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Motivation for automatic algorithm configuration

I Want to design ‘best’ algorithm to solve a problem

– Many design choices need to be made
– Some choices deferred to later: free parameters of algorithm
– Set parameters to maximise empirical performance

I Finding best parameter configuration is non-trivial

– Many parameters, discrete & continuous
– Dependencies between parameters
– Many test instances needed to generalize
– Many runs per instance needed for randomised algorithms

I Algorithm configuration / tuning still often done manually,
using ad-hoc methods

 tedious and time-consuming, sub-optimal results
 big incentive for automation

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2



Motivation for automatic algorithm configuration

I Want to design ‘best’ algorithm to solve a problem

– Many design choices need to be made
– Some choices deferred to later: free parameters of algorithm
– Set parameters to maximise empirical performance

I Finding best parameter configuration is non-trivial

– Many parameters, discrete & continuous
– Dependencies between parameters
– Many test instances needed to generalize
– Many runs per instance needed for randomised algorithms

I Algorithm configuration / tuning still often done manually,
using ad-hoc methods

 tedious and time-consuming, sub-optimal results
 big incentive for automation
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Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 2



Real-world example:

I Application: Solving SAT-encoded software verification
problems

I Tune 26 parameters of new DPLL-type SAT solver (Spear)

– 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
– Variable/value heuristics, clause learning, restarts, ...

I Minimize expected run-time

I Problems:

– default settings  ≈ 300 seconds / run
– good performance on a few instances may not generalise
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Standard algorithm configuration approach

I Choose a “representative” benchmark set for tuning

I Perform iterative manual tuning:

start with some parameter configuration
repeat

modify a single parameter
if results on tuning set improve then

keep new configuration

until no more improvement possible (or “good enough”)
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Problems:

I cost for evaluating configuration depends on number and
hardness of problem instances

I constraints on tuning time (per iteration and overall)
 typically use few and fairly easy instances, few iterations

I manual search = iterative improvement (hill climbing)
 finds local optimum only

I slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

Solution:

I automate process

I use more powerful search method
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Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 5



Related work

I Search approaches
[Minton 1993, 1996], [Hutter 2004], [Cavazos & O’Boyle 2005],
[Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

I Racing algorithms/Bandit solvers
[Birattari et al. 2002], [Smith et al. 2004, 2006]

I Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

I Learning approaches
I Regression trees [Bartz-Beielstein et al. 2004]
I Response surface models, DACE

[Bartz-Beielstein et al. 2004–2006]

I Lots of work on per-instance / reactive tuning
 orthogonal to the approach followed here
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Outline

1. Introduction

2. Iterated local search over parameter configurations

3. The FocusedILS algorithm

4. Sample applications and performance results

5. Conclusions and future work
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ILS in parameter configuration space (ParamILS):

choose initial parameter configuration θ
perform subsidiary local search on s

While tuning time left:
|| θ′ := θ
|| perform perturbation on θ
|| perform subsidiary local search on θ
|||| based on acceptance criterion,
|| keep θ or revert to θ := θ′

||b with probability prestart randomly pick new θ

 performs biased random walk over local minima
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Details on ParamILS:

I subsidiary local search: iterative first improvement,
change on parameter in each step

I perturbation: change 3 randomly chosen parameters

I acceptance criterion: always select better configuration

I initialisation: pick best of default + R random configurations
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Evaluation of a parameter configuration θ (based on N runs)

I Sample N instances from given set (with repetitions)

I For each of the N instances, execute algorithm with
configuration θ.

I Record scalar cost of each of the N runs: sc1, . . . , scn

(run-time, solution quality, . . . )

 empirical cost distribution ĈD

I Compute scalar statistic ĉN(θ) of ĈD (mean, median, . . . )

I Note: For large N, ĉN(θ) approaches true cost c(θ)
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Solution quality over time achieved by ParamILS
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Question: How many runs/instances?

I too many

 evaluating a configuration is very expensive
 optimisation process is very slow

I too few

 very noisy approximations ĉN(θ)
 poor generalisation to independent test runs
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Generalisation to independent test runs (1)
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Generalisation to independent test runs (2)
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The FocusedILS algorithm

I Given a budget of available CPU time for tuning, use different
numbers of runs, N(θ), for each configuration θ

I Idea: Use high N(θ) only for good θ

– start with N(θ) = 0 for all θ
– increment N(θ) whenever θ is visited
– additional runs upon finding new, better configuration θ
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The FocusedILS algorithm

Theorem:

As number of FocusedILS iterations →∞,
it converges to true optimal configuration θ∗

Key ideas in proof:

1. For N(θ),N(θ′) →∞, comparisons between θ, θ′

become precise.

2. Underlying ILS eventually reaches any configuration θ.
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Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)
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Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 17



Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)

10
−2

10
0

10
2

10
4

1

1.2

1.4

1.6

1.8

2

2.2
x 10

4

CPU time for ParamILS [s]

M
ed

ia
n 

ru
nl

en
gt

h 
of

 S
A

P
S

 [s
te

ps
]

 

 
BasicILS(100)

BasicILS(10)
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Performance of FocusedILS vs BasicILS
(Test performance on SAPS-QWH)
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Sample applications and performance results

Experiment: Comparison to CALIBRA

Scenario Default CALIBRA(100) BasicILS(100) FocusedILS

GLS-GRID ε = 1.81 1.234± 0.492 0.951± 0.004 0.949 ± 0.0001

SAPS-QWH 85.5K steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K

SAPS-SW 5.60 s 0.053± 0.010 0.046± 0.01 0.043 ± 0.005

SAT4J-SW 7.02 s (too many param.) 1.19± 0.58 0.65 ± 0.2

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 18



Sample applications and performance results

Experiment: Comparison to CALIBRA

Scenario Default CALIBRA(100) BasicILS(100) FocusedILS

GLS-GRID ε = 1.81 1.234± 0.492 0.951± 0.004 0.949 ± 0.0001

SAPS-QWH 85.5K steps 10.7K ± 1.1K 10.9K ± 0.6K 10.6K ± 0.5K

SAPS-SW 5.60 s 0.053± 0.010 0.046± 0.01 0.043 ± 0.005

SAT4J-SW 7.02 s (too many param.) 1.19± 0.58 0.65 ± 0.2
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Speedup obtained by automated tuning
(SAPS default vs tuned on test set SW-GCP)
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Two ‘real-world” applications

I New DPLL-type SAT solver Spear
I 26 parameters
I Software verification: 500-fold speedup
I Hardware verification: 4.5-fold speedup
 New state of the art for those instances
 Hutter, Babić, Hoos & Hu: FMCAD ’07 (to appear)

I New replica exchange Monte Carlo algorithm for protein
structure prediction

I 3 parameters
I 2-fold improvement
 New state of the art for 2D/3D protein structure prediction
 Thachuk, Shmygelska & Hoos (under review)
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Conclusions

I ParamILS: Simple and efficient framework for automatic
parameter optimization

I FocusedILS:
I converges provably towards optimal configuration,

no over-confidence
I excellent performance in practice (outperforms BasicILS,

CALIBRA)

I Huge speedups:
I ≈ 100× for SAPS (local search) on graph colouring
I ≈ 500× for Spear (tree search) on software verification

I Publically available at:
http://www.cs.ubc.ca/labs/beta/Projects/ParamILS
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Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Per-instance tuning

I Automatic algorithm design
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Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search 22



Future work

I Continuous parameters (currently discretised)

I Statistical tests (cf. racing algorithms)

I Per-instance tuning

I Automatic algorithm design
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