Assignment 2

This assignment covers Modules 4 and 5. It is due on Fri, 29 June 2007 at 23:59:59 GMT+2. Please send me a PDF file (which may be obtained by scanning handwritten pages) via e-mail to hoos@cs.ubc.ca.

Feel free to discuss the problems and solution ideas with other students, but you need to work out and write down the actual solutions on your own.

Problem 1 (5+10+15=30 marks)

- (a) In a population-based SLS algorithm, is it typically more beneficial to have a very diverse or a very homogenous population?
- (b) How could population-diversity be measured in the case of the TSP?
- (c) Suggest a mechanism for controlling population diversity in an evolutionary algorithm for the TSP, based on your answers to parts (a) and (b).

Note: If you wish, you may consult the literature when solving this problem; as always, if your answers are based on the work of others, you must give appropriate references.

Problem 2 (10+5+10=25 marks)

- (a) Briefly explain the difference between a qualified run-time distribution (QRTD), a solution quality distribution (SQD) and a "solution quality over time" (SQT) curve.
- (b) Briefly explain and illustrate with an example how probabilistic dominance in the case of two optimisation Las Vegas algorithms (OLVAs) is reflected graphically in the relationship between respective SQT curves.
- (c) Briefly explain and illustrate with an example why basing a performance comparison between two OLVAs solely on a single pair of SQT curves can be misleading. Your example should build on that from part (b).

Problem 3 (10+10=20 marks) You are comparing the performance of two SLS algorithms A and B for a combinatorial decision problem. Applied to a well-known benchmark instance, these algorithms were found to exhibit the RTDs shown on following next page.

- (a) What can you learn from these RTDs?
- (b) Which further experiments do you suggest to decide which algorithm is superior?