The Basic GLSM Model

Many high-performance SLS methods are based on combinations of simple (pure) search strategies (e.g., ILS, MA).

These hybrid SLS methods operate on two levels:

- **lower level**: execution of underlying simple search strategies
- **higher level**: activation of and transition between lower-level search strategies.

Key idea underlying Generalised Local Search Machines: Explicitly represent higher-level search control mechanism in the form of a *finite state machine*.
Example: Simple 3-state GLSM

- States z_0, z_1, z_2 represent simple search strategies, such as Random Picking (for initialisation), Iterative Best Improvement and Uninformed Random Walk.

- PROB(p) refers to a probabilistic state transition with probability p after each search step.
Generalised Local Search Machines (GLSMs)

- States \cong simple search strategies.
- State transitions \cong search control.

GLSM \mathcal{M} starts in initial state.

In each iteration:
 - \mathcal{M} executes one search step associated with its current state z;
 - \mathcal{M} selects a new state (which may be the same as z) in a nondeterministic manner.

\mathcal{M} terminates when a given termination criterion is satisfied.
Modelling SLS Methods Using GLSMs

Uninformed Picking and Uninformed Random Walk

procedure step-RP(\pi, s)
 input: problem instance \pi \in \Pi,
 candidate solution s \in S(\pi)
 output: candidate solution s \in S(\pi)
 s' := selectRandom(S);
 return s'
end step-RP

procedure step-RW(\pi, s)
 input: problem instance \pi \in \Pi,
 candidate solution s \in S(\pi)
 output: candidate solution s \in S(\pi)
 s' := selectRandom(N(s));
 return s'
end step-RW
Uninformed Random Walk with Random Restart

\[R = \text{restart predicate, e.g., countm}(k) \]
Iterative Best Improvement with Random Restart

procedure $\text{step-BI}(\pi, s)$

input: problem instance $\pi \in \Pi$, candidate solution $s \in S(\pi)$

output: candidate solution $s \in S(\pi)$

$g^* := \min \{g(s') \mid s' \in N(s)\}$;

$s' := \text{selectRandom}(\{s' \in N(s) \mid g(s') = g^*\})$;

return s'

end step-BI
Randomised Iterative Best Improvement with Random Restart

Stochastic Local Search: Foundations and Applications 29
Simulated Annealing

- Note the use of transition actions and memory for temperature T.
- The parametric state $SA(T)$ implements probabilistic improvement steps for given temperature T.
- The initial temperature T_0 and function $update$ implement the annealing schedule.
The acceptance criterion is modelled as a state type, since it affects the search position.

Note the use of transition actions for memorising the current candidate solution (pos) at the end of each local search phase.

Condition predicates \(CP \) and \(CL \) determine the end of perturbation and local search phases, respectively; in many ILS algorithms, \(CL := l_{\text{min}} \).
Iterated Local Search (2)

procedure step-AC(\(\pi, s, t\))

input: problem instance \(\pi \in \Pi\),
candidate solution \(s \in S(\pi)\)

output: candidate solution \(s \in S(\pi)\)

if \(C(\pi, s, t)\) then
 return \(s\)
else
 return \(t\)
end
end step-AC
Ant Colony Optimisation (1)

- General approach for modelling population-based SLS methods, such as ACO, as GLSMs:

 Define search positions as *sets of candidate solutions*; search steps manipulate some or all elements of these sets.

 Example: In this view, Iterative Improvement (II) applied to a population sp in each step performs one II step on each candidate solution from sp that is not already a local minimum.

 (Alternative approaches exist.)

- Pheromone levels are represented by memory states and are initialised and updated by means of transition actions.
The condition predicate CC determines the end of the construction phase.

The condition predicate CL determines the end of the local search phase; in many ACO algorithms, $CL := l\text{min}$.