
Characterising and Improving LVA Behaviour

Advanced aspects of empirical analysis include:

I the analysis of asymptotic and stagnation behaviour,

I the use of functional approximations to mathematically
characterise entire RTDs.

Such advanced analyses can facilitate improvements in
the performance and run-time behaviour of a given LVA,
e.g., by providing the basis for

I designing or configuring restart strategies and other
diversification mechanisms,

I realising speedups through multiple independent runs
parallelisation.
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LVA efficiency and stagnation

I In practice, the rate of decrease in the failure probability,
λA,π(t), is more relevant than true asymptotic behaviour.

I Note: Exponential RTDs are characterised by a constant rate
of decrease in failure probability.

I A drop in λA,π(t) indicates stagnation of algorithm A’s
progress towards finding a solution of instance π.

I Stagnation can be detected by comparing the RTD against
an exponential distribution.
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Evidence of stagnation in an empirical RTD:
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‘ed[18]’ is the CDF of an exponential distribution with median 18; the arrows

mark the point at which stagnation behaviour becomes apparent.
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Approximation of an empirical RTD with an exponential
distribution ed[m](x) := 1− 2−x/m:
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The optimal fit exponential distribution obtained from the

Marquardt-Levenberg algorithm passes the χ2 goodness-of-fit test at α = 0.05.
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Performance improvements based on static restarts (1)

I Detailed RTD analyses can often suggest ways of improving
the performance of a given SLS algorithm.

I Static restarting, i.e., periodic re-initialisation after all integer
multiples of a given cutoff-time t ′, is one of the simplest
methods for overcoming stagnation behaviour.

I A static restart strategy is effective, i.e., leads to increased
solution probability for some run-time t ′′, if the RTD of
the given algorithm and problem instance is less steep than
an exponential distribution crossing the RTD at some time
t < t ′′.
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Performance improvements based on static restarts (2)

I To determine the optimal cutoff-time topt for static restarts,
consider the left-most exponential distribution that touches
the given empirical RTD and choose topt to be the smallest
t value at which the two respective distribution curves meet.

(For a formal derivation of topt , see page 193 of SLS:FA.)

I Note: This method for determining optimal cutoff-times
only works a posteriori, given an empirical RTD.

I Optimal cutoff-times for static restarting typically vary
considerably between problem instances; for optimisation
algorithms, they also depend on the desired solution quality.
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Overcoming stagnation using dynamic restarts

I Dynamic restart strategies are based on the idea of
re-initialising the search process only when needed,
i.e., when stagnation occurs.

I Simple dynamic restart strategy: Re-initialise search when
the time interval since the last improvement of the incumbent
candidate solution exceeds a given threshold θ.
(Incumbent candidate solutions are not carried over restarts.)

θ is typically measured in search steps and may be chosen
depending on properties of the given problem instance,
in particular, instance size.
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Example: Effect of simple dynamic restart strategy
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Other diversification strategies

I Restart strategies often suffer from the fact that search
initialisation can be relatively time-consuming (setup time,
time required for reaching promising regions of given search
space).

I This problem can be avoided by using other diversification
mechanisms for overcoming search stagnation, such as

I random walk extensions that render a given SLS algorithm
provably PAC;

I adaptive modification of parameters controlling the amount
of search diversification, such as temperature in SA or
tabu tenure in TS.

I Effective techniques for overcoming search stagnation are
crucial components of high-performance SLS methods.
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Multiple independent runs parallelisation

I Any LVA A can be easily parallelised by performing multiple
runs on the same problem instance π in parallel on p
processors.

I The effectiveness of this approach depends on the RTD
of A on π:

Optimal parallelisation speedup of p is achieved for
an exponential RTD.

I The RTDs of many high-performance SLS algorithms are
well approximated by exponential distributions; however,
deviations for short run-times (due to the effects of search
initialisation) limit the maximal number of processors
for which optimal speedup can be achieved in practice.
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Speedup achieved by multiple independent runs parallelisation
of a high-performance SLS algorithm for SAT:
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