
Automatic Algorithm Configuration
based on Local Search

Frank Hutter1 Holger Hoos1 Thomas Stützle2

1Department of Computer Science
University of British Columbia

Canada

2IRIDIA
Université Libre de Bruxelles

Belgium

Motivation for automatic algorithm configuration

I Want to design ‘best’ algorithm to solve a problem

– Many design choices need to be made
– Some choices deferred to later: free parameters of algorithm
– Set parameters to maximise empirical performance

I Finding best parameter configuration is non-trivial

– Many parameters, discrete & continuous
– Dependencies between parameters
– Many test instances needed to generalize
– Many runs per instance needed for randomised algorithms

I Algorithm configuration / tuning still often done manually,
using ad-hoc methods

 tedious and time-consuming, sub-optimal results
 big incentive for automation

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Motivation for automatic algorithm configuration

I Want to design ‘best’ algorithm to solve a problem

– Many design choices need to be made
– Some choices deferred to later: free parameters of algorithm
– Set parameters to maximise empirical performance

I Finding best parameter configuration is non-trivial

– Many parameters, discrete & continuous
– Dependencies between parameters
– Many test instances needed to generalize
– Many runs per instance needed for randomised algorithms

I Algorithm configuration / tuning still often done manually,
using ad-hoc methods

 tedious and time-consuming, sub-optimal results
 big incentive for automation

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Motivation for automatic algorithm configuration

I Want to design ‘best’ algorithm to solve a problem

– Many design choices need to be made
– Some choices deferred to later: free parameters of algorithm
– Set parameters to maximise empirical performance

I Finding best parameter configuration is non-trivial

– Many parameters, discrete & continuous
– Dependencies between parameters
– Many test instances needed to generalize
– Many runs per instance needed for randomised algorithms

I Algorithm configuration / tuning still often done manually,
using ad-hoc methods

 tedious and time-consuming, sub-optimal results
 big incentive for automation

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Tune 26 parameters of new DPLL-type SAT solver (Spear)

– 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
– Variable/value heuristics, clause learning, restarts, ...

I Minimize expected run-time

I Problems:

– default settings ≈ 300 seconds / run
– good performance on a few instances may not generalise

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 3

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Tune 26 parameters of new DPLL-type SAT solver (Spear)

– 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
– Variable/value heuristics, clause learning, restarts, ...

I Minimize expected run-time

I Problems:

– default settings ≈ 300 seconds / run
– good performance on a few instances may not generalise

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 3

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Tune 26 parameters of new DPLL-type SAT solver (Spear)

– 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
– Variable/value heuristics, clause learning, restarts, ...

I Minimize expected run-time

I Problems:

– default settings ≈ 300 seconds / run
– good performance on a few instances may not generalise

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 3

Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Tune 26 parameters of new DPLL-type SAT solver (Spear)

– 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
– Variable/value heuristics, clause learning, restarts, ...

I Minimize expected run-time

I Problems:

– default settings ≈ 300 seconds / run
– good performance on a few instances may not generalise

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 3

Standard algorithm configuration approach

I Choose a “representative” benchmark set for tuning

I Perform iterative manual tuning:

start with some parameter configuration
repeat

modify a single parameter
if results on tuning set improve then

keep new configuration

until no more improvement possible (or “good enough”)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 4

Standard algorithm configuration approach

I Choose a “representative” benchmark set for tuning

I Perform iterative manual tuning:

start with some parameter configuration
repeat

modify a single parameter
if results on tuning set improve then

keep new configuration

until no more improvement possible (or “good enough”)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 4

Problems:

I cost for evaluating configuration depends on number and
hardness of problem instances

I constraints on tuning time (per iteration and overall)
 typically use few and fairly easy instances, few iterations

I manual search = iterative improvement (hill climbing)
 finds local optimum only

I slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

Solution:

I automate process

I use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Problems:

I cost for evaluating configuration depends on number and
hardness of problem instances

I constraints on tuning time (per iteration and overall)
 typically use few and fairly easy instances, few iterations

I manual search = iterative improvement (hill climbing)
 finds local optimum only

I slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

Solution:

I automate process

I use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Problems:

I cost for evaluating configuration depends on number and
hardness of problem instances

I constraints on tuning time (per iteration and overall)
 typically use few and fairly easy instances, few iterations

I manual search = iterative improvement (hill climbing)
 finds local optimum only

I slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

Solution:

I automate process

I use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Problems:

I cost for evaluating configuration depends on number and
hardness of problem instances

I constraints on tuning time (per iteration and overall)
 typically use few and fairly easy instances, few iterations

I manual search = iterative improvement (hill climbing)
 finds local optimum only

I slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

Solution:

I automate process

I use more powerful search method

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004, 2006]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches
I Regression trees [Bartz-Beielstein et al. 2004]
I Response surface models, DACE

[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance / reactive tuning
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 6

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004, 2006]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches
I Regression trees [Bartz-Beielstein et al. 2004]
I Response surface models, DACE

[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance / reactive tuning
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 6

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004, 2006]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches
I Regression trees [Bartz-Beielstein et al. 2004]
I Response surface models, DACE

[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance / reactive tuning
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 6

Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004, 2006]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches
I Regression trees [Bartz-Beielstein et al. 2004]
I Response surface models, DACE

[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance / reactive tuning
 orthogonal to the approach followed here

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 6

Outline

1. Introduction

2. Iterated local search over parameter configurations

3. The FocusedILS algorithm

4. Sample applications and performance results

5. Conclusions and future work

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 7

ILS in parameter configuration space (ParamILS):

choose initial parameter configuration θ
perform subsidiary local search on s

While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 performs biased random walk over local minima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

ILS in parameter configuration space (ParamILS):

choose initial parameter configuration θ
perform subsidiary local search on s
While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ

|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 performs biased random walk over local minima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

ILS in parameter configuration space (ParamILS):

choose initial parameter configuration θ
perform subsidiary local search on s
While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 performs biased random walk over local minima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

ILS in parameter configuration space (ParamILS):

choose initial parameter configuration θ
perform subsidiary local search on s
While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 performs biased random walk over local minima

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 8

Details on ParamILS:

I subsidiary local search: iterative first improvement,
change on parameter in each step

I perturbation: change 3 randomly chosen parameters

I acceptance criterion: always select better configuration

I initialisation: pick best of default + R random configurations

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

Details on ParamILS:

I subsidiary local search: iterative first improvement,
change on parameter in each step

I perturbation: change 3 randomly chosen parameters

I acceptance criterion: always select better configuration

I initialisation: pick best of default + R random configurations

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

Details on ParamILS:

I subsidiary local search: iterative first improvement,
change on parameter in each step

I perturbation: change 3 randomly chosen parameters

I acceptance criterion: always select better configuration

I initialisation: pick best of default + R random configurations

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

Details on ParamILS:

I subsidiary local search: iterative first improvement,
change on parameter in each step

I perturbation: change 3 randomly chosen parameters

I acceptance criterion: always select better configuration

I initialisation: pick best of default + R random configurations

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 9

Evaluation of a parameter configuration θ (based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances, execute algorithm with
configuration θ.

I Record scalar cost of each of the N runs: sc1, . . . , scn

(run-time, solution quality, . . .)

 empirical cost distribution ĈD

I Compute scalar statistic ĉN(θ) of ĈD (mean, median, . . .)

I Note: For large N, ĉN(θ) approaches true cost c(θ)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

Evaluation of a parameter configuration θ (based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances, execute algorithm with
configuration θ.

I Record scalar cost of each of the N runs: sc1, . . . , scn

(run-time, solution quality, . . .)

 empirical cost distribution ĈD

I Compute scalar statistic ĉN(θ) of ĈD (mean, median, . . .)

I Note: For large N, ĉN(θ) approaches true cost c(θ)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

Evaluation of a parameter configuration θ (based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances, execute algorithm with
configuration θ.

I Record scalar cost of each of the N runs: sc1, . . . , scn

(run-time, solution quality, . . .)

 empirical cost distribution ĈD

I Compute scalar statistic ĉN(θ) of ĈD (mean, median, . . .)

I Note: For large N, ĉN(θ) approaches true cost c(θ)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

Evaluation of a parameter configuration θ (based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances, execute algorithm with
configuration θ.

I Record scalar cost of each of the N runs: sc1, . . . , scn

(run-time, solution quality, . . .)

 empirical cost distribution ĈD

I Compute scalar statistic ĉN(θ) of ĈD (mean, median, . . .)

I Note: For large N, ĉN(θ) approaches true cost c(θ)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

Evaluation of a parameter configuration θ (based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances, execute algorithm with
configuration θ.

I Record scalar cost of each of the N runs: sc1, . . . , scn

(run-time, solution quality, . . .)

 empirical cost distribution ĈD

I Compute scalar statistic ĉN(θ) of ĈD (mean, median, . . .)

I Note: For large N, ĉN(θ) approaches true cost c(θ)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 10

Solution quality over time achieved by ParamILS

10
1

10
2

10
3

10
4

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6
x 10

4

CPU time [s]

R
un

le
ng

th
 (

m
ed

ia
n,

 1
0%

 &
 9

0%
 q

ua
nt

ile
s)

BasicILS(100) performance on training set

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 11

Question: How many runs/instances?

I too many

 evaluating a configuration is very expensive
 optimisation process is very slow

I too few

 very noisy approximations ĉN(θ)
 poor generalisation to independent test runs

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 12

Question: How many runs/instances?

I too many

 evaluating a configuration is very expensive
 optimisation process is very slow

I too few

 very noisy approximations ĉN(θ)
 poor generalisation to independent test runs

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 12

Generalisation to independent test runs (1)

10
1

10
2

10
3

10
4

1

1.5

2

2.5

x 10
4

CPU time [s]

R
un

le
ng

th
 (

m
ed

ia
n,

 1
0%

 &
 9

0%
 q

ua
nt

ile
s)

BasicILS(100) performance on test set
BasicILS(100) performance on training set

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 13

Generalisation to independent test runs (2)

10
−2

10
0

10
2

0

1

2

3

4

5

6
x 10

4

CPU time [s]

R
un

le
ng

th
 (

m
ed

ia
n,

 1
0%

 &
 9

0%
 q

ua
nt

ile
s)

BasicILS(1) performance on test set
BasicILS(1) performance on training set

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 14

The FocusedILS algorithm

I Given a budget of available CPU time for tuning, use different
numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 15

The FocusedILS algorithm

I Given a budget of available CPU time for tuning, use different
numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 15

The FocusedILS algorithm

Theorem:

As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

Key ideas in proof:

1. For N(θ),N(θ′) →∞, comparisons between θ, θ′

become precise.

2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

The FocusedILS algorithm

Theorem:

As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

Key ideas in proof:

1. For N(θ),N(θ′) →∞, comparisons between θ, θ′

become precise.

2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

The FocusedILS algorithm

Theorem:

As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

Key ideas in proof:

1. For N(θ),N(θ′) →∞, comparisons between θ, θ′

become precise.

2. Underlying ILS eventually reaches any configuration θ.

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 16

Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 17

Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

BasicILS(10)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 17

Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

BasicILS(10)

BasicILS(1)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 17

Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n

ru
nl

en
gt

h
of

 S
A

P
S

 [s
te

ps
]

BasicILS(100)

FocusedILS

BasicILS(10)

BasicILS(1)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 17

Sample applications and performance results

Experiment: Comparison to CALIBRA

Scenario Default CALIBRA(100) BasicILS(100) FocusedILS

GLS-GRID ε = 1.81 1.234± 0.492 0.951± 0.004 0.949 ± 0.0001

SAPS-QWH 85.5K steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K

SAPS-SW 5.60 s 0.053± 0.010 0.046± 0.01 0.043 ± 0.005

SAT4J-SW 7.02 s (too many param.) 1.19± 0.58 0.65 ± 0.2

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18

Sample applications and performance results

Experiment: Comparison to CALIBRA

Scenario Default CALIBRA(100) BasicILS(100) FocusedILS

GLS-GRID ε = 1.81 1.234± 0.492 0.951± 0.004 0.949 ± 0.0001

SAPS-QWH 85.5K steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K

SAPS-SW 5.60 s 0.053± 0.010 0.046± 0.01 0.043 ± 0.005

SAT4J-SW 7.02 s (too many param.) 1.19± 0.58 0.65 ± 0.2

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18

Sample applications and performance results

Experiment: Comparison to CALIBRA

Scenario Default CALIBRA(100) BasicILS(100) FocusedILS

GLS-GRID ε = 1.81 1.234± 0.492 0.951± 0.004 0.949 ± 0.0001

SAPS-QWH 85.5K steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K

SAPS-SW 5.60 s 0.053± 0.010 0.046± 0.01 0.043 ± 0.005

SAT4J-SW 7.02 s (too many param.) 1.19± 0.58 0.65 ± 0.2

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18

Sample applications and performance results

Experiment: Comparison to CALIBRA

Scenario Default CALIBRA(100) BasicILS(100) FocusedILS

GLS-GRID ε = 1.81 1.234± 0.492 0.951± 0.004 0.949 ± 0.0001

SAPS-QWH 85.5K steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K

SAPS-SW 5.60 s 0.053± 0.010 0.046± 0.01 0.043 ± 0.005

SAT4J-SW 7.02 s (too many param.) 1.19± 0.58 0.65 ± 0.2

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18

Speedup obtained by automated tuning
(SAPS default vs tuned on test set SW-GCP)

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

10
−2

10
−1

10
0

10
1

10
2

10
3

10
4

run−time [s], default parameters

ru
n−

tim
e

[s
],

au
to

−
tu

ne
d

pa
ra

m
et

er
s

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 19

Two ‘real-world” applications

I New DPLL-type SAT solver Spear
I 26 parameters
I Software verification: 500-fold speedup
I Hardware verification: 4.5-fold speedup
 New state of the art for those instances
 Hutter, Babić, Hoos & Hu: FMCAD ’07 (to appear)

I New replica exchange Monte Carlo algorithm for protein
structure prediction

I 3 parameters
I 2-fold improvement
 New state of the art for 2D/3D protein structure prediction
 Thachuk, Shmygelska & Hoos (under review)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

Two ‘real-world” applications

I New DPLL-type SAT solver Spear
I 26 parameters
I Software verification: 500-fold speedup
I Hardware verification: 4.5-fold speedup
 New state of the art for those instances
 Hutter, Babić, Hoos & Hu: FMCAD ’07 (to appear)

I New replica exchange Monte Carlo algorithm for protein
structure prediction

I 3 parameters
I 2-fold improvement
 New state of the art for 2D/3D protein structure prediction
 Thachuk, Shmygelska & Hoos (under review)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 20

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I FocusedILS:
I converges provably towards optimal configuration,

no over-confidence
I excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for SAPS (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 21

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I FocusedILS:
I converges provably towards optimal configuration,

no over-confidence
I excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for SAPS (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 21

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I FocusedILS:
I converges provably towards optimal configuration,

no over-confidence
I excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for SAPS (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 21

Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I FocusedILS:
I converges provably towards optimal configuration,

no over-confidence
I excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for SAPS (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 21

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 22

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 22

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 22

Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Per-instance tuning

I Automatic algorithm design

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 22

