how computers work (3)

inside the ALU

goals

- · last time, we saw the fetch/execution cycle
- · focus was on
 - flow of instructions and data between memory and the computer processor
 - the units within the processor and their roles
- today: see how one component, the ALU (arithmetic and logic unit) works

the arithmetic and logic unit

recall: the ALU

- takes as input some data (bits) from some registers
- performs an operation on the data, such as addition, subtraction, multiplication, division
- produces the output of the operation

our task: design a unit that adds 1 to a 2-bit input

Note: the function of our "add-1" ALU can be specified as an input/output table

basic building block for the ALU

- the ALU (as well as the control unit and the unit that updates the program counter) are built from components called gates
- a versatile gate is the NAND gate, which takes two input signals (bits) and produces a single output bit:

NAND gate

there are four possible input values:

NAND gate

for these input values, the output value is:

NAND gate

the NAND gate's function can be summarised in a table:

input	input	output
A	В	
0	0	1
0	1	1
1	0	1
1	1	0

circuits

- just as brains are built from brain cells (called neurons), circuits are built from gates
- here is a circuit with two inputs and two gates; what is its input output table?

circuits

- just as brains are built from brain cells (called neurons), *circuits* are built from gates
- here is a circuit with two inputs and two gates; what is its input output table?

input	input	output
A	В	
0	0	1
0	1	1
1	0	0
1	1	1

more circuits

more circuits

1

1

back to our task:

back to our task:

first focus on output E

inputs	outputs
A B	CDE
0 0	1
0 1	0
1 0	1
11	0

inputs	outputs
A B	CDE
0 0	0 0 1
0 1	0 1 0
1 0	0 1 1
11	100

next look at output D

inputs	outputs
AΒ	CDE
0 0	0 0 1
0 1	0 1 0
1 0	0 1 1
1 1	100

next look at output D

inputs	outputs
A B	CDE
0 0	0
0 1	1
1 0	1
11	0

output D is the EXOR of inputs A and B

inputs	outputs
A B	CDE
0 0	0 0 1
0 1	0 1 0
1 0	011
11	100

finally, look at output C

inputs	outputs
AΒ	CDE
0 0	0 0 1
0 1	0 1 0
1 0	0 1 1
1 1	100

output C is the AND of inputs A and B

inputs	outputs
A B	CDE
0 0	0 0 1
0 1	0 1 0
1 0	0 1 1
1 1	100

summary

- a circuit that adds 1 to a binary number can be built from NAND gates
- circuits that add or multiply two binary numbers are based on exactly the same principles
- you can buy NAND gates online! 43 cents for 4 NAND gates on a chip at www.semiconductors.philips.com