how computers work (3)

systems software - the bridge
between application software and
computer hardware

motivation

* imagine a computer without systems
software — only applications software and
hardware

* the earliest computers were this way

programming without an
operating system :-)

ENIAC (Electronic Numerical
Integrator and Computer) 1946

“The procedure for instructing
the ENIAC in its routine, then,
consists of setting program
switches on the units so that,
when stimulated by a program
input pulse, the program
controls will cause the units to
carry out a set of specific
operations.”

- Adele Goldstine, 1946 http://www.seas.upenn.edu/~museum/

what is systems software?

* application software refers to Word, Firefox,
Ultimate Paint, e-mail clients, programs you
write yourself, etc.

» systems software provides a high-level
environment in which we can run applications
on the computer

* note: boundary between application and
systems software is not always clear

what systems services can you think of?

some services of modern
systems software

* organizing files (folders etc.)

* downloading software

» scheduling programs on the processor

* interfacing with the internet

* managing communication with peripherals
 providing security

* and lots more (GUI, windows, ...)

early operating systems early operating systems

» advances following the ENIAC allowed
programs to be stored in computer memory,

as technology advanced, several ideas
improved on the batch operating systems:

paving the way for batch operating systems

* users submitted programs (one instruction
per punch card) and retrieve the results later

* a stack of jobs could be scheduled on the
computer, hence the name "batch"

* the computer processed one job at a time

» often all cards needed to be read before a
program could be started — slow!

* multiprogramming allowed one program to
run while another paused, e.g., while waiting
for a printer to finish

* time-sharing allowed several users to run
programs on a machine, providing the
opportunity for interactivity

the unix operating system

* developed in early 1970s at Bell Labs
* innovations include:
- hierarchical file system
- ability to run several programs simultaneously
(time-sharing)
- ability to simultaneously support several users on
one computer
- ability for user base to add and share tools that
run as part of the system
« command line interface meant high learning
curve initially, but provides lots of flexibility to
a knowledgeable user

windows operating system

* inspired by early GUIs developed at Xerox
PARC (Palo Alto Research Center) in early
1980s

* The Apple Macintosh operating system offered
the first commercial window-based GUI

* Microsoft's earliest windows system was
released in 1985, built on top of a command
line operating system (MS DOS); Windows
became popular in 1990 with introduction of
Windows 3.0

* Modern Unix operating systems also have
window-based GUIs (XWindows)

more system software:
translating between
programming languages

compilers translate programs written in a high-
level programming language (e.g., Java) into the
low-level machine language understood by a
computer processor

a compiler is a program whose

input and output data are

programs!
machine
high-level program [———— compiler—{ language
program

implications of compilation

* high level programming language must be
automatically translatable to low-level code

* this constrains the expressiveness of
programming languages (since computers
are not very good at language processing)

* in particular, programming languages have to

be very precise

summary

* operating system: software that coordinates
and manages resources on the computer

» compiler: software that translates programs
written in a high level language into a low-
level language

putting it all together

1. an application is written in a high-level
programming language (e.g., Java)

2. the code is translated to machine

language (e.g., by a compiler)

3. when you want to run the application,
the operating system loads the code
into RAM (random access memory)

4. the fetch/execute cycle is performed

let’s look at an example

1. application code

4 N

if (answer !1=0)

{score = score + answer;}
else

{score = score + score;}

_ /

2, 3: translating

and loading

if (answer != 0) then
{score =
score + answer;}

else
{score =
score + score;}

2. compiler
translates
program

system loads
program and
data

_ 3. operating | |

answer, score are stored in
memory locations 2000,
2004 respectively

T

load 3, 2000
load 4, 2001
branch 3, 3
add 4,34
jmp 2

add 4,44
store 4, 2001

-/

(recall our low-level
instructions)

add 3,4, 3

add the contents of registers 3 and 4, and store the
answer in register 3

load 3, 7000
I%:\gointo register 3 the contents of memory location

store 2, 2040

gtcc))‘{g into register 2 the contents of memory location

jmp 7
move ahead by 7 (low level) instructions
branch 2, 5

if content of register 2 is 0, then move ahead by 5
instructions, otherwise continue to the next instruction

4. the fetch/execute
cycle is performed

memory

recall the fetch/execute cycle:

instruction memory

@ fetch instruction specified by program counter
.decode instruction

10048l b A Brog. counie @ fetch data from memory and store in registers

- 1017 add 43,4 — £
[L ' | @ perform operation and send result to data
1024 store 4, 2001 ontrol unit memory, a register, or program counter
s(coordinator
.update data memory
O register |
.update program counter

{1 register]
2[_register]
s

]

~ | 100q_load 3, 2000 processor
~ | 1004 _load 4, 2001

data memory
2000 T 5]

resources

* overview of operating systems:
http://en.wikipedia.org/wiki/Operating_system

* the original operations manual for the

ENIAC, by Adele Goldstine:
http://ftp.arl.mil/~mike/comphist/46eniac-report/

