Automatic Algorithm Configuration based on Local Search

Frank Hutter¹ Holger Hoos¹ Thomas Stützle²

¹Department of Computer Science University of British Columbia Canada

²IRIDIA Université Libre de Bruxelles Belgium

Motivation for automatic algorithm configuration

- Want to design 'best' algorithm to solve a problem
 - Many design choices need to be made
 - Some choices deferred to later: free parameters of algorithm
 - Set parameters to maximise empirical performance

Motivation for automatic algorithm configuration

- Want to design 'best' algorithm to solve a problem
 - Many design choices need to be made
 - Some choices deferred to later: free parameters of algorithm
 - Set parameters to maximise empirical performance
- Finding best parameter configuration is non-trivial
 - Many parameters, discrete & continuous
 - Dependencies between parameters
 - Many test instances needed to generalize
 - Many runs per instance needed for randomised algorithms

Motivation for automatic algorithm configuration

- Want to design 'best' algorithm to solve a problem
 - Many design choices need to be made
 - Some choices deferred to later: free parameters of algorithm
 - Set parameters to maximise empirical performance
- Finding best parameter configuration is non-trivial
 - Many parameters, discrete & continuous
 - Dependencies between parameters
 - Many test instances needed to generalize
 - Many runs per instance needed for randomised algorithms
- Algorithm configuration / tuning still often done manually, using ad-hoc methods
 - $\rightsquigarrow\,$ tedious and time-consuming, sub-optimal results
 - \rightsquigarrow big incentive for automation

 Application: Solving SAT-encoded software verification problems

- Application: Solving SAT-encoded software verification problems
- ► Tune 26 parameters of new DPLL-type SAT solver (SPEAR)
 - 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
 - Variable/value heuristics, clause learning, restarts, ...

- Application: Solving SAT-encoded software verification problems
- ► Tune 26 parameters of new DPLL-type SAT solver (SPEAR)
 - 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
 - Variable/value heuristics, clause learning, restarts, ...
- Minimize expected run-time

- Application: Solving SAT-encoded software verification problems
- ► Tune 26 parameters of new DPLL-type SAT solver (SPEAR)
 - 7 categorical, 3 boolean, 12 continuous, 4 integer parameters
 - Variable/value heuristics, clause learning, restarts, ...
- Minimize expected run-time
- Problems:
 - default settings $\rightsquigarrow \approx$ 300 seconds / run
 - good performance on a few instances may not generalise

Standard algorithm configuration approach

Choose a "representative" benchmark set for tuning

Standard algorithm configuration approach

- Choose a "representative" benchmark set for tuning
- Perform iterative manual tuning:

start with some parameter configuration repeat modify a single parameter if results on tuning set improve then keep new configuration

until no more improvement possible (or "good enough")

- cost for evaluating configuration depends on number and hardness of problem instances
- constraints on tuning time (per iteration and overall)
 vypically use few and fairly easy instances, few iterations

- cost for evaluating configuration depends on number and hardness of problem instances
- constraints on tuning time (per iteration and overall)
 vypically use few and fairly easy instances, few iterations
- manual search = iterative improvement (hill climbing) ~ finds local optimum only

- cost for evaluating configuration depends on number and hardness of problem instances
- constraints on tuning time (per iteration and overall)
 vypically use few and fairly easy instances, few iterations
- slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

- cost for evaluating configuration depends on number and hardness of problem instances
- constraints on tuning time (per iteration and overall)
 vypically use few and fairly easy instances, few iterations
- slow and tedious, requires significant human time
 procedure often performed in ad-hoc way

Solution:

- automate process
- use more powerful search method

Search approaches

[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005], [Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

Search approaches

[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005], [Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

 Racing algorithms/Bandit solvers [Birattari et al. 2002], [Smith et al. 2004, 2006]

Search approaches

[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005], [Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

- Racing algorithms/Bandit solvers [Birattari et al. 2002], [Smith et al. 2004, 2006]
- Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]

Search approaches

[Minton 1993, 1996], [Hutter 2004], [Cavazos & O'Boyle 2005], [Adenso-Diaz & Laguna 2006], [Audet & Orban 2006]

- Racing algorithms/Bandit solvers [Birattari et al. 2002], [Smith et al. 2004, 2006]
- Stochastic Optimisation [Kiefer & Wolfowitz 1952], [Spall 1987]
- Learning approaches
 - Regression trees [Bartz-Beielstein et al. 2004]
 - Response surface models, DACE [Bartz-Beielstein et al. 2004–2006]
- ► Lots of work on per-instance / reactive tuning ~→ orthogonal to the approach followed here

Outline

1. Introduction

- 2. Iterated local search over parameter configurations
- 3. The FocusedILS algorithm
- 4. Sample applications and performance results
- 5. Conclusions and future work

choose initial parameter configuration θ perform *subsidiary local search* on *s*

choose initial parameter configuration θ perform *subsidiary local search* on *s* While tuning time left:

```
 \begin{vmatrix} \theta' := \theta \\ \text{perform perturbation on } \theta \\ \text{perform subsidiary local search on } \theta \end{vmatrix}
```

choose initial parameter configuration θ perform *subsidiary local search* on *s* While tuning time left:

```
\begin{array}{l} \theta' := \theta \\ \text{perform } perturbation \text{ on } \theta \\ \text{perform } subsidiary \ local \ search \ \text{on } \theta \\ \text{based on } acceptance \ criterion, \\ \text{keep } \theta \ \text{or revert to } \theta := \theta' \end{array}
```

choose initial parameter configuration θ perform *subsidiary local search* on *s* While tuning time left:

```
 \begin{array}{l} \theta' := \theta \\ \text{perform perturbation on } \theta \\ \text{perform subsidiary local search on } \theta \\ \text{based on acceptance criterion,} \\ \text{keep } \theta \text{ or revert to } \theta := \theta' \\ \text{with probability } p_{restart} \text{ randomly pick new } \theta \end{array}
```

→ performs biased random walk over local minima

subsidiary local search: iterative first improvement, change on parameter in each step

- subsidiary local search: iterative first improvement, change on parameter in each step
- perturbation: change 3 randomly chosen parameters

- subsidiary local search: iterative first improvement, change on parameter in each step
- perturbation: change 3 randomly chosen parameters
- acceptance criterion: always select better configuration

- subsidiary local search: iterative first improvement, change on parameter in each step
- perturbation: change 3 randomly chosen parameters
- acceptance criterion: always select better configuration
- ▶ initialisation: pick *best* of default + *R* random configurations

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

► Sample *N* instances from given set (with repetitions)

- Sample N instances from given set (with repetitions)
- For each of the N instances, execute algorithm with configuration θ.

- Sample N instances from given set (with repetitions)
- For each of the N instances, execute algorithm with configuration θ.
- ▶ Record scalar cost of each of the N runs: sc₁,..., sc_n (run-time, solution quality, ...)
 → empirical cost distribution CD

- Sample N instances from given set (with repetitions)
- For each of the N instances, execute algorithm with configuration θ.
- ▶ Record scalar cost of each of the N runs: sc₁,..., sc_n (run-time, solution quality, ...)
 → empirical cost distribution CD
- Compute scalar statistic $\hat{c}_N(\theta)$ of \widehat{CD} (mean, median, ...)

- Sample N instances from given set (with repetitions)
- For each of the N instances, execute algorithm with configuration θ.
- ▶ Record scalar cost of each of the N runs: sc₁,..., sc_n (run-time, solution quality, ...)
 → empirical cost distribution CD
- Compute scalar statistic $\hat{c}_N(\theta)$ of \widehat{CD} (mean, median, ...)
- ▶ Note: For large *N*, $\hat{c}_N(\theta)$ approaches true cost $c(\theta)$

Solution quality over time achieved by ParamILS

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Question: How many runs/instances?

too many

- \rightsquigarrow evaluating a configuration is very expensive
- \rightsquigarrow optimisation process is very slow

Question: How many runs/instances?

- too many
 - \rightsquigarrow evaluating a configuration is very expensive
 - \rightsquigarrow optimisation process is very slow
- too few
 - \rightsquigarrow very noisy approximations $\hat{c}_N(\theta)$
 - $\rightsquigarrow\,$ poor generalisation to independent test runs

Generalisation to independent test runs (1)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Generalisation to independent test runs (2)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

The FocusedILS algorithm

• Given a budget of available CPU time for tuning, use different numbers of runs, $N(\theta)$, for each configuration θ

The FocusedILS algorithm

- Given a budget of available CPU time for tuning, use different numbers of runs, $N(\theta)$, for each configuration θ
- Idea: Use high $N(\theta)$ only for good θ
 - start with $N(\theta) = 0$ for all θ
 - increment $N(\theta)$ whenever θ is visited
 - additional runs upon finding new, better configuration $\boldsymbol{\theta}$

Theorem:

As number of FocusedILS iterations $\rightarrow \infty$, it converges to true optimal configuration θ^*

Theorem:

As number of FocusedILS iterations $\rightarrow \infty$, it converges to true optimal configuration θ^*

Key ideas in proof:

1. For $N(\theta), N(\theta') \to \infty$, comparisons between θ, θ' become precise.

Theorem:

As number of FocusedILS iterations $\rightarrow \infty$, it converges to true optimal configuration θ^*

Key ideas in proof:

- 1. For $N(\theta), N(\theta') \to \infty$, comparisons between θ, θ' become precise.
- 2. Underlying ILS eventually reaches any configuration θ .

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Experiment: Comparison to CALIBRA

Scenario	Default	CALIBRA(100)	BasicILS(100)	FocusedILS
GLS-GRID	$\epsilon = 1.81$	1.234 ± 0.492	0.951 ± 0.004	$\textbf{0.949} \pm \textbf{0.0001}$

Experiment: Comparison to CALIBRA

Scenario	Default	CALIBRA(100)	BasicILS(100)	FocusedILS
GLS-GRID	$\epsilon = 1.81$	1.234 ± 0.492	0.951 ± 0.004	$\textbf{0.949} \pm \textbf{0.0001}$
SAPS-QWH	85.5 <i>K</i> steps	$10.7K\pm1.1K$	$10.9K\pm0.6K$	$10.6 extsf{K}\pm0.5 extsf{K}$

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Experiment: Comparison to CALIBRA

Scenario	Default	CALIBRA(100)	BasicILS(100)	FocusedILS
GLS-GRID	$\epsilon = 1.81$	1.234 ± 0.492	0.951 ± 0.004	$\textbf{0.949} \pm \textbf{0.0001}$
SAPS-QWH	85.5 <i>K</i> steps	$10.7K\pm1.1K$	$10.9K\pm0.6K$	$10.6 extsf{K} \pm 0.5 extsf{K}$
SAPS-SW	5.60 s	0.053 ± 0.010	0.046 ± 0.01	$\textbf{0.043} \pm \textbf{0.005}$

Experiment: Comparison to CALIBRA

Scenario	Default	CALIBRA(100)	BasicILS(100)	FocusedILS
GLS-GRID	$\epsilon = 1.81$	1.234 ± 0.492	0.951 ± 0.004	$\textbf{0.949} \pm \textbf{0.0001}$
SAPS-QWH	85.5 <i>K</i> steps	$10.7K\pm1.1K$	$10.9K\pm0.6K$	$10.6 extsf{K}\pm0.5 extsf{K}$
SAPS-SW	5.60 s	$\textbf{0.053} \pm \textbf{0.010}$	$\textbf{0.046} \pm \textbf{0.01}$	$\textbf{0.043} \pm \textbf{0.005}$
SAT4J-SW	7.02 s	(too many param.)	1.19 ± 0.58	$\textbf{0.65} \pm \textbf{0.2}$

Speedup obtained by automated tuning (SAPS default *vs* tuned on test set SW-GCP)

Hutter, Hoos, Stützle: Automatic Algorithm Configuration based on Local Search

Two 'real-world" applications

- ▶ New DPLL-type SAT solver SPEAR
 - 26 parameters
 - Software verification: 500-fold speedup
 - Hardware verification: 4.5-fold speedup
 - \rightsquigarrow New state of the art for those instances
 - → Hutter, Babić, Hoos & Hu: FMCAD '07 (to appear)

Two 'real-world" applications

- ▶ New DPLL-type SAT solver SPEAR
 - 26 parameters
 - Software verification: 500-fold speedup
 - Hardware verification: 4.5-fold speedup
 - \rightsquigarrow New state of the art for those instances
 - → Hutter, Babić, Hoos & Hu: FMCAD '07 (to appear)
- New replica exchange Monte Carlo algorithm for protein structure prediction
 - 3 parameters
 - 2-fold improvement
 - \rightsquigarrow New state of the art for 2D/3D protein structure prediction
 - → Thachuk, Shmygelska & Hoos (under review)

 ParamILS: Simple and efficient framework for automatic parameter optimization

- ParamILS: Simple and efficient framework for automatic parameter optimization
- FocusedILS:
 - converges provably towards optimal configuration, no over-confidence
 - excellent performance in practice (outperforms BasicILS, CALIBRA)

- ParamILS: Simple and efficient framework for automatic parameter optimization
- FocusedILS:
 - converges provably towards optimal configuration, no over-confidence
 - excellent performance in practice (outperforms BasicILS, CALIBRA)
- Huge speedups:
 - $\approx 100 imes$ for SAPS (local search) on graph colouring
 - $\blacktriangleright~\approx 500\times$ for $\rm SPEAR$ (tree search) on software verification

- ParamILS: Simple and efficient framework for automatic parameter optimization
- FocusedILS:
 - converges provably towards optimal configuration, no over-confidence
 - excellent performance in practice (outperforms BasicILS, CALIBRA)
- Huge speedups:
 - $\approx 100 imes$ for SAPS (local search) on graph colouring
 - $\blacktriangleright~\approx 500\times$ for $\rm SPEAR$ (tree search) on software verification
- Publically available at: http://www.cs.ubc.ca/labs/beta/Projects/ParamILS

Continuous parameters (currently discretised)

- Continuous parameters (currently discretised)
- Statistical tests (cf. racing algorithms)

- Continuous parameters (currently discretised)
- Statistical tests (cf. racing algorithms)
- Per-instance tuning

- Continuous parameters (currently discretised)
- Statistical tests (cf. racing algorithms)
- Per-instance tuning
- Automatic algorithm design