be feasibly used in a training set. We con-
sider an instance as being too difficult to use during training
if it does not permit at least a thousand evaluations dur-
ing the run of a configuator; notice that this definition of
difficulty is relative to the time budget available for con-
figuration. Styles et al. [17] have previously shown that
the standard configuration protocol can be very ineffective
for these scenarios and often produces configurations that
perform worse than the default. They introduced a modifi-
cation to the standard protocol based on the idea of using
so-called intermediate instances, described in Section 2, to
validate configurations. This new protocol was shown to
reliably outperform the standard protocol for three very dif-
ferent domains (TSP, MIP and computer Go).

In this work, we show how even better configurations can
be found using two novel configuration protocols that com-
bine the idea of using intermediate problem instances for
validation with the concept of racing. One of these proto-
cols uses a invariant of F-Race [8] and the other is based on

551

a novel racing procedure dubbed ordered permutation race.
We show that both new protocols reliably outperform previ-
ous protocols [17] and are able to produce configurations up
to 25% better within the same overall time budget or, equiv-
alently, configurations of the same quality in up to 45% less
total time and up to 90% less time for validation.

To assess the effectiveness of our racing-based protocols,
we performed a large empirical study across five configura-
tion scenarios. The first scenario involves Keld Helsgaun’s
implementation of the Lin-Kerninghan algorithm (LKH) [12],
the state-of-the-art incomplete solver for the TSP; this sce-
nario is known to be challenging for the standard protocol
[17]. The second scenario considers configuring Lingeling [2],
a state-of-the-art complete solver for the boolean satisfiabil-
ity problem (SAT), for solving industrial instances from SAT
Competition and SAT Race [3]. The remaining three sce-
narios consider configuring the state-of-the-art mixed integer
programming (MIP) solver CPLEX for instances modeled on
real world data. We consider two scenarios based on config-
uring CPLEX [1] for solving CORLAT (see Section 4): one
using CPLEX 12.1, where the standard protocol is known to
be effective [13], and another using CPLEX 12.3. The final
scenario is based on configuring CPLEX 12.3 for solving a
class of application instances that can take up to 20 hours
each to solve (see Section 4). All scenarios use the freely
available and highly effective automated algorithm configu-
rators ParamILS [15] and SMAC [14].

The remainder of this paper is structured as follows. Sec-
tion 2 summarises the train-easy select-intermediate (TE-SI)
protocol that provided the starting point for this work. Sec-
tion 3 introduces our new, racing-based protocols. Section 4
describes the five configuration scenarios and the experimen-
tal setup we used to assess the various configuration proto-
cols, and Section 5 describes the results from our computa-
tional experiments. Finally, Section 6 provides conclusions
and an overview of ongoing and future work.

2. VALIDATION USING INTERMEDIATE IN-
STANCES

The performance of automated algorithm configurators
depends heavily on the number of evaluations that can be
performed within a given time budget and the guidance
that each evaluation provides. In scenarios where the in-
tended use case requires very difficult problem instances to
be solved, the number of evaluations performed when fol-
lowing the standard protocol can become too small to be
effective (in extreme cases, it may be impossible to perform
even a single evaluation). There are three ways to address
this situation:

1. Continue to use the hard instances and just accept
the reduced performance from performing fewer eval-
uations. This option can be successful if there exists
easy to find configurations which are significantly bet-
ter than the default.

2. Continue to use the hard instances and enforce strict
per-instance time cutoffs to guarantee a minimum num-
ber of evaluations. This option requires that config-
urations significantly better than the default can be
found with little to no guidance. Until better config-
urations are found, any evaluation terminated by the
cutoff provides no guidance.

3. Use instances easier than the intended use case – in
particular, instances easy enough to permit the neces-

Figure 1: A comparison between the training ver-
sus testing performance, measured as speedup over
the default, for 300 configurations of LKH found by
ParamILS using an easy training set. Configura-
tions with high training speedup, near the right, are
likely to be selected by the standard protocol while
configurations with high testing speedups, near the
top, are what we would like to find.

sary number of evaluations. There is a risk that the
instances used will become so easy that they are no
longer representative of the intended use case and thus
misguide the configurator.

For each of these approaches, it is possible to construct ex-
amples causing failure. Styles et al. [17] found that the
best configurations were often found by using easy instances
in the training set [17]. However, using these same easy in-
stances during validation resulted in good configurations be-
ing dismissed. This happened because, while easy instances
provided sufficient guidance for finding good configurations
on other easy instances, performance on the training set
turned out to be a poor predictor for performance on the
much harder testing set. Figure 1, which compares the train-
ing and testing performance for 300 configurations of LKH
found by ParamILS using an easy training set, illustrates
this phenomenon (see Section 4 for details on this configu-
ration scenario).

An interesting observation from these results is that a per-
fect configurator – i.e., one that finds those configurations
with the best training performance – would be unable to
produce any of the configurations which exhibited good test-
ing performance. In situations where training performance
is either uncorrelated or, worse, negatively correlated with
testing performance (as seen in Figure 1), we must rely on
high variance in the underlying configurator to find config-
urations with good testing performance. Therefore, in the
setting considered here, a better configurator does not nec-
essarily yield better results.

The solution Styles et al. [17] proposed was to use a train-
ing set of easy instances for the configuration process, fol-
lowed by validation using a separate set of instances of in-
termediate difficulty to identify configurations whose per-
formance scales well. The fundamental idea behind this
approach is that intermediate instances are more represen-
tative of the intended use case while still being feasible to
use for validation. For the configuration scenarios we consid-
ered, intermediate difficulty was defined based on percentiles
of the distribution of runtime for the default configuration
of a given solver over the testing set. This configuration
protocol, dubbed TE-SI, reliably outperformed the alterna-
tive approaches of performing both training and validation
on easy instances (TE-SE) or on intermediate instances (TI-
SI) and was able to produce configurations that were up to
180% better than the standard protocol.

552

This work has a similar motivation to curriculum learning
[7] where training examples are presented to a learner in a
schedule which progresses from generally easy examples to
generally hard examples. While appearing very similar these
two ideas differ significantly with respect to the definition of
difficulty. For curriculum learning a difficult example is one
that is hard to incorporate into a model for a given stage
of the learning process; easy examples are used early in the
training process because they are more informative at that
stage. Where as Styles et al.[17] proposes a resource-centric
definition of difficulty where the difficulty of an instances
is defined with respect to the resources used by some refer-
ence solver. Easy instances, despite being less informative,
are used during the early stages of training because it is in-
feasible to use anything harder. The schedule of examples
produced by these two ideas can be very different from each
other and in the extreme the schedules produced by TE-
SI based methods can be the reverse of those produced by
curriculum learning.

3. VALIDATION USING RACING
The basic idea behind racing, as applied to algorithm con-

figuration, is to sequentially evaluate a set of candidate con-
figurations of a given target algorithm on a set of problem
instances, one of each is presented in each stage of the race,
and to eliminate configurations from further consideration
once there is sufficient evidence that they are performing
significantly worse than the current leader of the race, i.e.,
the configuration with the best performance on the instances
seen so far. The race ends when either a single configura-
tion remains, when all problem instances have been used, or
when an overall time budget has been exhausted. When rac-
ing terminates with more than one configuration remaining,
the one with the best performance is selected as the final re-
sult. There are three important aspects to racing strategies:
(1) how the set of candidate configurations is constructed,
(2) what metric is used to determine the best configuration,
and (3) what method is used to determine if a configuration
can be eliminated from further consideration.

The first and most prominent racing procedure for algo-
rithm configuration is F-Race [8], which also provides the
conceptual basis for the more powerful Sampling F-Race
and Iterated F-Race procedures [6]. F-Race uses the non-
parametric, rank-based Friedman test to determine when
to eliminate candidate configurations. A major limitation
of this basic version of F-Race stems from the fact that in
the initial steps, all given configurations have to be evalu-
ated. This property of basic F-Race severely limits the size
of the configuration spaces to which the procedure can be
applied effectively. This limitation is removed in Sampling
F-Race, which builds a candidate set by uniformly sampling
from the set of all possible configurations, and Iterative F-
Race, which alternates sampling configurations from more
sophisticated probabilistic models and stages of standard F-
race. In contrast, we apply racing to sets of configurations
determined from multiple independent runs of a powerful
configuration procedure, here: ParamILS and SMAC. Basic
F-Race and its variants select the instance used to evaluate
configurations for each round of the race at random from the
given training set. As motivated in the following, we con-
sider the training instances in order of increasing difficulty
for the default configuration of the given target algorithm.

Slow racers make for slow races. In each round of a race,
every candidate configuration must be evaluated. If the ma-
jority of candidate configurations have poor performance,

then much time is spent performing costly evaluations of
bad configurations before anything can be eliminated. This
is problematic, because good configurations are often quite
rare, so that the majority of configurations in the initial can-
didate set are likely to exhibit poor performance. Therefore,
we perform racing on a set of candidate configurations ob-
tained from multiple runs of a powerful configurator rather
than for the configuration task itself; this way, we start rac-
ing from a set of configurations that tend to perform well,
assuming the configurator being used is effective, which sig-
nificantly speeds up the racing process.

It doesn’t take a marathon to separate the good from
the bad. The first few stages of racing are the most expen-
sive. Yet, during this initial phase, there is not yet enough
information to eliminate any of the configurations, so the en-
tire initial candidate set is being considered. We know how
the default configuration of an algorithm performs on each
validation instance, which gives us an idea for the difficulty
of the instance for all other configurations of the target algo-
rithm. By using instances in ascending order of difficulty, we
reserve the most difficult (i.e., costly) evaluations for later
stages of the race, when there are the fewest configurations
left to be evaluated.

Judge the racers by what matters in the end. The con-
figuration scenarios examined in this work all involve min-
imising a given target algorithm’s run time (using penalised
average run time to account for timeouts). While rank-based
methods, such as F-Race, may indirectly lead to a reduction
in runtime (e.g., aggregate rank likely corresponds to overall
runtime) they are more appropriate for scenarios where the
magnitude of performance differences does not matter. We
therefore propose the use of a standard permutation test in-
stead of the rank-based Friedman test, focused on runtime,
as the basis for eliminating candidate configurations.

In detail, our testing procedure works as follows. Given n
configurations c1, . . . cn, and m problem instances i1, . . . , im
considered at stage m of the race, we use pk,j to denote the
performance of configuration ck on instance ij , and pk to
denote the aggregate performance of configuration ck over
i1, . . . , im. In this work, we use penalised average run time,
PAR10, described in more detail in the following section,
to measure aggregate performance, and our goal is to find
a configuration with minimal PAR10. Let c1 be the cur-
rent leader of the race, i.e., the configuration with the best
aggregate performance among c1, . . . , cn. We now perform
pairwise permutation tests between the leader, c1, and all
other configurations ck (challengers). Each of these tests as-
sesses whether c1 performs significantly better than ck; if so,
ck is eliminated from the race. To perform this one-sided
pairwise permutation test between c1 and ck, we generate
many resamples of the given performance data for these two
configurations. (In our experiments, we used 100 000 resam-
ples, since the computational cost of resampling is very low
compared to that of target algorithm runs.) Each resample
is generated from the original performance data by swap-
ping the performance values p1,j and pk,j with probability
0.5 and leaving them unchanged otherwise; this is done inde-
pendently for each instance j = 1, . . . ,m. We then consider
the distribution of the aggregate performance ratios p′1/p

′
k

over these resamples and determine the q-quantile of this
distribution that equals the p1/pk ratio for the original per-
formance data. Finally, if, and only if, q > α2, where α2 is
the significance of the one-sided pairwise test, we conclude
that c1 performs significantly better than ck. Different from
F-race, where the multi-way Friedman test is used to gate a

553

series of pairwise post-tests, we only perform pairwise tests
and therefore need to perform multiple testing correction.
While more sophisticated corrections could in principle be
applied, we decided to use the simple, but very conserva-
tive Bonferroni correction and set α2 := α

n−1
for an overall

significance level α.
We refer to the racing procedure that considers problem

instances in order of increasing difficulty for the default con-
figuration of the given target algorithm and in each stage
eliminates configurations using the previously described se-
ries of pairwise permutation tests as ordered permutation
race (op-race), and the variant of basic F-race that uses the
same instance ordering as order F-race (of-race).

The TE-FRI and TE-PRI configuration protocols. We
now return to the application of racing in the context of a
configuration protocol that starts from a set of configura-
tions obtained from multiple independent runs of a config-
urator, such as ParamILS. In this context, we start op-race
and of-race from the easiest intermediate difficulty instance
and continue racing with increasingly difficult instances un-
til either a single configurations remains, the time budget for
validation has been exhausted, or all available intermediate
instances have been used.

This yields two new protocols for using algorithm configu-
rators based on train-easy validate-intermediate: (1) valida-
tion using of-race (TE-FRI) and (2) validation using op-race
(TE-PRI). We use α = 0.01 for TE-FRI and α = 0.1 for TE-
PRI, though we have observed that both protocols are robust
with respect to the significance level α (see Section 5).

4. EXPERIMENTAL SETUP
When assessing the configuration approaches considered

in this work, we focused on two questions: (1) How well can
a given approach be expected to perform on a given config-
uration scenario, and (2) How effective is it across different
configuration scenarios. In the following, we describe the
computational experiments we designed to investigate these
questions. For all experiments we measure the performance
of configurations on a given instance using penalised aver-
age runtime required for reaching the optimal solution and
a penalty factor of 10 times the scenario-specific cutoff for
every run that failed to reach the optimal solution (i.e., we
measured the PAR-10 scores). The training, validation, and
testing sets used for all scenarios are disjoint.

Evaluating configuration protocols. A single, random-
ized, configuration experiment (i.e., set of configurator runs
and the corresponding global validation step) should be ex-
pected to be somewhat indicative of how the procedure used
for the experiment performs in general. However, because
the configurators we used here (as well as all other auto-
mated algorithm configuration procedures we are aware of)
are randomised, the result of any single configuration exper-
iment can be misleading. We therefore performed a large
number of configurator runs – between 100 and 300 per
unique training set – for each scenario, and fully evaluated
the configuration found by each on the training, validation
and testing sets. We then used these large sets of configu-
ration runs to simulate configurator runs by randomly sam-
pling, with replacement, a set of configurator runs of the
desired cardinality; we then performed the selection proce-
dure for the protocol under consideration by looking up the
required validation results to obtain the winning configura-
tion from each of these resampled sets. Finally, we evaluated
this winning configuration on the testing set. For each sce-

nario, protocol and target number of configurator runs , we
repeated this process 100 000 times and calculated the me-
dian and [10%,90%] confidence intervals for the performance
of the winning configurations from the resulting bootstrap
distribution, using the standard percentile method.

TSP solving using LKH. The first scenario we considered
for evaluating configuration protocols involves Keld Hels-
gaun’s implementation of the Lin-Kerninghan algorithm (LK-
H), the state-of-the art incomplete solver for the traveling
salesperson problem (TSP) [12] which is able to find opti-
mal or near optimal solutions considerably faster than the
state-of-the-art complete solver Concorde [5]. In particular,
we were interested in configuring LKH to solve structured
instances similar to those found in the well known TSPLIB
benchmark collection [16], a well studied heterogeneous set
of industrial and geographic instances. From previous work
[17], we know the standard protocol for using ParamILS to
be very ineffective for this scenario, resulting in configura-
tions which are significantly worse than the default. This
makes this scenario of particular interest when examining
new configuration procedures.

The original TSPLIB benchmark set contains only 111 in-
stances; since we considered this too small to allow for effec-
tive automated configuration and evaluation, we generated
new TSP instances based on existing TSPLIB instances by
selecting 10%, 20%, or 30% of the cities uniformly at random
to be removed. These ‘TSPLIB-like’ instances retain most
of the original structure and are comparable in difficulty to
the original instance, ranging from requiring a factor of 30
less time to a factor of 900 more time for the default con-
figuration of LKH to solve. We generated 3192 instances,
containing up to 6000 cities, which take a few seconds to a
few hours for the default configuration of LKH to solve.

Because LKH is an incomplete solver, any particular run
of LKH is not guaranteed to find an optimal solution of a
given TSP instance. When evaluating the performance of
LKH, we measured the runtime required by LKH to reach a
target solution quality (tour length) determined by a single
run of the default configuration on the given instance. For
the original TSPLIB instances, we compared these target
solution qualities against known optimal solution qualities;
for small instances (≤ 1500 cities), our target solution qual-
ities turned out to be optimal, and for the larger instances,
they were generally within 1% of the known optima.

We configured LKH for minimised PAR-10 using multiple
independent ParamILS and SMAC runs of 24 hours each.
Overall, we performed 300 runs on a training set of easy in-
stances using a 120 second per-instance cutoff, where easy in-
stances were selected from our set of TSPLIB-like instances
such that each of them could be solved at least 1000 times
by configurations of LKH with the same (average) perfor-
mance as the default within a ParamILS run of 24 hours;
the rationale for this was to ensure that each ParamILS run
could be expected to consider a reasonable number of LKH
configurations. We also performed 100 ParamILS runs of
24 hours on a training set of intermediate instances using a
780 second per-instance cutoff, where intermediate instances
were defined as being in the 12.5 to 20 percentile difficulty of
the testing set, which turned out to correspond to a running
time between 350 and 580 seconds of LKH’s default config-
uration. A per-instance cutoff of 2 hours was used during
validation and testing.

SAT solving using Lingeling. The boolean satisfiabil-
ity problem (SAT), which is concerned with determining if
there exists an assignment of variables which satisfies some

554

boolean formula, is one of the most widely studied com-
binatorial optimization problems and has numerous indus-
trial applications including formal verification of both soft-
ware and hardware. This scenario considers configuring Lin-
geling [2], a state-of-the-art SAT solver, for solving indus-
trial SAT instances drawn from the 2003, 2004, 2005, 2007,
2009 and 2011 SAT competitions and the 2006, 2008 and
2010 SAT races [3]. Lingeling is a highly parameterized
(i.e., 117 parameters, though most of these parameters are
concerned with memory management) complete solver de-
signed for solving industrial instances. The parallel variant
of Lingeling, PLingeling [2], won a gold medal in the parallel
application track of the 2011 SAT Competition[3].

We configured Lingeling for minimised PAR10 using mul-
tiple independent ParamILS runs of 48 hours. We performed
100 runs for a set of easy training instances using a 180 sec-
ond per-instance cutoff, where easy instances were selected
to be solved by the default configuration of Lingeling within
173 seconds, which corresponds to at least 1000 successful
runs within the time budget for a single configurator run.
Furthermore, we performed 100 independent ParamILS runs
of 48 hours each on a set of training instances of intermedi-
ate difficulty using a 1200 second per-instance cutoff, where
intermediate instances were defined as being in the 12.5 to
20 percentile difficulty of the testing set, which turned out to
correspond to a running time between 490 and 820 seconds
of Lingeling’s default configuration. A per-instance cutoff of
3 hours was used during validation and testing.

MIP solving using CPLEX. CPLEX is one of the best-
performing and most widely used industrial solvers for mixed
integer programming (MIP) problems. It is based on a
highly parameterized branch-and-cut procedure that gener-
ates and solves a large number of linear programming (LP)
subproblems. While most details of this procedure are pro-
prietary, at least 76 parameters which control CPLEX’s per-
formance while solving MIP problems are exposed to users.

We considered three scenarios for configuring CPLEX.
The first two scenarios involve configuring different versions
of CPLEX, 12.1 and 12.3, for a set of 2000 instances based
on real data modeling wildlife corridors for grizzly bears in
the Northern Rockies [11]. Hutter et al. [13] obtained a 52×
fold speedup over the default configuration on these so-called
CORLAT instances when configuring CPLEX 12.1, the most
recent version of CPLEX available at the time of their publi-
cation, using ParamILS with the standard configuration pro-
tocol. Our first CPLEX experiment replicates their work by
using independent 20 hour runs of ParamILS. While Hutter
et al. originally used 48 hour runs for these experiments we
are using an execution environment for which CPLEX 12.1
runs nearly 2.4 times faster. We performed 100 such config-
urator runs on a set of easy training instances using a 300
second per-instance cutoff, where easy instances were those
that took up to 173 seconds for the default configuration of
CPLEX 12.1 to solve, so that each instance could be solved
at least 1000 times during a single run of ParamILS. We
also performed 100 independent ParamILS runs of 20 hours
each on a set of training instances of intermediate difficulty
using a 1200 second per-instance cutoff, where intermediate
instances were defined as being in the 12.5 to 20 percentile
difficulty of the testing set, which turned out to correspond
to a running time between 660 and 1100 seconds of CPLEX
12.1’s default configuration. A per-instance cutoff of 2 hours
was used during validation and testing.

Our second CPLEX scenario differs from the first scenario
in that it uses the newer CPLEX version 12.3, whose default

configuration tends to perform substantially better than the
default configuration of CPLEX 12.1; on the CORLAT in-
stances, the speedup of CPLEX 12.3 (default) vs CPLEX
12.1 (default) turned out to be nearly 20-fold. To preserve
the ratio between the time required to solve training in-
stances and the overall time budget per configuration run,
we scaled the latter by a factor of 1/20 (i.e., we used config-
urator runs of 3456 seconds rather than 20 hours).

Our third CPLEX scenario considered configuring CPLEX
12.3 for a set of instances based on real data modeling the
spread of endangered red-cockaded woodpeckers based on
decisions to protect certain parcels of land. Similar to the
first scenario, we used a time budget of 48 hours for each
independent run of ParamILS. We performed 100 runs for a
set of easy training instances using a 180 second per-instance
cutoff, where easy instances were selected to be solved by the
default configuration of CPLEX 12.3 within 173 seconds,
which corresponds to at least 1000 successful runs within
the time budget for a single configurator run. Furthermore,
we performed 100 independent ParamILS runs of 48 hours
each on a set of training instances of intermediate difficulty
using a 1200 second per-instance cutoff, where intermedi-
ate instances were defined as being in the 12.5 to 20 per-
centile difficulty of the testing set, which turned out to cor-
respond to a running time between 540 and 900 seconds of
CPLEX 12.3’s default configuration. A per-instance cutoff
of 10 hours was used during validation and testing.

Execution environment. All our computational exper-
iments were performed on the 384 node DDR partition of
the Westgrid Orcinus cluster; Orcinus runs 64-bit Red Hat
Enterprise Linux Server 5.3, and each DDR node has two
quad-core Intel Xeon E5450 64-bit processors running at 3.0
GHz with 16GB of RAM.

5. RESULTS
Using the methods described in Section 4 we evaluated

each of the four configuration protocols on all five configu-
ration scenarios. The results are shown in Table 1, where
we report bootstrapped median quality (in terms of speedup
over the default configurations, where run time was mea-
sured using PAR10 scores) of the configurations found within
various time budgets as well as bootstrap [10%,90%] per-
centile confidence intervals (i.e., 80% of simulated applica-
tions of the respective protocol, obtained by subsampling as
explained in the previous section, fall within these ranges;
note that these confidence intervals are not for median speed-
ups, but for the actual speedups over simulated experiments).

As can be seen from these results, TE-PRI is the most ef-
fective protocol, followed by TE-FRI and TE-SI. These three
protocols tend to produce very similar [10%, 90%] confidence
intervals, but the two racing approaches achieve better me-
dian speedups, especially for larger time budgets.

To further investigate the performance differences between
the protocols, we compared them against a hypothetical pro-
tocol with an oracle selection mechanism. This mechanism
uses the same configurator runs as the other protocols, but
always selects the configuration from this set that has the
best testing performance, without incurring any additional
computational burden. This provides a upper bound of
the performance (speedup) that could be achieved by any
method for selecting from a set of configurations obtained
for a given training set, configurator and overall time budget.
These results, shown in Table 1 and Figure 2, demonstrate
that for some scenarios (e.g., CPLEX 12.1 for CORLAT)
the various procedures, particularly TE-PRI, provide nearly

555

Table 1: Speedups obtained by the configuration protocols, using ParamILS, on configuration scenarios with
different overall time budgets. An increase in overall configuration budget corresponds to an increase in the
number of configuration runs performed rather than an increase in the time budget for individual runs of
the configurator. This means larger time budgets can be achieved by increased either wall-clock time or the
number of concurrent parallel configurator runs. The highest median speedups, excluding the oracle selector,
for each configuration scenario and time budget are boldfaced.

Median [10%, 90%] Speedup (PAR10)
Time Budget TE-SI TE-FRI TE-PRI Oracle
(CPU Days) Selector
Configuring LKH for TSPLIB, using ParamILS
20 1.33 [0.96, 2.29] 1.34 [1.00, 2.11] 1.34 [0.95, 2.11] 1.71 [1.33, 3.11]
50 1.52 [1.06, 3.10] 1.60 [1.25, 3.10] 1.85 [1.25, 3.10] 2.11 [1.46, 3.19]
100 2.10 [1.24, 3.19] 2.11 [1.46, 3.19] 2.29 [1.38, 3.19] 2.29 [1.85, 3.19]
Configuring LKH for TSPLIB, using SMAC
20 0.99 [0.71, 1.23] 1.00 [0.73, 1.23] 1.08 [0.89, 1.23] 1.12 [0.89, 1.25]
50 1.08 [0.89, 1.23] 1.08 [0.92, 1.23] 1.08 [0.89, 1.23] 1.23 [1.08, 1.25]
100 1.08 [0.89, 1.23] 1.23 [1.00, 1.23] 1.23 [0.89, 1.25] 1.25 [1.23, 1.25]
Configuring Lingeling for SAT-Competition and SAT Race, using ParamILS
40 1.00 [0.97, 1.01] 1.00 [0.97, 1.01] 0.98 [0.93, 1.00] 1.01 [1.00, 1.08]
100 1.00 [0.98, 1.01] 1.00 [0.98, 1.01] 0.99 [0.94, 1.00] 1.03 [1.00, 1.08]
200 1.00 [0.98, 1.01] 1.00 [0.98, 1.01] 1.01 [0.98, 1.08] 1.08 [1.02, 1.08]
Configuring CPLEX 12.3 for RCW, using ParamILS
40 1.11 [0.97, 1.39] 1.12 [0.96, 1.39] 1.08 [0.98, 1.42] 1.23 [1.08, 1.42]
100 1.12 [1.03, 1.42] 1.16 [1.06, 1.42] 1.16 [0.98, 1.42] 1.39 [1.16, 1.42]
200 1.13 [1.11, 1.42] 1.37 [1.06, 1.42] 1.42 [0.98, 1.42] 1.42 [1.37, 1.42]
Configuring CPLEX 12.3 for RCW, using SMAC
40 0.79 [0.54, 1.01] 0.79 [0.54, 1.24] 0.79 [0.54, 1.01] 0.95 [0.77, 1.24]
100 0.79 [0.77, 1.24] 0.84 [0.54, 1.24] 0.82 [0.77, 1.24] 1.01 [0.84, 1.24]
200 0.79 [0.77, 1.24] 0.84 [0.54, 1.24] 1.24 [0.77, 1.24] 1.24 [0.98, 1.24]
Configuring CPLEX 12.1 for CORLAT, using ParamILS
40 54.5 [42.2, 61.1] 53.8 [42.9, 61.1] 55.8 [48.3, 61.1] 60.0 [48.8, 68.3]
100 60.1 [49.0, 68.3] 60.6 [53.4, 68.3] 61.1 [50.3, 68.3] 61.3 [60.0, 68.3]
200 61.5 [53.8, 68.3] 68.3 [60.1, 68.3] 68.3 [60.6, 68.3] 68.3 [60.6, 68.3]
Configuring CPLEX 12.3 for CORLAT, using ParamILS
1.0 2.00 [1.02, 2.64] 1.93 [1.19, 2.64] 2.24 [1.00, 3.04] 2.36 [1.94, 3.04]
2.5 2.36 [1.95, 3.04] 2.36 [1.95, 3.04] 2.36 [1.93, 3.04] 2.64 [2.24, 3.04]
5.0 2.64 [2.24, 3.04] 3.02 [1.95, 3.04] 3.02 [2.24, 3.04] 3.04 [2.64, 3.04]
Configuring CPLEX 12.3 for CORLAT, using SMAC
1.0 2.41 [1.46, 3.66] 2.41 [1.39, 3.66] 2.89 [1.54, 3.66] 2.89 [2.16, 3.84]
2.5 3.26 [1.94, 3.84] 3.26 [2.19, 3.84] 3.26 [2.41, 3.66] 3.66 [2.93, 3.84]
5.0 3.66 [2.89, 3.84] 3.66 [3.26, 3.84] 3.66 [2.41, 3.66] 3.84 [3.66, 3.84]

the same performance as the oracle already while for oth-
ers (e.g., CPLEX 12.3 for RCW), there is a sizable gap for
a broad range of overall time budgets. Furthermore, the
two racing protocol as well as TE-SI, given a sufficiently
high time budget, find the same best configuration from the
overall, large set as the oracle. Finally, TE-PRI tends to
identify good configurations earlier than TE-FRI, particu-
larly for small overall time budgets, where it is the only
configuration protocol whose efficacy is consistently close to
the bound provided by the oracle.

As can be seen in Table 1 and Figure 2(h), all protocols,
including the oracle selector, failed to produce significant
improvements over the default configuration of Lingeling on
SAT-Competition instances. We note that the default con-
figuration of Lingeling has been extensively hand-tuned by
its developer for performance on the SAT-Competition in-
stances used in our own experiments, and we suspect that
there are few or no configurations that perform significantly
better on those instances. Regardless of the overall poor per-
formance, the protocols introduced here (i.e., TE-PRI and
TE-FRI) perform at least as well as the alternatives, and in
some cases (e.g., as compared to TI-SI) significantly better.

The impact of significance level α. The performance
of both racing methods depends on the value of the signif-
icance level α that controls the stringency of the test used
to eliminate configurations. Table 2(a) shows the effect of
varying the value of α from 0.01 to 0.1 for TE-FRI and TE-
PRI on LKH for TSPLIB. Overall, variation of α within this
range has only a minor impact on the efficacy of the racing
protocols; at the same time, it can be easily seen that at
extreme values of α, performance will degrade: for α = 0,
both racing methods are equivalent to TE-SI, and at α = 1
every configuration other than the one that appears to be
best at that time is eliminated in the first round.

The importance of instance ordering. Existing algo-
rithm configuration procedures based on racing randomly
select instances from their training set in each round. As
stated in Section 3, our intuition was that using instances
in order of increasing difficulty for the default configuration
would be more efficient, since this way, the hardest instances
will be used only later in the process, when weaker configu-
rations have already been eliminated and few strong configu-
rations remain. To test this intuition, we evaluated variants
of our racing protocols that used random instance ordering

556

(a) Configuring LKH for TSPLIB
using ParamILS

(b) Configuring LKH for TSPLIB
using SMAC

(c) Configuring CPLEX 12.3 for
RCW using ParamILS

(d) Configuring CPLEX 12.3 for
RCW using SMAC

(e) Configuring CPLEX-12.3 for
CORLAT using ParamILS

(f) Configuring CPLEX-12.3 for
CORLAT using SMAC

(g) Configuring CPLEX-12.1 for
CORLAT using ParamILS

(h) Configuring Lingeling using
ParamILS

Figure 2: Trade-off between the quality of configurations (bootstrapped median speedup in terms of PAR10
compared to default configuration) obtained by the various protocols versus the overall time budget (i.e.,
configuration time + validation time). The oracle indicates the best performance that can be obtained by
any protocol for selecting from a set of configurations (see text for details).

on LKH for TSPLIB. The results, reported in Table 2(b),
demonstrate that using sorted instance ordering reliably re-
sulted in modestly better performance; further experiments
(data not shown) in which we used validation sets spanning
a larger range of instance difficulty (for the default configu-
ration of LKH) indicated that this effect increases in mag-
nitude with the differences in difficulties between the easiest
and hardest instances used for validation.

6. CONCLUSION AND FUTURE WORK
In this work, we have addressed the problem of using auto-

mated algorithm configuration in situations where the kind
of problem instances for which performance of a given tar-
get algorithm is to be optimised are too difficult to be used
directly during the configuration process. Building on the
idea of selecting from a set of configurations optimised on
easy training instances by validating on instances of inter-

mediate difficulty, we have introduced two novel protocols
for using automatic configurators by leveraging racing tech-
niques to improve the efficiency of validation. The first pro-
tocol, TE-FRI, uses a variant of F-Race [8] and the sec-
ond, TE-PRI, uses a novel racing method based on permu-
tation tests. Through a large empirical study we have shown
that these protocols are very effective and reliably outper-
form the TE-SI protocol previously introduced across every
scenario we have tested. This is the case for SMAC [14]
and ParamILS [15], two fundamentally different configura-
tion procedures (SMAC is based on predictive performance
models while ParamILS performs model-free stochastic lo-
cal search), which suggests that our new racing protocols
are effective independently of the configurator used.

We have recently begun to explore so called interleaved
protocols in which configuration and validation are performed
multiple times in an alternating fashion (i.e., the configura-

557

Table 2: Impact of (a) significance level α and
(b) instance ordering on the results obtained from
TE-PRI and TE-FRI on LKH for TSPLIB using
ParamILS. The highest median speedups for each
time budget and (a) alpha or (b) instance ordering
are boldfaced.

(a) Impact of Alpha

Median Speedup
Time Budget α =
(CPU Days) 0.01 0.025 0.05 0.1
TE-FRI
20 1.34 1.38 1.38 1.33
50 1.60 1.55 1.52 1.56
100 2.11 2.08 2.08 2.08
TE-PRI
20 1.33 1.33 1.36 1.34
50 1.60 1.71 2.09 1.85
100 2.11 2.11 2.29 2.29

(b) Impact of Ordering

Median Speedup
Time Budget Instance Ordering
(CPU Days) Ascending Random
TE-FRI α = 0.01
20 1.34 1.29
50 1.60 1.57
100 2.11 2.10
TE-PRI α = 0.1
20 1.34 1.31
50 1.85 1.71
100 2.29 2.11

tion and validation phases are interleaved). This includes
ideas such as racing configurators by periodically terminat-
ing configuator runs when their current incumbent is signif-
icantly worse than those incumbents found by other concur-
rent runs. Early results have shown that interleaved proto-
cols are able to further reduce the gap between the protocols
presented in this paper and the oracle selector.

7. REFERENCES
[1] IBM ILOG CPLEX optimizer.

http://www-01.ibm.com/software/
integration/optimization/cplex-optimizer/.
Version visited last in October 2011.

[2] Lingeling. http://fmv.jku.at/lingeling/. Version
visited last in March 2012.

[3] SAT competition. http://www.satcompetition.org/.
Version visited last in March 2012.

[4] C. Ansótegui, M. Sellmann, and K. Tierney. A
gender-based genetic algorithm for the automatic
configuration of algorithms. In CP-09, pages 142–157,
2009.

[5] D. Applegate, R. E. Bixby, V. Chvátal, and W. J.
Cook. Concorde TSP solver.
http://www.tsp.gatech.edu/concorde.html. Version
visited last in October 2011.

[6] P. Balaprakash, M. Birattari, and T. Stützle.
Improvement strategies for the f-race algorithm:
Sampling design and iterative refinement. In 4th
International Workshop on Hybrid Metaheuristics,
Proceedings, HM 2007, volume 4771 of Lecture Notes
in Computer Science, pages 108–122. Springer Verlag,
Berlin, Germany, 2007.

[7] Y. Bengio, J. Louradour, R. Collobert, and J. Weston.
Curriculum learning. In International Conference on
Machine Learning, ICML, pages 41–48, 2009.

[8] M. Birattari, T. Stützle, L. Paquete, and
K. Varrentrapp. A racing algorithm for configuring
metaheuristics. In GECCO ’02: Proceedings of the
Genetic and Evolutionary Computation Conference,
pages 11–18, 2002.

[9] M. Birattari, Z. Yuan, P. Balaprakash, and T. Stützle.
F-Race and Iterated F-Race: An Overview. In
Experimental Methods for the Analysis of Optimization
Algorithms, pages 311–336. Springer-Verlag, 2010.

[10] M. Chiarandini, C. Fawcett, and H. H. Hoos. A
modular multiphase heuristic solver for post enrolment
course timetabling. In Proceedings of the 7th
International Conference on the Practice and Theory
of Automated Timetabling, pages 1–6, Montréal, 2008.

[11] C. P. Gomes, W. J. van Hoeve, and A. Sabharwal.
Connections in networks: A hybrid approach. In
CPAIOR, volume 5015 of LNCS, pages 303–307.
Springer, 2008.

[12] K. Helsgaun. An effective implementation of the
Lin-Kernighan traveling salesman heuristic. In
European Journal of Operational Research, volume
126, pages 106–130, 2000.

[13] F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Automated configuration of mixed integer
programming solvers. In Proc. of CPAIOR-10, volume
6140 of LNCS, pages 186–202. Springer, 2010.

[14] F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Sequential model-based optimization for general
algorithm configuration. In Proc. 5th Intl. Conference
on Learning and Intelligent Optimization (LION 5),
volume 6683 of LNCS, pages 507–523.
Springer-Verlag, 2011.

[15] F. Hutter, H. H. Hoos, K. Leyton-Brown, and
T. Stützle. ParamILS: An Automatic Algorithm
Configuration Framework. In Journal of Artificial
Intelligence Research, volume 36, pages 267–306,
October 2009.

[16] G. Reinelt. TSPLIB.
http://www.iwr.uni-heidelberg.de/groups/
comopt/software/TSPLIB95. Version visited last in
October 2011.

[17] J. Styles, H. H. Hoos, and M. Müller. Automatically
configuring algorithms for scaling performance. In
Proc. 6th Intl. Conference on Learning and Intelligent
Optimization (LION 6), volume 7219 of LNCS, pages
205–219. Springer-Verlag, 2012.

[18] D. Tompkins and H. H. Hoos. Dynamic scoring
functions with variable expressions: new SLS methods
for solving SAT. In Theory and Applications of
Satisfiability Testing (SAT), pages 278–292, 2010.

[19] L. Xu, F. Hutter, H. H. Hoos, and K. Leyton-Brown.
Hydra-MIP: Automated algorithm configuration and
selection for mixed integer programming. In RCRA
Workshop on Experimental Evaluation of Algorithms
for Solving Problems with Combinatorial Explosion at
the International Joint Conference on Artificial
Intelligence (IJCAI), pages 16–30, 2011.

558

