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Abstract. The prediction of a protein’s structure from its amino-acid sequence
is one of the most important problems in computational biology. In the current
work, we focus on a widely studied abstraction of this problem, the 2-dimensional
hydrophobic-polar (2D HP) protein folding problem. We present an improved
version of our recently proposed Ant Colony Optimisation (ACO) algorithm for
this NP-hard combinatorial problem and demonstrate its ability to solve standard
benchmark instances substantially better than the original algorithm; the perfor-
mance of our new algorithm is comparable with state-of-the-art Evolutionary and
Monte Carlo algorithms for this problem. The improvements over our previous
ACO algorithm include long range moves that allows us to perform modifica-
tion of the protein at high densities, the use of improving ants, and selective local
search. Overall, the results presented here establish our new ACO algorithm for
2D HP protein folding as a state-of-the-art method for this highly relevant prob-
lem from bioinformatics.

1 Introduction

Ant Colony Optimisation (ACO) is a population-based approach for solving combi-
natorial optimisation problems that is inspired by the foraging behaviour of ants. The
fundamental approach underlying ACO is an iterative process in which a population of
simple agents (“ants™) repeatedly construct candidate solutions; this construction pro-
cess is probabilistically guided by heuristic information on the given problem instance
as well as by a shared memory containing experience gathered by the ants in previ-
ous iterations (“pheromone trails™). Following the seminal work by Dorigo et al. [5],
ACO algorithms have been successfully applied to a broad range of hard combinatorial
problems (see, e.g., [6, 7]).

In this paper, we present a substantially improved version of the ACO algorithm first
proposed in [18] for solving an abstract variant of one of the most challenging prob-
lems in computational biology: the prediction of a protein’s structure from its amino-
acid sequence. Genomic and proteomic sequence information is now available for an
increasing number of organisms, and genetic engineering methods for producing pro-
teins are well developed. The biological function and properties of proteins, however,
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are crucially determined by their structure. Hence, the ability to reliably and efficiently
predict protein structure from sequence information would greatly simplify the tasks
of interpreting the sequence data collected, of designing drugs with specific therapeu-
tic properties, and of developing biological polymers with specific material properties.
Currently, protein structures are primarily determined by techniques such as NMRI
(nuclear-magnetic resonance imaging) and X-ray crystallography, which are expensive
in terms of equipment, computation and time. Additionally, they require isolation, pu-
rification and crystallization of the target protein. Computational approaches to protein
structure prediction are therefore very attractive. In this work, we focus on one of the
most studied simple protein models — the two dimensional Hydrophobic-Polar (2D
HP) Model. Even in this simplified model, finding optimal folds is computationally
hard (NP-hard).

The remainder of this paper is structured as follows. In Section 2, we introduce the
2D HP model of protein structure, and give a formal definition of the 2D HP Protein
Folding Problem as well as a brief overview of existing approaches for solving it. Our
improved ACO algorithm for the 2D HP Protein Folding Problem is described in Sec-
tion 3. (More information on our previous Ant Colony Optimisation algorithm can be
found in [18]). An empirical study of our new algorithm’s performance and the role
of various algorithmic features is presented in Section 4. In Section 5 we draw some
conclusions and point out several directions for future research.

2 The2D HP Protein Folding Problem

Since the processes involved in the folding of proteins are very complex and only par-
tially understood, simplified models like Dill’s Hydrophaobic-Polar (HP) model have
become one of the major tools for studying proteins [12]. The HP model is based on the
observation that hydrophobic interaction is the driving force for protein folding and the
hydrophobicity of amino acids is the main force for development of a native conforma-
tion of small globular proteins [12, 15].

In the HP model, the primary amino-acid sequence of a protein (which can be repre-
sented as a string over a twenty-letter alphabet) is abstracted to a sequence of hydropho-
bic (H) and polar (P) residues, i.e., amino-acid components. The protein conformations
of this sequence are restricted to self-avoiding paths on a lattice; for the 2D HP model
considered here, a 2-dimensional square lattice is used. An example for a protein con-
formation under the 2D HP model is shown in Figure 1.

One of the most common approaches to protein structure prediction is based on the
thermodynamic hypothesis which states that the native state of the protein is the one
with the lowest Gibbs free energy. In the HP model, based on the biological motivation
given above, the energy of a conformation is defined as a number of topological contacts
between hydrophobic amino-acids that are not neighbours in the given sequence. More
specifically, a conformation ¢ with exactly n such H-H contacts has free energy E(c) =
n - (—1); e.g., the conformation shown in Figure 1 has energy —9.

The 2D HP Protein Folding Problem can be formally defined as follows: Given an
amino-acid sequence s = s1Ss...Sy, find an energy-minimising conformation of s,
i.e, find ¢* € C(s) suchthat E* = E(c¢*) = min{E(c) | ¢ € C}, where C(s) is the
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Fig. 1. A sample protein conformation in the 2D HP model. The underlying protein sequence (Se-
quence 1 from Table 1) is HPHPPHHPHPPHPHHPPHPH; black squares represent hydropho-
bic amino-acids while white squares symbolise polar amino-acids. The dotted lines represents
the H-H contacts underlying the energy calculation. The energy of this conformation is -9, which
is optimal for the given sequence.

set of all valid conformations for s. It was recently proved that this problem and several
variations of it are A’P-hard [11].

Existing 2D HP Protein Folding Algorithms

A number of well-known heuristic optimisation methods have been applied to the 2D
HP Protein Folding Problem, including Evolutionary Algorithms (EAs) [10, 11, 20, 19]
and Monte Carlo (MC) algorithms [1, 3,9, 13,14, ?]. The latter have been found to be
particular robust and effective for finding high-quality solutions to the 2D HP Protein
Folding Problem [9].

An early application of EAs to protein structure prediction was presented by Unger
and Moult [19, 20]. They presented a nonstandard EA incorporating characteristics of
Monte Carlo methods, which was able to find high-quality conformations for a set of
protein sequences of length up to 64 amino-acids (see Table 1). Unfortunately, it is not
clear how long their algorithm ran to achieve these results.

Various Monte Carlo methods are among the best known algorithms for the 2D HP
Protein Folding Problem, including the Pruned Enriched Rosenbluth Method (PERM)
of Grassberger et al. [1,9]. PERM is a biased chain growth algorithm. Using this
method, the best known solution for Sequence 7 (E* = —36), Sequence 9 (E* = —53)
and Sequence 11 (E* = —48) from Table 1 were found; however, it took 30 hours on a
500 MHz DEC 21264 CPU to obtain the best-known conformation for Sequence 8 [9].

Other methods for this problem include the dynamic Monte Carlo algorithm by
Ramakrishnan et al. [14], which found conformations with energies —46 and —44 for
Sequence 10 and 11, respectively. Liang et al. [13] introduced the evolutionary Monte
Carlo (EMC) algorithm which works with population of individuals that each performs
Monte Carlo (MC) optimisation. They also implemented a variant of EMC which re-
inforces certain secondary structures («-helices and 3-sheets). EMC found the best-
known conformation (with energy —42) for Sequence 8 and a conformation with energy
—52 for Sequence 9 (with secondary structure constraints), but failed to find the best
known conformation for Sequence 7. Chikenji et al. introduced the Multi-self-overlap
ensemble (MSOE) Monte Carlo method [3], which considers overlapping chain con-
figurations; it found a best-known configuration for Sequence 10 (E* = —50) and a
sub-optimal configuration for Sequence 11 (E* = —47).



|Seq. No.|Length] E*[Protein Sequence

1 20 |-9|(HP),PH,PHP,HPH,P,HPH

2 24 | -9 |HoPy(HPs) Ho

3 25 -8 PQHP2H2P4H2P4H2P4H2

4 36 |-14|PsH2P>H>PsH;PH,P,HP>H P>

5 48 |-23|PoHP>H>P>H>PsH0cPsH2PoH> P> H P> H

6 50 |-21|H»(PH),PH,PHP;HP;HP,HP;HPsHPH,(PH),PH,

7 60 |-36|PHsPHgPsHcPHPsH2PsHsPH,PHP

8 64 |-42|Hi2(PH),(P2Hs),PsH(P2Hs),PyH(PsH2),PxHPHPH,»

9 85 |-53|H4PyH12Ps(H12P3) HP2(H2P),HPH

10 100 |-50\PsHoPyH4PyH3(PHo),HyPsHe PyHs PoHPH,PH11 P, H3PH)
PHP,HPH3PsH;

11 100 |-48|PéHPH>PsH3PHsPH>(P2H2),PHsPH,cPHyPH;P11H: PoH
PH3;PsHPHP:

Table 1. Benchmark instances for the 2D HP Protein Folding Problem used in
this study with optimal or best known energy values E*. (E* values printed in
bold-face are provably optimal.)) The first eight instances can also be found at
http://www.cs.sandia.gov/tech_reports/compbio/tortilla-hp-benchmarks.html, Sequence 9
is taken from [10], and the last two instances are taken from [14]. (H;, P;, and (...); indicate
1-fold repetitions of the respective symbol or subsequence.)

Finally, the Core-directed Chain Growth (CG) method of Beutler et al. approxi-
mates the hydrophobic core of the protein with a square (this is a very restrictive heuris-
tic that finds only certain native states). CG was able to find optimal or best known
conformations for Sequences 1 through 8, except for Sequence 7 [2].

Currently, none of these algorithm appears to completely dominate the others in
terms of solution quality and run-time.

3 Thelmproved ACO Algorithm

The ants in our ACO algorithm construct candidate conformations for a given HP
protein sequence, apply local search to achieve further improvements, and update the
pheromone trails based on the quality of the solutions found, as seen in the outline
Figure 2.

As in [11], candidate conformations are represented using local structure motifs (or
relative folding directions) straight (S), left (L), and right (R) which for each amino-
acid indicate its position on the 2D lattice relative to its direct predecessors in the given
sequence (see Figure 3).

Since conformations are invariant with respect to rotations, the position of the first
two amino-acids can be fixed without loss of generality. Hence, we represent candidate
conformations for a protein sequence of length n by a sequence of local structure mo-
tifs of length n — 2. For example, the conformation of Sequence 1 shown in Figure 1
corresponds to the motif sequence LSLLRRLRLLSLRRLLSL.



procedure ACO-for-static-optimisation
input: problem instance
output: candidate solution
initialise pheromone trails
while (termination condition not met) do
construct candidate solutions
perform local search
update pheromone trails
end while
return(best found solution)
end procedure

Fig. 2. Algorithmic outline of a generic ACO algorithm for a static combinatorial optimisation
problem.
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Fig. 3. The local structure motifs that form the solution components underlying the construction
and local search phases of our ACO algorithm.

Construction Phase, Pheromone and Heuristic Values

In the construction phase of our ACO algorithm, each ant first randomly determines a
starting point within the given protein sequence. From this starting point, the given pro-
tein sequence is folded in both directions, adding one amino-acid symbol at a time. The
relative directions in which the conformation is extended in each construction step are
determined probabilistically using heuristic values 7; 4, as well pheromone values 7; 4
(also called trail intensities), where where ¢ is a sequence positionand d € {S, L, R} is
the direction of folding at position i. These relative directions correspond to local struc-
ture motifs between triples of consecutive sequence positions s; 1s;s;41 that form the
solution components used by our ACO algorithm; conceptually, these play the same
role as the edges between cities in the Traveling Salesperson Problem, a classical appli-
cation domain of ACO.

Likewise, pheromone values 7; , and heuristic values ; , are used when extending
a conformation from position 7 to the < — 1. In our algorithm, we use T;’L = Ti R,
TZ'I7R = 7,1, and T;’S = 7,5 and analogous equalities for the respective ' values. This
reflects a fundamental symmetry underlying the folding process: Extending the fold
from sequence position ¢ to ¢ + 1 by placing s;4+1 right of s; (as seen from s;_1) or
extending it from position i to < — 1 by placing s;_1 left of s; (as seen from s;4.1) leads
to the same local conformation of s;_15;8;41.

The heuristic values 7; 4 should guide the construction process towards high-quality
candidate solutions, i.e., towards conformations with a maximal number of H-H in-
teractions. In our algorithm, this is achieved by defining 7; 4 based on h;14 4, the



number of new H-H contacts achieved by placing s;4+1 in direction d relative to s;
and s;_; when folding forwards (backwards folding is handled analogously). Note
that if s,41 = P, this amino-acid cannot contribute any new H-H contacts and hence
hiy1,s = hiy1,;. = hiy1,r = 0. Furthermore, for 1 < i < n —1, hj11,4 < 2 and
hn,a < 3; the actual h;y; 4 values can be easily determined by checking the seven
neighbours of the possible positions of s;11 on the 2D lattice (obviously, the position
of s; is occupied and hence not included in these checks). The heuristic values are then
defined as 7, ¢ = hit1,4+ 1; this ensures that n; 4 > 0 for all 4 and d which is important
in order to not exclude a priori any placement of s, in the construction process.
When extending a partial conformation sy ...s; to s;1 during the construction
phase of our ACO algorithm, the relative direction d of s; 1 W.r.t. s;_1s; is determined
based on the heuristic and pheromone values according to the following probabilities:

D= [7i,a]° [ni.a]”
’ Zee{L,R,S}[Ti,E]a[ni,e]'B

The case of extending partial conformation s; . . . s,,, to s;_1 is handled analogously.

In the previous version of the ACO algorithm [18], when folding from a randomly
determined starting point / (independently chosen for each ant), first, the partial confor-
mation s; . . . s1 is constructed, followed by the partial conformation s; . . . s,,. Here, we
consider a new, physically more plausible mechanism, in which folds are probabilis-
tically extended in both directions; more precisely, in each step an extension in each
direction is performed with a probability equal to the number of residues left to fold
at the respective end divided by the sum of the number of unfolded residues at both
ends. As in previous work [18], we also studied variants of our algorithm in which
all ants start their construction process at the same point (left end, middle, or right end
of the protein sequence). Performance results for these alternative mechanisms are re-
ported in Section 4. As in our first ACO algorithm for 2D HP Protein Folding [18], we
use a backtracking mechanism in the construction process to recover from infeasible
conformations, which are frequently encountered when folding long protein sequences.

1)

L ocal Search

Similar to other ACO algorithms known from the literature, our algorithm for the 2D HP
Protein Folding Problem incorporates a local search phase. In this work, we modified
the local search mechanism from our previous ACO algorithm by using a new type of
long range move, selective local search, and improving ants that perform probabilistic
iterative improvement on the best conformations seen so far.

Long range moves in the local search phase allow for chain reconfigurations even
when the protein conformation is very compact. Similar attempts were previously un-
dertaken but different from our approach these involve disconnection of the chain [14].
Conventional short range moves, such as point mutations (i.e., random modifications of
the direction of a single residue, which correspond to a rotations) and macro-mutations
(sequences of point mutations between two sequence positions) — both types of moves
have been employed in EAs for HP Protein Folding — result in infeasible conformation
when the protein is already dense. Likewise, standard Monte Carlo moves, such as the



end-move, crankshaft move, and corner move [14], are not powerful enough to change
a given configuration significantly.

Therefore, we designed a new type of long range move that closely models the
movement of real proteins. First, a sequence position at which the move is going to
originate is chosen uniformly at random.> Then we randomly modify the direction
of the chosen amino-acid and adjust the location of the remaining residues probabilis-
tically as follows. For each subsequent residue, we first attempt to place it using its
previous folding direction. If this is infeasible, we refold the residue probabilistically
using the same heuristic values as during the initial folding (but ignoring the pheromone
values). This initiates a chain reaction that continues until all the residues have found
feasible directions. Intuitively, this mechanism mimics the fact that in real proteins, a
moving residue will typically push its neighbours in the chain to different positions.

Since these long range moves are computationally quite expensive, our new algo-
rithm applies local search selectively. More precisely, local search is only applied to the
best conformations constructed in a given iteration of the algorithm; the fraction of ants
that are allowed to perform local search is a parameter of our algorithm. This selective
local search mechanismis based on the intuition that the improvement in solution qual-
ity that can be achieved by the local search procedure strongly depends on the energy
of the given starting conformation; in particular, bad starting conformations can rarely
be improved to high quality solutions.

In our original ACO algorithm for 2D HP Protein Folding [18], we only considered
forager ants that perform heuristic conformation construction followed by iterative im-
provement (“greedy”) local search. Here, we additionally introduce improving ants that
take the global best solution found so far (or best solution in the current iteration) and
apply probabilistic iterative improvement (“randomised greedy”) local search to it. It-
erative improvement accepts a new conformation generated via long range moves only
when the energy of the new conformation ¢’ improves over the energy of the current
conformation, c. Our probabilistic iterative improvement mechanism accepts worsening
steps depending on the respective deterioration of the evaluation function with proba-
bility p =E(c¢')/E(c). Algorithm outlines for the iterative improvement and probabilistic
iterative improvement local search procedures are given in Figures 4 and 5. The hum-
ber of improving ants used in each iteration of our algorithm is specified as a fraction
of the total number of ants; empirical results on the impact of this parameter on the
performance of our algorithm are reported in Section 4.

Update of the Pheromone Values

After each construction and local search phase, selected ants update the pheromone
values in ndard way:
alues in a standard way Tia e (1= p)Tia + Aiae @)

where 0 < p < 1 is the pheromone persistence, a parameter that determines how fast the
information gathered in previous iterations is “forgotten”, and A; 4. is the relative so-
lution quality of the given ant’s candidate conformation ¢ if that conformation contains

1 \We also tested a probabilistic selection of the origin (based on the constrainedness of the
residue position), but results were not significantly different from those for uniform random
choice.



procedure l1-LS
input: conformation ¢
output: conformation ¢/
while (termination condition not met) do
choose sequence index ¢ uniformly at random from 1..n
¢ = longRangeMove(s)
if E(c') < E(c) then
return (')
else
return (c)
end if
end while
end procedure

Fig. 4. The iterative improvement local search performed by forager ants after the construction
phase.

a local structure motif d at sequence position ¢ and zero otherwise. We use the relative
solution quality, E(c)/E*, where E* is the known minimal energy for the given protein
sequence or an approximation based on the number of H residues in the sequence, in
order to prevent premature search stagnation for sequences with large energy values.

4 Empirical Results

To assess its performance, we applied our improved ACO algorithm to the eleven stan-
dard benchmark instances for the 2D HP Protein Folding Problem shown in Table 1;
these instances have been widely used in the literature [1-3,11,13,18-20]. Experi-
ments were conducted by performing a number of independent runs for each problem
instance (500 runs for sequence length n < 50, 300 for 50 < n < 64, and 100 runs
for n > 64). Unless explicitly indicated otherwise, we used parameter settings a = 1,
B =2, p = 0.8 for all experiments; furthermore, a population of 500 ants was used for
small sequences (n < 48) while 1500 ants were used for larger sequences (n > 48); 1%
of these were allowed to perform local search, and the number of improving ants was
set to 0.5% of the total colony size. The local search procedure was terminated if no
solution improvement had been obtained while scanning through the protein sequence
once (for n < 48) or twice (for n > 48). Furthermore, we used elitist pheromone
update in which only the best 1% of the total colony size were used for updating the
pheromone values. Run-time was measured in terms of CPU time and all experiments
were performed on PCs with 1GHz and Pentium Il CPUs, 256KB cache and 1GB
RAM.

In the following, we report results from several series of experiments that highlight
the impact of various features of our new ACO algorithm on its performance. In these
experiments we used primarily two test sequences: Sequence 4 (short sequence, length
36) and Sequence 5 (longer sequence, length 48); these sequences were chosen since the
CPU time required to find the best known solutions was sufficiently small to perform a



procedure PII-LS
input: conformation ¢
output: conformation ¢/
while (termination condition not met) do
choose sequence index ¢ uniformly at random from 1..n
¢ = longRangeMove(s)
if E(c') < E(c) then
return (')
else
with probability p = E(c¢')/E(c) do
return (c')
otherwise
return (c)
end whith
end if
end while
end procedure

Fig. 5. The probabilistic iterative improvement local search procedure performed by the improv-
ing ants on the best configuration seen so far in the optimisation process.

large number of runs (300-500 per instance). We also tested other benchmark sequences
from Table 1 and generally obtained results similar to the ones described below.

ACO algorithms exploit heuristic information as well as information learned over
multiple iterations (the latter is reflected in the pheromone matrix). In a first experiment,
we investigated the impact of these two components and their relative importance for
the performance of our algorithms. Following the methodology of Hoos and Stiitzle
[8], we measured run-time distributions (RTDs) of our ACO algorithm, which represent
the (empirical) probability of reaching (or exceeding) a given solution quality within a
given run-time; the solution qualities used here and in the following experiments are
provably optimal or best known energies for the respective sequences. All RTDs are
based on 100-500 successful runs; we generally show semi-log plots to give a better
view of the distribution over its entire range.

As can be seen from the results shown in Figure 6, both, the pheromone values
and the heuristic information are important; when ignoring either of them (o« = 0 or
B = 0, respectively), the algorithm performs substantially worse, especially for larger
sequences. The optimal settings for « and 5 depends on the problem instance; as shown
in Figure 6, the heuristic information seems to be more important than the pheromone
information for small sequences. For longer sequences, the pheromone information ap-
pears to become more important than the heuristic information. These observations
were confirmed for other benchmark instances.

Secondly, we tested how the colony size, i.e., the number of ants that construct can-
didate solutions in each iteration affects the performance of our ACO algorithm. The
proportion of ants that perform local search, the proportion of elitist ants, and the pro-
portion of improving ants was chosen such that in all cases the number of local search
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Fig. 6. Effect of the « and 3 weights for pheromone and heuristic information respectively on the
average CPU time required for reaching optimal confirmations. Left side: Run-time distributions
(RTDs) for Sequence 4 (length 36), right side: RTDs for Sequence 5 (length 48).

ants, elitist ants, and improving ants, remains the same for all colony sizes. (Colony
sizes tested were between 15 and 2000 ants.)

As can be seen from the results shown in Figure 7, there appears to be a sin-
gle optimal colony size for each problem instance; optimal performance for longer se-
quences is achieved using larger colonies (1000 — 1500 ants) than for shorter sequences
(500 — 1000). It may be noted that using a single ant only (not shown here) was found
to result in extremely poor performance. These results can be intuitively explained as
follows. For very few ants, the probability of constructing high quality initial solutions
is very small and local search requires substantial amounts of CPU time for finding
conformations of the desired quality. Beyond a certain colony size, on the other hand,
the computational expense incurred for constructing additional conformations cannot
be amortised by reductions in local search cost. The longer the given sequence, the
more conformations need to be constructed to obtain the coverage (or exploration) of
the corresponding more extensive search spaces required to find good starting points
for the subsequent local search phase.

Our next experiment was designed to analyse the effectiveness of the selective local
search mechanism used in our new ACO algorithm, in which local search is only per-
formed by a certain fraction of all ants that constructed high quality conformations. The
results shown in Figure 8 indicate that there is a small optimal interval for the fraction of
local search ants; this optimal fraction depends on colony size and on the given problem
instance. Essentially, if the fraction of local search ants is too small, the search process
has difficulties in finding high quality conformations (lack of search intensification).
On the other hand, if too many ants perform local search, the benefit of the additional
local search does not amortise the higher computational cost. Our results indicate that
longer sequences require a lower fraction of local search ants than shorter sequences;
however, given the the larger optimal colony size, the optimal number of local search
ants increases with sequence size. This is consistent with the interpretation that larger
sequences require a more diversified search process, as provided by locally optimising
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Fig. 7. Median CPU time required to obtain the best known solution quality as a function of the
colony size (number of the ants on which construction is performed) for Sequence 4 (left side)
and Sequence 5 (right side).
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Fig. 8. Median CPU time required to obtain the best known solution quality as a function of the
proportion of the ants on which local search is performed for Sequence 4 (left side, colony size
500) and Sequence 5 (right side, colony size 1500).

a larger number of candidate solutions in each iteration. It is worth noting that without
a local search phase, the performance of our ACO method is abysmal.

The use of improving ants that, instead of iteratively constructing conformations,
use probabilistic iterative improvement local search on the best conformations seen so
far is an important new feature of our new ACO algorithm. Figure 9 illustrates the
results from our empirical analysis of the effectiveness of this feature in terms of the
impact of the fraction of improving ants on the performance of our algorithm. Overall,
the use of improving ants results in an performance increase of our algorithm for all
sequences; this effect is especially pronounced for long sequences.

It is interesting to note that the optimal ratio between the number of (forager) ants
that perform iterative improvement local search and the number of improving ants per-
forming probabilistic iterative improvement appears to be 1 : 1 for all sequences.

Finally, we studied the effect of the starting point for the construction of conforma-
tions on the performance of our improved ACO. It has been shown that real proteins
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Fig. 10. Impact of various strategies for choosing the starting point for constructing candidate
conformations. Left side: RTDs for Sequence 4, right side: RTDs for Sequence 5.

fold by hierarchical condensation starting from folding nuclei; the use of complex and
diverse folding pathways helps to avoid the need to extensively search large regions of
the conformation space [16]. This suggests that the starting point for the folding pro-
cess can be an important factor in searching for optimal conformations. We tested four
strategies for determining the starting point for the folding process performed in the
construction phase of our algorithm: all ants fold forwards, starting at the N-terminus
of the given sequence (position 1); all ants fold backwards, starting at the C-terminus
(position n); all ants fold forwards and backwards, starting at the midpoint of the given
sequence; and all ants fold forwards and backwards, starting at randomly determined
sequence positions. As can be seen from Figure 10, the best choice of the starting fold-
ing point depends on the given sequence, and in general, most consistent performance
on all sequences is obtained by allowing all ants start the folding process from randomly
chosen sequence positions. This is particularly the case for longer sequences, which re-
quire to a larger extent the added search diversification afforded by multiple and diverse
starting points.
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Instances Original ACO from [18] || New ACO (this paper)
No ‘Length‘E* E ‘sr[%]‘tavg[CPUsec] E ‘sr[%]‘tavg[CPUsec]
1 |20 -9 ||-9 (100 |23.90 -9 100 |3.33
2 |20 -9 ||-9 (100 |26.44 -9 1100 |2.52
3 |25 -8 ||-8 [100 |35.32 -8 [100 |10.62
4 |36 -14||-14|16.4 |(4,746.12) -14/100 |11.81
5 |48 -23(|-23|0.6  |(1,920.93) -23/100 |405.79
6 |50 -21(|-21|41.9 |(3,000.28) -21{100 |4,952.92
7 |60 -36(|-34|0.8  |(4,898.77) -36/100 |6,2471.24
8 |64 -42(|-32|14.5 |(4,736.98) -42/100 |5,844.93

Table 2. Performance comparison of the original and the improved ACO algorithm, where Eis
the best solution quality over all runs, sr is the success rate of the algorithm reported due to the
fact that some of the runs of older algorithm were unsuccessful, ¢..4 is the average run-time (in
CPU sec on a 1GHz Intel Pentium 11l machine) required by the algorithm to reach energy E.
Measurements are based on 20 — 700 runs for the original ACO algorithm and 300 — 500 tries
for the improved algorithm. Energies indicated in bold-face are currently best-known values.

After studying the influence of various parameters on our algorithm we conducted a
performance comparison with existing algorithms for the 2D HP Protein Folding Prob-
lem. As can be seen from the results reported in Table 2, our new ACO algorithm
found optimal or best known solutions for benchmark sequences 1-8, while our previ-
ous ACO algorithm [18] had failed to find optimal solutions for the longer sequences
7 and 8. Moreover, the new algorithm finds best-known solutions in every run, and in
cases where both algorithms have a success rate of 100%, it requires substantially less
time for finding optimal solutions.

For most GA and MC methods found in literature, including [11, 13,19, 20], only
the number of valid conformations scanned during the search is reported. This makes a
performance comparison difficult, since run-time spent for backtracking and the check-
ing of partial or infeasible conformations may vary substantially between different al-
gorithms. Table 3 illustrates the solution quality reached by various algorithms on the
test instances. These results indicate that our new ACO algorithm is competitive with
GA and MC methods described in literature; it works very well on sequences of sizes up
to 64 amino acids and produces high quality suboptimal configurations for the longest
sequences (85 and 100 amino acids) considered here.

We also compared our improved implementation to the best performing algorithm
from the literature for which performance data in terms of CPU time is available —
PERM [9] (we used the most recent implementation, which was kindly provided by
P. Grassberger). PERM is an iterated heuristic construction algorithm; it evaluates par-
tially folded conformations, and creates copies of those partial configurations that have
high statistical weight (enrichment, based on energy achieved and folded length), and
it eliminates partial conformations with low weight (pruning). After completing the
folding of the current configuration, PERM performs backjumping to the next partial
configuration that was put on the stack during enrichment (or starts a new chain). It
should be noted that tries in PERM are not entirely independent, since some statistical
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|N0|Length|Energy||GA |EMC |MSOE |NEWACO |
1 |20 -9 -9(30,492) |-9(9,374) -9

2 |24 -9 -9(30,491) |{-9(6,929) -9

3 125 -8 -8 (20,400) |-8(7,202) -8

4 |36 -14 -14 (301, 339)|-14 (12, 447) -14

5 |48 -23 -23 (126, 547)|-23 (165, 791) -23

6 (50 -21 -21 (592, 887)|-21 (74,613) -21

7 |60 -36 -34 (208, 781)|-35 (203, 729) -36

8 |64 -42 -37 (187, 393)|-39 (564, 809)(-42 (30 hrs)|-42 (2 hrs)
9 |85 -53 -52 (44, 029) -51 (6 hrs)
10 (100 -50 -50 (50 hrs)|-47 (9 hrs)
11 (100 -48 -47 -47 (3 hrs)

Table 3. Comparison of the solution quality obtained by the genetic algorithm (GA), the evo-
lutionary Monte Carlo (EMC), Multi-Self-Overlap Ensemble (MSOE) and new ACO. For GA
and EMC, the reported energy values are the lowest among five independent runs, and the values
shown in parentheses are the numbers of valid conformations scanned before the lowest energy
values were found. Gaps in the table indicate that particular method has not been tested on the
respective instance. The CPU times on a 500 MHz CPU are reported in parenthesis for MSOE
(where available) and CPU times on a 1 GHz CPU are reported in parenthesis for the new ACO.
Energies indicated in bold are currently best known values.

information, including upper and lower thresholds on weights and statistical averages,
are kept between tries. Although the PERM algorithm is randomised, as seen from em-
pirical observations the time it takes to find the first optimal conformation has very low
variation. The only fair comparison of the new ACO and PERM is by considering time
it takes to reach first optimum. As can be seen from Table 4, our improved ACO al-
gorithm requires less CPU time on average for finding best known conformations for
Sequences 5 (slightly) and 8 (significantly); but PERM performs better for Sequences 6
and Sequence 7 (significantly). Sequence 8 has a very symmetrical optimal conforma-
tion that, as argued in [9], would be difficult to find for any chain growth algorithm; our
ACO algorithm is able to handle it quite well, since a number of ants folding from dif-
ferent starting points can produce good folding motives with respect to various starting
folding points. For the longest sequences (85 and 100 amino acids), our algorithm finds
high quality configurations, but does not reach the solution quality obtained by PERM.

5 Conclusions and Future Work

In this paper we introduced an improved ACO algorithm for the 2D HP Protein Folding
Problem that has shown promising performance for an extremely simplified but widely
studied and computationally hard protein structure prediction problem. An empirical
study of our algorithm demonstrated the effectiveness of the improved ACO approach
for solving this problem and highlighted the impact of its new features, including long
range moves, improving ants, and selective local search. Long range moves in combi-
nation with the non-greedy local search performed by improving ants allows for the re-
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Instances New ACO PERM
No ‘Length‘E* E |tawg[CPUsed||E ‘tfimt[CPUsec] tavg[CPUsec]
1 20 -9 (-9 (3.33 -9 |0.01 0.01
2 |20 -9 ||-9 |2.52 -9 |0.02 0.02
3 |25 -8 ||-8 |10.62 -8 (80.01 16.29
4 |36 -14(|-14(11.81 -14 10.05 0.21
5 |48 -23||-23|405.79 -23 [1,762.69 881.67
6 50 -21|(-21/4,952.92 -21 (0.48 1.61
7 60 -36(|-36(62,471.24 -36 |0.52 4.43
8 |64 -42||-42|5,844.93 -38%((6.07) (7.90)
9 |85  |-53-51|(21,901.34) |-53 |31.95 11.74
10 {100 -50](-47{(29,707.22) -50 {19,962 14,432.10
11 {100 -48||-47((10,835.51) -48 |152.71 144.41

Table 4. Comparison of the improved ACO algorithm and PERM, where E is the best solution
quality over all runs, ¢, is the average run-time required by the algorithm to reach energy £ on
1GHz CPU machine (both for ACO and PERM), ¢ ;.. is the time required to reach energy £ in
the first run (reported for PERM since only the first run is independent of the others and can be
compared with ACO). Measurements are based on 100 — 500 tries for ACO algorithm, PERM
reports 20 — 200 tries. Energies indicated in bold are currently best-known values.

* After running PERM for 2 days wall clock time, —38 was the best energy reached.

laxation of compact conformations, which helps the search to escape from local optima
encountered by greedy local search. Selective local search reduces the time complexity
of the local search phase by performing this time critical operation only on promising,
low energy conformations (which provide the best starting points for the optimisation
via local search).

In general, we expect that the improvements introduced in this work for an ACO
algorithm for the 2D HP Protein Folding Problem can be utilised for solving more tra-
ditional artificial intelligence problems (such as constraint satisfaction problems [17]).
For example, the use of improving ants provides a general means of intensifying the
search around high quality solutions, while long range moves in local search can be
useful for escaping from local optima by considering higher order neighbourhoods rel-
evant to the particular problem.

There are many directions for future research on ACO algorithms for protein folding
problems. It might be fruitful to consider ACO approaches based on more complex
solution components than the simple local structure motifs used here. Furthermore,
separate pheromone matrices could be used for independently reinforcing secondary
and tertiary interactions. Finally, it would be interesting to develop and study ACO
algorithms for other types of protein folding problems, such as the 3-dimensional HP
model [4].

Overall, we strongly believe that ACO algorithms offer considerable potential for
solving protein structure prediction problems robustly and efficiently and that further
work in this area should be undertaken.
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