computers and music (1)
representing music digitally

learning goals:
- knowledge of (some) musical activities that can be supported by computers
- familiarity with the basic method for encoding a sound signal digitally, including the guideline for sampling frequency
- knowledge of different levels of music representation and their uses, in particular acoustic and score level
- basic familiarity with musical parameters and their representation in GUIDO Music Notation

Lady Ada’s Vision

[The Analytical Engine] might act upon other things besides number, [...] the engine might compose elaborate and scientific pieces of music of any degree of complexity or extent.

Augusta Ada King, Countess of Lovelace (1815–1852)

Musical objects / data:
- instruments
- scores (written notes, rests, other symbols)
- recordings
as well as less tangible “objects”, such as:
- works (symphonies, songs, sonatas, …)
- melodies, rhythms, voices
- interpretations, performances

Any language begins as music and ends up being an algebra.

André-Marie Ampère, French mathematician and physicist (1775–1836)

Working With Music

(Some) musical activities / processes:
- creating (composition, improvisation)
- playing (performance)
- listening (perception)
but also:
- building instruments
- analysing
- notating / copying / publishing / distributing
(even analysing and designing acoustics of instruments and concert halls)

~ computers can support all these activities
Music Representation

To work with music algorithmically, we need a formal music representation.

But what should we represent?

- Sound? (like on a record, tape, or CD?)
- Score? (like in sheet music)
- Structure? (musical form, “architecture”)
- Properties? (statistical features, number of notes, etc.)

And how?

- a sound wave is *continuous* (analog) and *periodic*
- the *frequency* of a sound wave, measured in Hertz (Hz), is the number of periods per second
- audible sound waves have frequencies ranging between 20Hz and 20 000 Hz (20 kHz)

- *sampling* is used to digitize analog sound waves
- a *sample* is a measurement of the pressure at a point in time

- sample sequence: -110, -010, 101, 001, -110, …
- in this example, 4 bits per sample (1 for the +/- sign)

- sampling rate here is 8 samples/sec
digitised sound quality

• for a given sound wave, the quality of the digitised sound data is determined by
 – the sampling rate
 – the number of bits per sample

 guideline: for good quality, the sampling rate should be at least twice the maximal frequency

 Example: Want to capture frequencies up to 20,000 Hz => need a sampling rate of at least 40,000 samples/sec

exercise

What is the digitised sound representation for this sound wave, when the sampling rate is 4 and the number of bits per sample is 4?

exercise

A sound wave that extends for 1 minute is sampled at a rate of 44,000 samples per second. Each sample is 16 bits.

What is the total number of bits needed to represent the sample sequence for that sound wave?

advantages of digitised sound

• can be copied without loss of quality

• can be edited in complex ways, *e.g.*, remove coughing from live recording
 – speed up or slow down the speed of the music without changes in pitch

• can be compressed to save storage space, *e.g.*, by removing non-audible aspects of sounds (this provides the basis for MP3 coding)

Levels of music representation:

• *acoustic / physical (level 0)*
 music as sound, represented as waveform
 (*e.g.*, CD recording, WAV file, MP3 file, ...)
 This is what instruments produce and what we hear.

• *score / notation (level 1)*
 explicitly represents musical parameters,
 such as pitch, duration, loudness, instrument
 This is (mostly) what composers write and musicians play from.

Levels of music representation (continued):

• *structure (level 2)*
 explicitly represents musical structure,
 including movements, repeats, recurring material
 Example: A C B C A C, where A, B, C are pieces of music, *e.g.*, the verses and chorus of a song.

• *metastructure (level 3)*
 explicitly represents algorithms for composition and analysis,
 automata, grammars, functions, generators
 Example: A program that uses a random number generator to create musical fragments and combines them into a piece.
Sound recording, editing, mixing, playback typically happen at the acoustic level (=level 0).

~ Musical parameters not represented explicitly (very difficult to access and manipulate).

But: Many creative musical activities (including most forms of composition) use musical parameters explicitly.

~ Need score (= level 1) or higher level representation.

Conventional music notation
- complex, expressive graphical language
- historically evolved system, originated ca. AD 1000
- optimised for performance, but equally used for composition, analysis, ...

Elements of music notation: Primary musical parameters
- pitch (related to physical frequency) specified by
 - pitch class (note name):
 - c c-sharp d d-sharp e f f-sharp g g-sharp a a-sharp
 = d-flat e-flat f-flat g-flat a-flat b-flat b
 - register (octave number):
 - 3, 2, 1, 0, 1, 2, 3, ..., 8

 pitch classes repeat in each register:
 c1 d1 e1 f1 g1 a1 b1 c2 d2 ...

Elements of music notation: Primary musical parameters (continued)
- note values (related to physical duration)
 - specified as fractions: 1/1, 1/2, 1/4, 1/8, 1/16, ...

Additional elements of music notation: Secondary musical parameters
- tempo (speed)
- intensity (loudness)
- timbre (instrument / style of playing)

GUIDO Music Notation [Hoos et al., 1996–2001]
- represents music notation (level 1)
- plain text, human-readable
- representationally adequate:
 simple things have simple representations
GUIDO Music Notation: Notes and Rests

- Notes: \(\langle \text{pitch} \rangle \langle \text{duration} \rangle \)
 e.g.: \(c_{1/4} \ a_{2/8} \ f_{#1/1} \ b_{6/16} \)

- Rests: \(\langle \text{duration} \rangle \)
 e.g.: \(_/4 _/2 _/8 \)

GUIDO Music Notation: Sequences and Segments

Sequence:
Series of notes (or rests) that are played sequentially (one after the other)
In GUIDO: \([\langle \text{note/rest} \rangle \langle \text{note/rest} \rangle \ldots \langle \text{note/rest} \rangle]\)
E.g.: \([c_{1/4} \ d_{1/4} \ e_{1/4} \ f_{1/4} \ g_{1/2}]\)

Segment:
A set of sequences (voices) that are played concurrently (at the same time)
In GUIDO: \(\{\langle \text{sequence} \rangle, \langle \text{sequence} \rangle, \ldots, \langle \text{sequence} \rangle\}\)
E.g.: \(\{[c_{1/4} \ d_{1/4} \ e_{1/4}], \ [e_{1/4} \ f_{1/4} \ g_{1/2}]\}\)